
Situations in P2P data integration system

Jerzy Bartoszek1, Grażyna Brzykcy1

Abstract: Situations can be used to model context of agents’ ac-
tions in heterogeneous P2P data integration system. They are the cru-
cial concept in the situation theory and are suitable to cope with data,
metadata, information partiality, open-world and non-monotonic rea-
soning in knowledgebase systems. In the SIXP2P system agents can
ask and answer queries, which are propagated to their partners and are
evaluated with respect to partners’ contexts. These actions are done
via Prolog-like goals. Operational semantics of the computations is
presented as a set of context-dependent rules. Specification of sample
actions is depicted.

Keywords: P2P system, agent’s actions, situations, context-
dependent computations, Prolog-like computations.

1. Motivation
In information systems even the same data may be represented in different ways.
Data (knowledge) representation depends on many design requirements and de-
cisions, like methods used to solve a problem, a set of concepts used to describe
the problem etc. But the form of knowledge representation is mostly application-
oriented. So, to build intelligent services enabling access to heterogeneous infor-
mation sources we adopt the data-oriented approach and focus on the substance of
information (its content, meaning) processed by agents. We assume that informa-
tion content does not depend on data representation.

The content-oriented approach is also a very basic requirement of the Semantic
Web (Berners-Lee 2001), a vision of a distributed network of data sources that
can be automatically and effectively processed with respect to their semantics. To
make the Semantic Web a useful reality, the proper software tools are built that
allow data integration, effective searching and querying of information sources and
coordination of agents’ actions. One can find models and implementations of a
middleware for the Semantic Web developed over known standards, such as XML,
RDF and OWL (Ciancarini 2002, Fensel 2004, Tolksdorf 2004). The evolution of
some proposals (for example Tolksdorf 2006) clearly demonstrates that on the one
hand, we strongly need reasoning services, but on the other, that Semantic Web
technologies are still immature. Discovered deficiencies, in most cases, are direct
consequences of constraints of the Semantic Web standards. These standards have
grown increasingly to cope with larger and larger area of problems. As an effect we
are situated at the moment of time when armed with different specialized tools we
1 Institute of Control and Information Engineering, Poznań University of Technology, pl. M.
Skłodowskiej-Curie 5, 60-965 Poznań
e-mail: {jerzy.bartoszek,grazyna.brzykcy}@put.poznan.pl



Situations in P2P data integration system 413

are not able to effectively use them together. Worse, trying to solve other significant
problems, like information partiality, open-world and non-monotonic reasoning, we
probably need another new standards. To remedy the problem we propose to found
semantic processing on the solid and strong enough formal basis and on the tested
and known Prolog-like inference mechanisms (Barwise 1983).

As a theoretical background we choose situation theory (Barwise 1997, Devlin
1991), which is regarded as one of the best tools of meaning analyses. In the formal-
ization actions and interactions are analyzed in terms of the creation, acquisition,
storage and exchange of information. The situation theory supports partiality,
context-dependence and extensive reification and offers a useful abstraction mech-
anisms. We use situations to model mental states of agents in heterogeneous P2P
(Peer-to-Peer) system of semantic data integration.

Prolog-like systems, particularly those with types and extended records (ψ-
terms, feature structures) (Carpenter 1990, Ait-Kaci 1994), provide not only a
high level of abstraction for knowledge representation but also a pattern matching,
unification and subsumption – techniques having practical use in the data inte-
gration tasks. Moreover, they come with metaprogramming facilities and divers
extensions (e.g., LogicPeer, LogicWeb (Loke 2006), situations (Loke 2004)), a back-
tracking search and executable specifications. All the characteristics are suitable
to tackle the querying and reasoning with semantics.

In this paper we consider software systems, which consist of autonomous com-
ponents (agents, peers) (Wooldridge 2002) each of which manages some part of data
(knowledge). An agent can independently decide how to structure its local data
and can cooperate with other agents by asking them and answering queries. Peers
decide when to join and leave the system, when to communicate and share their
data with other partners. The semantic data integration is one of the main goals
of such systems. Due to this goal and, generally, to the dynamism and variability
of today’s network systems, agents need to know, along with their object data, also
different kinds of metadata. They are crucial to efficiently adapt agents’ behavior
in a distributed open environment. We assume that an agent performs actions with
respect to all data and metadata it posses. They form agents’ context or mental
state (Zambonelli 2004). Rules which describe the cooperation of agents may be
expressed formally, too. Following (Loke 2006) we propose a set of rules, which
describe how Prolog-like questions are evaluated by agents. These rules describe
operational evaluation of questions.

So, the contribution of this paper is as follows:

1. We adopt abstract situations as contexts of agents’ actions. Such context
can consist of Prolog-like facts and procedures. Facts are used to represent
elementary pieces of data and metadata, and procedures represent actions
undertaken by the agents.

2. We propose a set of rules, which describe evaluation of these actions with
respect to explicitly shown context.

3. We outline a Prolog specification of some actions executed by agents in the



414 J. Bartoszek, G. Brzykcy

semantic data integration system SIXP2P currently under development in
Poznań University of Technology (Brzykcy, Bartoszek, Pankowski 2007).

In the next section main concepts of situation theory are recalled. Section 3 is
devoted to evaluations of data integration processes. Selected procedures executed
by agents are shown in section 4.

2. Main concepts of situation theory
The situation theory is a useful mathematical theory of meaning and information
content. In knowledge representation it may serve as a formal foundation of se-
mantic interpretation and reasoning. Situation semantics may be also applied to
communicative events, where communication (e.g., via XML documents) is con-
sidered to be the effective transfer of meaningful information. Distinctive features
of situational approach are the partiality and relevance of information (due to the
finite, situated nature of the agent), context-dependence and extensive reification.
All these properties make situation theory particularly convenient for modeling of
network and communication services.

In fact software developers may have two points of view of situation theory.
The first one, called conceptual, uses the notions of situation theory to model
knowledge. In the second one, called computational, different contextual inference
mechanisms can be adapted to make reasoning.

The basic ontology of situation theory gives a small number of concepts with in-
dividuals, relations and situations, which are suitable for world modeling. The most
elementary construct is infon – a discrete item of information. If R is an n-place
relation and a1, ..., an are objects appropriate for the respective argument places of
R, then a tuple <<R,r1 →a1,...,rn →an,+>> denotes the informational item that
a1,...,an are standing in the relation R, and a tuple <<R,r1 →a1,...,rn →an,+>>
denotes the informational item that a1,...,an are not standing in the relation R. Ex-
plicit representation of negative information is the first step towards an open-word
reasoning. r1, ..., rn describe roles of the objects a1,...,an respectively and they are
called the names of arguments of R, whereas the last element is called its polarity
and is equal to – or +. Infons in themselves are not true or false.

To represent partial information one can omit some arguments of R. The mini-
mality conditions for R specify groups of argument roles of R that need to be filled
in order to produce a well-formed (well-defined) infon. If σ1 and σ2 are two infons
with the same relation R, and σ2 has at least the same arguments as σ1, then σ1
subsumes σ2 (in σ1 there is less information than in σ2).

A situation is a limited structured part of the world individuated by a cognitive
agent. Situations make certain infons factual. Taking into consideration a situation
s and an infon σ, it is written s | = σ when a situation s supports an infon σ (σ is
true in s). If I is a finite set of infons and s is a situation we write s |= I, if s | = σ
for every infon σ in I.

Given a real situation s, the set {σ | s | = σ} of infons that support the
situation is taken to be the corresponding abstract situation (the model of the real
situation).



Situations in P2P data integration system 415

A flexibility of the agent’s scheme of individuation – a way of carving the world
into uniformities (i.e. types) – is a particularly valuable aspect of the situation
theory. The basic types include temporal locations, spatial locations, individuals,
relations, situations, infons, parameters and polarity. It is written o : T to indicate
that object o is of type T. New types can be defined over some situation s. If p is a
parameter and I is a finite set of infons (involving p), then there is a type [p | s |=
I] of those objects to which p may be anchored in s, so that all conditions in I are
satisfied. Taking into account a situation parameter S and a set I of infons, there
may be a corresponding type [S | S |= I] of situations in which the conditions in I
obtain.

In the situation theory, the “flow of information” (inferences), is realized via con-
straints on situation types. A constraint [S1 => S2], where S1 and S2 are situation
types, describes dependency between a situation of the type S1 and some situation
of the type S2. With the infon <<S1=>S2,+>>, where => is a relation written
in the infix style, an agent knows that if it is in a mental state of the type S1 than
it is also in a state of the type S2. Generally, any constraint may depend on a set
(e.g., the set B) of background conditions under which it will convey information.
This is written as [S1 => S2] / B. Constraints with background conditions allow to
capture in a satisfactory way phenomenon like non-monotonicity in commonsense
reasoning that arises from shift in the context under which reasoning takes place.

Situations together with constraints constitute a context in situation theory
(Akman). Using the same concept of situation one can homogenously express data,
metadata, inference rules and various aspects of context (ontologies, accessible
resources, knowledge shared by the agents, agents’ mental states etc.). Context
may be easily modified as real situations are modeled by means of sets of infons.

3. Context-dependent evaluation of agents’ actions
As information is always about some situation it is modeled by abstract situation
– a set of infons. In (Erkan 1995) it has been shown that situation can be adopted
in Prolog-like systems. We assume that in such system:

• some standard types are predefined,

• new types can be derived from more than one super type, so hierarchies of
objects may be quite complex,

• an inference engine is built upon the hierarchy of these types,

• arguments of terms have names and types (compare Ait-Kaci 1994 and Car-
penter 1990),

• terms with missing arguments are accepted, so partial information about
individuals may be expressed.

Agents (peers) have unique names denoted by p, q, r and so on. Each peer has
its own knowledge modeled as a set of infons with Prolog facts and rules (Prolog-
like rules are represented as infons, for example, the rule H:-B can be treated as



416 J. Bartoszek, G. Brzykcy

infon <<H:- B, +>>). This set of infons constitutes an abstract situation, which
represents the mental state of the peer (or the context) in which the peer executes
actions. The mental state of the peer p is denoted by p. The peer sees a set of
another agents, its partners, and may request them to perform actions. Queries
issued by the peer initialize these actions. A query has the form of Prolog-like
goal passed to some peer (peers). For example, if the peer p wants the goal G to
be evaluated by the agent q, it executes q*G i.e. sends the goal G to the agent
q. If the evaluation of G succeeds, then some result θ (a Prolog-like substitution)
is returned to p. Following (Loke 2006) we denote this evaluation process by a
relation p |−θ q*G.

Some goals can be evaluated locally by an agent p itself. If the mental state of
p is p and the evaluation of the goal G succeeds with the result θ, then we denote
it as p/p |−θ G.

Now, it is necessary to point out that an agent p can “know” some constraints.
For example, if its mental state p is the situation of type Q and the constraint [Q
=>R] is known to an agent, then it can perform its action with respect to some
additional situation r of type R, i.e. an agent evaluates this action in the new
context p∪r. Note, that we consider contexts as abstract situations (i.e. sets of
infons).

In many processes actions have to be executed simultaneously by several agents.
Therefore, in our system we assume simultaneous evaluation of Prolog-like goals.
Let us once more recall (Loke 2006). We find there two forms of parallel goals:
q1,q2,...,qn [] G and q1,q2,...,qn <> G. The goal G is sent to all the agents
q1,q2,...,qn. In the first case the goal G must be executed with success by all
the peers from the list q1,q2,...,qn. In the second case, the goal G must be exe-
cuted with success by at least one peer in the list q1,q2,...,qn. If more then one
result is returned then all the answers need to be composed. If the results are
inconsistent, the overall goal fails.

The evaluation of goals can be described in operational manner by rules of the
form premises

conclusion , where conclusions hold when all premises hold. In rules depicted
below we do not show the obvious mental states of agents.

p/p| −∈ true
(1)

The above rule expresses the fact that any agent p with mental state p always can
execute the empty goal denoted by true.

p| =<< R(t1, . . . , tn)θ, + >>

p/p| −θ R(t1, . . . , tn)
(2)

If the agent p “knows” the fact <<R(t1,. . . ,tn)θ, +>>, than it can execute (with
a success) a goal R(t1,. . . ,tn).

p| =<< R(t1, . . . , tn)θ,− >>

p/p| −θ ¬R(t1, . . . , tn)
(3)



Situations in P2P data integration system 417

If the agent p “knows” the fact <<R(t1,. . . ,tn)θ, –>>, then it can execute (suc-
cessfully) a goal ¬R(t1,. . . ,tn). Due to rules (2) and (3) the agent p can correctly
act in the “open world”. Note, that at this point we eliminate assumption about
the “closed world” made in Prolog reasoning engine.

γ = mgu (A, H)∧ << H : −G, + >>∈ p ∧ p/p| −δ Gγ

p/p| −γδ A
(4)

The above rule shows how the agent p executes the goal A when it has the Prolog
rule H:-G in his mental state. The assignment γ is the most general unifier of A
and H. If it does not exist, execution of A fails.

q/q| −θ G

p/p| −θ q ∗G
(5)

Rules (1) – (4) define execution of local goals i.e. goal executed without any help
of agent’s partners. The rule (5) shows what will happen when the agent p sends
the goal G to the agent q. The goal is executed by the agent q with respect to its
mental state.

p/p| −θ G1 ∧ p/p| −γ G2θ

p/p| −θγ G1, G2
(6)

In the rule the composition of two local goals G1 and G2 is evaluated. After the
execution of the goal G1the new substitution θ appears. It is used then in the
execution of the goal G2.

p/p : Q ∧ [p/p : Q => p/r : R] ∧ p/p ∪ r| −θ G

p/p| −θ G
(7)

The rule (7) shows the execution of the goal G by the agent p with respect to the
constraint [Q =>R]. The goal is evaluated in the new mental state p∪r.

q1/q1| −θ1 G ∧ . . . ∧ qn/qn| −θn G

p/p| −θ1...θn q1, . . . , qn[]G
(8)

q1/q1| −θ1 G ∨ . . . ∨ qn/qn| −θn G

p/p| −θ1...θn q1, . . . , qn <> G
(9)

Rules (8) and (9) are used in parallel evaluation of the goal G. In the rule (8) the
goal G must be executed with success by all the agents q1,q2,...,qn. In the rule (9)
the goal G must be executed successfully by at least one agent q1,q2,...,qn. In both
cases if more then one result is returned then all the answers are composed. If the
results are inconsistent, the overall goal fails.



418 J. Bartoszek, G. Brzykcy

4. Specification of sample actions
We assume that the system SIXP2P for semantic data integration, currently under
development in Poznań University of Technology, consists of autonomous agents,
each of which can independently decide how to structure its local data. Local
schemas that reflect possibly heterogeneous semantic models that are developed by
different peers describe the local data.

An agent in the SIXP2P system sees a set of another agents, its partners, and
may ask queries only to them. However, a query may be propagated to partners of
each peer inducing a significant extension of the set of possible “knowledge sources”.
So, agents indirectly connected to the inquirer cooperatively evaluate the query.

There are two types of the agents in the system: peers and brokers. A context
of each peer consists of its partners (with their schemas and data) and a broker,
whereas the broker sees all the peers (their identifiers). Each peer can perform
three actions directed to a broker, namely introduction (introduce/3), exit (log
out/2) and schema modification (modify schema/1).

Introduction of the Agent to the Broker consists of registration, which is an
action executed by the Broker (a broker identifier prefixes the goal register(Agent,
Parts)), and results in replying a list of Agent’s partners. The Agent stores the list
as a part of its context.
introduce(Agent, Broker, Parts) :-

Broker * register(Agent, Parts), % registration is done by a broker
assert(partners(Parts)). % list of partners is stored

Note that metapredicate assert/1 is used to change the current mental state (con-
text) of the agent. Similarly, the action of leaving the system by the Agent contains
a message to the Broker. The broker conveys than this information (logged_out/1)
to all the agents, which previously have cooperated with the Agent.
log_out(Agent):-

agents(As),
a_remove(Agent, As, As1), % the logged out agent is removed
retract(agents(_)), assert(agents(As1)),
set_of(A, (partners(A, Parts), % agents, which cooperate with
member(Agent, Parts)), As2), % the removed agent are selected

l_inform_all(As2, Agent), % and informed
retract(partners(Agent, _).

l_inform_all([ ], _).
l_inform_all([A | As], Agent):-
A * logged_out(Agent),
l_inform_all(As, Agent).

If the agent’s schema has been changed, the broker sends an appropriate message
(modified_schema/1) to all the agents that may use this schema.
modify_schema(Agent):-

set_of(A, partners(A, Parts), % agents which may use changed
member(Agent, Parts)), As), % schema are selected and informed
s_inform(As, Agent).
s_inform_all([], _).

s_inform_all([A | As], Agent):-
A * modified_schema(Agent),
s_inform_all(As, Agent).



Situations in P2P data integration system 419

To gain information from any partner an agent has to prepare suitable mappings
(create_map/3) between schemas. A mapping from the Partner to the Agent is
denoted as Mpa and from the Agent to the Partner as Map (the special value null
is chosen to depict the situation when such mappings are not constructed).

create_map(Part, Mpa, Map) :-
schema(self, Scha), % agent’s schema
Part * schema(self, Schp), % schema is taken from the partner
map(Scha, Schp, Mpa, Map), % mappings from and to the partner
assert(mappings(Part, Mpa, Map)). % mappings are stored in context

A complex process of querying and answering is specified as an action (ask/3).
It consists of local query processing (query/2), asking of the partners (ask_part-
ners/2) and merging of answers (merge/3).

ask(Agent, Query, Answer) :-
query(Query, Ansl), % local query is answered
ask_partners(Query, Ansr), % partners’ queries are answered
merge([Ansl], Ansr, Answer). % answers are merged

Only qualified partners, for whom both mappings are constructed, are inquired.

ask_partners(Query, Ans):-
choose(QParts), % qualified partners are chosen
ask_qparts(Query, QParts, Ansr),
merge([ ], Ansr, Ans). % answers from partners are merged

choose(QParts):-
set_of(Part, (mappings(Part, Mpa, Map),
Mpa <> null, Map <> null), Qparts).

To ask a partner an agent has to convert (q_reformulate/3) the original Query to
the appropriate form Qp, directed to the suitable partner P. Similarly, answers are
reformulated (a_reformulate/3) by the inverse mapping.

ask_qparts(_, [ ], _). % all partners are asked
ask_qparts(Query, [P | Ps], [A |As]) :-
mappings(P, Mpa, Map),
q_reformulate(Qp, Map, Qp1), % query is transformed
P * ask(Qp1, Ap), % query is answered by a partner
a_reformulate(Ap, Mpa, A), % answer is transformed
ask_qparts(Query, Ps, As).

5. Final remarks

In this paper we consider some problems related to context-aware reasoning in P2P
data integration systems. In our approach we do not use standards of Sematic Web,
but try to show how to take advantage of a strong formal basis, the situation theory,
and known reasoning mechanisms to remedy deficiencies of today’s technologies.
It is worth noticing that XML data can be expressed in extended Prolog systems
(Brzykcy, Bartoszek, Pankowski 2007). Equipped with reasoning tools over partial
data and metaprogramming facilities these systems are also particularly suitable
to tackle the semantic-oriented processing.



420 J. Bartoszek, G. Brzykcy

References
Ait-Kaci, H. et all. (1994) The Wild LIFE Handbook, Paris Research Labo-

ratory.

Akman, V., Surav,M. The Use of Situation Theory in Context Modeling. Com-
putational Intelligence 12 (4).

Brzykcy, G., Bartoszek, J. (2007) : Context in Rules Used in P2P Semantic
Data Integration System, In: Proceedings of RR’2007, LNAI 4424,pp.377-380.

Brzykcy, G., Bartoszek, J., Pankowski, T. (2007) Semantic data integra-
tion in P2P environment using schema mappings and agent technology. In:
Proceedings of AMSTA 2007, LNAI 4496, pp. 385-394.

Barwise, J., Perry, J. (1983) Situations and attitudes. MIT.

Barwise, J., Seligman, J. (1997) Information Flow. The Logic of Distributed
Systems. Cambridge Universtity Press.

Berners-Lee, T., Hendler, J., Lassila, O. (2001) The Semantic Web. Sci-
entific American 284:34-43.

Carpenter, B. (1990) The logic of typed feature structures: inheritance,
(in)equations and extensionality. Second European Summer School in Lan-
guage, Logic and Information. Leuven.

Ciancarini, P., Tolksdorf, R., Zambonelli, F. (2003) A Survey on Coor-
dination Middleware for XML-Centric Applications, In: Proceedings of ACM
SAC 2002, p. 335-343.

Devlin, K. (1991) Logic and information. Cambridge University Press.

Erkan, T., Akman, V. (1995) Situations and Computation: An Overview of
Recent Reseach. In: Griffith J., Hinrichs E.W., Nakazawa T. (eds) Pro-
ceedings of the Topics in Constarint Grammar Formalism for Computational
Linguistics, Copenhagen.

Fensel, D. (2004) Triple Space Computing. Technical Report. Digital Enterprise
Research Institute (DERI).

Loke, S. W. (2006) Declarative programming of integrated peer-to-peer andWeb
based systems: the case of Prolog., Journal of Systems and Software, 79(4),
p. 523-536.

Loke, S. W. (2004) Representing and Reasoning with Situations for Context-
Aware Pervasive Computing: a Logic Programming Perspective. The Knowl-
edge Engineering Review., Vol. 19, No. 3, pp. 213-233.

Manzalini, A., Zambonelli, F. (2006) Towards Autonomic and Situation-
Aware Communication Services: the CASCADAS Vision. IEEE Workshop
on Distrubuted Intelligent Systems, Prague.



Situations in P2P data integration system 421

Tolksdorf, R., Nixon, L., Liebsch, F., Nguyen, D., Paslaru Bontas, E.
(2004) Semantic Web Spaces. Technical report B-04-11, Freie Universitat
Berlin.

Tolksdorf, R., Paslaru Bontas, E., Nixon, L.: (2006) A coordination
model for the Semantic Web. SAC’06, Dijon.

Wooldridge, M.: (2002) An Introduction to Multiagent Systems. John Wiley
& Sons.

Zambonelli, F., Van Dyke Parunak, H. (2004) Towards a Paradigm Change
in Computer Science and Software Engineering: A Synthesis. The Knowledge
Engineering Review.


