
SXCCP+: Simple XML Concurrency Control Protocol for
XML Database Systems

Krzysztof Jankiewicz1

Abstract: Increasing significance and popularity of XML is the
main reason why many commercial object-relational database man-
agement systems (ORDBMS’s) developed XML storage and processing
functionality. Additionally, there are new types of specialized database
systems known as ’native’ XML database systems. As we know, con-
currency control is one of the most important mechanisms in DBMS’s.
Unfortunately, concurrency control mechanisms used so far in commer-
cially available native XML DBMS’s offer very low degree of concur-
rency. The development of universal and effective concurrency control
protocol for accessing XML data, with high degree of concurrency, is a
necessary condition to growth of native XML databases.

The aim of this paper is a proposal of new concurrency control
protocol in XML document access. This protocol is based on primitive
operations which can be treated as unification platform for any of XML
access methods.

Keywords: concurrency control, XML, databases, protocols

1. Introduction
Currently, XML document processing is one of the major areas in data processing
technology. The popularity of XML is a result of its simplicity and elasticity. Due
to these features, XML is the main standard in the complex, variable and semi
structured data exchange. Increasing significance and popularity of XML is the
main reason why many commercial object-oriented-relational DBMS’s developed
XML storage and processing functionality. Additionally, there are new types of
specialized database systems known as ’native’ XML database systems.

Concurrent and uncontrolled access to XML database systems, like in relational
and object-oriented database systems, may lead to data inconsistency. Concurrency
control problem was widely considered in the literature. The variety of correctness
criteria for concurrency control in database systems and variety of concurrency
control protocols were proposed. Conflict serializability is the main, commonly
accepted concurrency control criterion. Developed protocols represent three main
approaches: locking, time stamp ordering and optimistic. Mechanisms used so
far in commercially available native XML DBMS are based on locking protocols
and offer very low degree of concurrency and, thus, very low processing perfor-
mance. There is an obvious need to develop new methods of concurrency control
in XML database systems, which provide database consistency and acceptable de-
gree of concurrency. These methods should provide acceptable performance taking
1 Wydzial Informatyki i Zarzadzania, Politechnika Poznanska, Piotrowo 2, 60-965 Poznan
e-mail: Krzysztof.Jankiewicz@cs.put.poznan.pl



300 K. Jankiewicz

<book isbn=’KD-12345-XY’>
<title>XML</title>
<year>1999</year>
<authors>

<author>Smith</author>
<author>Wilder</author>

</authors>
</book>

Figure 1. XML document Figure 2. SXCCP+ data model

into account specific XML document features and variety of modification meth-
ods. There have been few propositions to solve this problem so far (Kanne, 2001
and 2003; Haustein, 2003; Grabs, 2002; Dekeyser, 2002; Choi, 2003; Jea, 2002).
These solutions differ in degree of concurrency and assumed access methods to
XML documents.

In our paper (Jankiewicz, 2006) we presented a brief survey of proposed con-
currency control protocols and their critical analysis. The protocols’ classification
was also presented. The criteria of evaluation were defined and protocols’ analysis
was made on the basis of proposed criteria. Concurrency control protocols which
were analyzed in (Jankiewicz, 2006) can be classified in several ways. For example,
according to assumed access method to XML documents, we can distinguish follow-
ing classes of protocols: based on DOM API and based on XPath standard. There
is no protocol unassigned to the particular access method. The aim of this paper
is the proposal of new concurrency control protocol for XML database systems,
which is independent from access method.

The structure of this article is as follows. Section 2 presents proposal of new
concurrency control protocol. Section 3 concentrates on conducted experiments
and analysis of the results. In section 4 conclusions and directions for future work
are presented.

2. SXCCP+

SXCCP+ protocol, presented in this section, is based on locking mechanism and
two phase locking protocol. The main idea of the SXCCP+ is concurrency control,
which will be independent from (and not assigned to) particular XML document
access method. We assume that every access to XML document can be translated
into set of primitive and indivisible equivalent operations. Only these primitive
operations are taken into account by the SXCCP+. For example, we assume that
every DOM API function, and every XPath operation, performed on XML doc-
ument, can be expressed in one, or in sequence of primitive low-level operations.
Fact that protocol is founded on primitive operations makes it autonomous from
specific XML document access method. In the later part of this section we describe
set of primitive operations of SXCCP+.



SXCCP+: Simple XML Concurrency Control Protocol for XML Database Systems 301

DOM API methods Equivalent primitive operations
n.firstChild C(n); T(first(n))

n.previousSibling T(previous(n))
n.getElementsByTagName C(n); C(desc(n)); R(desc(n))

n.nodeName R(n)
n.getAttribute(s) C(n); R(attrs(n))
insertBefore(n’,n) I(n’,parent(n),pos(n))

Table 1. Conversion of DOM API methods to primitive operations

2.1. Data model

Data model used by the SXCCP+ to concurrency control is a simple DOM tree
extension. Original DOM tree is extended by text nodes of attribute nodes. These
additional nodes contain text value of attributes. In data model we distinguish
following node types: document nodes, element nodes, attribute nodes and text
nodes (which contain text value of elements and attributes). For example, data
model for XML document from Fig.1 is given on Fig.2. Additional node types like
processing instructions and comments are treated in the same way as text nodes,
therefore are omitted in this paper.

Aim of introduction of new text node for attributes is to increase degree of con-
currency and unification of protocol’s rules which take place in the attribute and
text node access. In the data model all nodes are lockable entities, on which con-
currency control mechanism, due to execution of primitive operations, can acquire
locks.

All primitive operations are performed transparently to users of DBMS by con-
currency control mechanism on data model of XML document.

2.2. Primitive operations

We defined a set of primitive operations based on analysis of existing interfaces to
XML document access. Before we introduce primitive operations, we define node
content concept. Node content is (according to node type) a tag (element node) or
name of attribute (attribute node) or text value (text node) or node value (other
node types which can’t have children nodes). In the SXCCP+ the following set
of primitive operations is used: C(n) – test of child node existence, T(n) – node
access (without access to its contents), R(n) – node content access, U(n) – node
modification, it is an update of content of node, D(n) – node deletion, I(n’,n,l) –
insertion of n’ node into n node at lth position of children of n node.

In order to use a SXCCP+ in real XML database system, it is necessary to
define the method of assigning sequence of primitive operations equivalent to every
operation existing in used XML interfaces. In the case of procedural interfaces we
can use association matrix, where for each interface method we define sequence of
equivalent primitive operations. Fragment of such association matrix for DOM API
is presented in Tab.1. In the case of declarative interfaces, sequence of equivalent



302 K. Jankiewicz

primitive operations can be obtained according to defined set of rules. We have
defined such set of rules for XPath-based interfaces. These rules are based on
semantics of XPath expressions. Before we present these rules, we introduce some
definitions partially based on definitions introduced in (Jea, 2002). Each XPath
location path Lj consists of location steps Si,j , 1 ≤ i ≤ |Lj |, where |Lj | is a length of
Lj . The syntax for a location step is as follows: axisname::nodetest[predicate]

The set of context nodes of a location step Si,j of location path Lj includes
nodes that Si,j begins with. Context nodes are denoted by C(Si,j).

The set of opening nodes of a location step Si,j of location path Lj , denoted by
O(Si,j), includes nodes satisfying axisname in Si,j .

The set of mid-result nodes of a location step Si,j of location path Lj , denoted
by M(Si,j), is the selection of O(Si,j) satisfying nodetest in Si,j .

The set of result nodes of a location step Si,j of location path Lj , denoted by
R(Si,j), is the selection of O(Si,j) satisfying predicate in Si,j . In fact R(Si,j) =
C(Si+1,j).

Let’s notice that predicate of a location step Si,j of location path Lj can be
expressed by another location path Li,j which consists of another location steps
Sk,i,j , 1 ≤ k ≤ |Li,j |. C(S1,i,j) of location path Li,j is M(Si,j).

The destination nodes, denoted by Nd(Lj) of location path Lj is R(S|Lj|,j).
Now, we can present set of rules which assign the sequence of primitive opera-

tions equivalent to XPath location path Lj . In SXCCP+ protocol the sequence of
primitive operations results from evaluation of every location step. At the begin-
ning of location step Si,j evaluation, operation T is performed on C(Si,j). Then, if
axisname has a child, descendant or descendant-or-self format2, operation C
is performed on C(Si,j). Then, according to nodetest function, operation T or R
is performed on O(Si,j). If nodetest function is expressed by *, then T operation
is performed, otherwise R operation is performed.

XPath expressions are used in many XPath-based interfaces which can read
XML document fragments and also modify them. XQuery and XUpdate are one of
the most popular. XQuery and XUpdate expressions allow modification of destina-
tion nodes Nd(Lj), of location path Lj , by following update operations: IB(n’,n) –
inserts new node n’ before node n, IA(n’,n) – inserts new node n’ after node n,
IF(n’,n) – inserts new node n’ as the first child of node n, IL(n’,n) – inserts new
node n’ as the last child of node n, IU(n’,n,l) – inserts new node n’ as lth child
of node n, UT(n,t) – updates text value of node n to t value, RN(n’,n) – replaces
node n to new node n’, DN(n) – deletes node n, CN(n,t) – changes node name n to
t value. Sequence of primitive operations equivalent to each of update operations
is presented in Tab.2.

Let’s analyze the following examples.
Exemplary DOM API operations are presented on Fig.3. According to as-

sociation matrix for DOM API mentioned before, following primitive operations

2 Axisname which has following or preceding format as not allowed in SXCCP+ protocol



SXCCP+: Simple XML Concurrency Control Protocol for XML Database Systems 303

update
operation

primitive operations update
operation

primitive operations

IB(n’,n) I(n’,parent(n),pos(n)-1) UT(n,t) U(text(n))
IA(n’,n) I(n’,parent(n),pos(n)+1) RN(n’,n) D(n); I(n’,

parent(n),pos(n))
IF(n’,n) C(n); I(n’,n,1) DN(n) D(n)
IL(n’,n) C(n); I(n’,n,

max(pos(childs(n)))
CN(n,t) U(n)

IU(n’,n,l) C(n); I(n’,n,l)

Table 2. Sequence of primitive operations equivalent to XPath-based update oper-
ations in SXCCP+ protocol

(1) doc = getDocument();
(2) node = doc.getFirstChild();
(3) node = node.getLastChild();
(4) node = node.getLastChild();
(5) node.getNodeName();
(6) node = node.getFirstChild();
(7) node.setNodeValue(’Speed’);

Figure 3. DOM API example

for $i in /book[title/text()=’XML’]
//author[1]

do rename $i as writer

Figure 4. XQuery example

are equivalent to each DOM operation: (1): T([r]); (2): C([r]), T(book[1]);
(3): C(book[1]), T(authors[5]); (4): C(authors[5]), T(author[10]); (5):
R(author[10]); (6): C(author[10]), T([12]); (7): U([12]). Exemplary XQuery
expression is presented on Fig.4. It changes node names. XPath location path
used in this expression has format L1=/book[title/text()=’XML’]//author
and has two location steps S1,1=child::book[title/text()=’XML’], and
S2,1=descendant::author. Additionally, location step S1,1 has predicate which
uses location path L1,1=title/text(). Location path L1,1 has two location steps
S1,1,1=child::title and S2,1,1=child::text(). On destination nodes of loca-
tion path L1 XQuery expression performs CN operation. Let’s analyze primitive op-
erations assigned to location step S1,1. Operation T is performed on C(S1,1) nodes –
[r]. According to axisname format, C operation is performed on [r] node. Open-
ing node O(S1,1) of location step S1,1 is [1], and according to nodetest format R
operation is performed on this node. The same node ([1]) is a M(S1,1). Before we
get R(S1,1) of location step S1,1, we have to evaluate its predicate. C(S1,1,1) node
of location step S1,1,1 is [1], and T operation and then C operation is performed on
this node. Opening nodes O(S1,1,1) of location step S1,1,1 are [2], [3], [5], and
R operation is performed (according to textnode format) on this nodes. M(S1,1,1)
and R(S1,1,1) of location step S1,1 is [2]. The same node is a C(S2,1,1), then T
and C (according to axisname format) operation is performed on this node. Open-
ing node O(S2,1,1) of location step S2,1,1 is [6], and R operation is performed on
this node. Context, opening, mid-result, results nodes and corresponding primitive



304 K. Jankiewicz

S C(S) O(S) M(S) R(S) primitive
operations

S1,1 [r] book[1] book[1] book[1] T([r]), R([1])
S1,1,1 book[1] title[2],

year[3],
authors[5]

title[2] title[2] T([1]), R([2]),
R([3]), R([5])

S2,1,1 title[2] [6] [6] [6] T([2]), R([6])
S2,1 book[1] title[2],

year[3],
authors[5],
author[9],
author[10],
[6], [7],
[11], [12]

author[9],
author[10]

author[9],
author[10]

T([1]), R([2]),
R([3]), R([5]),

R([9]),
R([10]),

R([6]), R([7]),
R([11]),
R([12])

CN Nd(L1): author[9], author[10] U([9]), U([10])

Table 3. Context, opening, mid-result, results nodes and corresponding primitive
operation

operation for analyzed XQuery expression are presented at Tab.3.

2.3. Lock modes

Concurrency control mechanism of SXCCP+ is based on the two phase locking
method. For each of primitive operations, introduced in previous subsection, cor-
responding operational basic lock mode was defined. Thus, SXCCP+ uses following
operational basic lock modes: LC – child test lock, LT – traversal lock, LR – read
lock, LU – update lock, LD – delete lock, LW – write lock, corresponding to primitive
operations: C, T, R, U, D, I, respectively.

Additionally, we introduce the set of operational tree lock modes. These lock
modes prevent lock escalation when performed operation has descendant nodes
range. For example, in XQuery expression presented on Fig.4, location step
S2,1=descendant::author implies R operation performed on all descendant nodes
of n ([1]) node. In such cases, instead of acquiring operational basic locks on all
descendant nodes of n node, SXCCP+ acquires operational tree lock on n node only.
SXCCP+ uses following operational tree lock modes: LCC – child test tree lock,
LTT – traversal tree lock, LRR – read tree lock, LUU – update tree lock, LDD – delete
tree lock, LWW – write tree lock.

Additionally, for each operational lock mode corresponding intentional lock
mode was defined. Therefore, we have the following intentional lock modes: LIC –
intentional child test tree lock, LIT – intentional traversal lock, LIR – intentional
read lock, LIU – intentional update lock, LID – intentional delete lock, LIW – inten-
tional write lock, LICC – intentional child test tree lock, LITT – intentional traversal



SXCCP+: Simple XML Concurrency Control Protocol for XML Database Systems 305

tree lock, LIRR – intentional read tree lock, LIUU – intentional update tree lock,
LIDD – intentional delete tree lock, LIWW – intentional write tree lock. Additionally,
SXCCP+ uses two intentional lock modes LICW and LICWW. Meaning of these lock
modes is presented in next subsection.

2.4. Locking rules

Concurrency control mechanism controls every transaction which performs access
to documents in XML database system. SXCCP+ for every primitive operation
(implied by operations of transactions) acquires locks with corresponding modes
in two phases: the phase of intentional locks which is followed by the phase of
operational locks. When primitive operation is performed on n node, during the
phase of intentional locks, the intentional locks are acquired on all ancestor nodes of
n node. The intentional locks are acquired from root to parent node order. When
all required intentional locks are granted, operational lock is acquired on n node.
When any of required locks can not be acquired due to incompatibility with other
lock acquired by other transactions, then transaction and its locking mechanism
stop, and wait for the release of incompatible lock. When locking mechanism
stops, all previously acquired locks are held. Mode of the intentional locks, as well
as mode of the operational locks, corresponds to the type of primitive operation
which is performed on XML document, and its range. For example, XQuery update
expression on Fig.4 implies U operation performed on the author[9] node. Thus,
it requires intentional LIU locks on: [r], book[1] and authors[5] node, then, it
requires LU lock on author[9] node.

Slightly different situation is when I operation is performed. In this case, two
intentional lock modes LIW and LICW (LIWW and LICWW, when operation has descen-
dant nodes range) are used. During the phase of intentional locks LIW (LIWW) lock
mode are acquired on all ancestor nodes except parent node, then LICW (LICWW)
lock mode is acquired on a parent node. Lock modes LICW and LICWW are used
to avoid phantom anomaly. Tab.4 presents locks acquired by SXCCP+ protocol
according to primitive operations and their range.

2.5. Lock matrix compatibility

As a result of the analysis of commutation of primitive operations, the complete
compatibility matrix was built. Due to page limitation it is not presented in this
paper. Analysis of the complete lock compatibility matrix gives as results the
following equivalence classes of lock modes: EQ1= {LT, LIC, LIT, LICC, LITT},
EQ2= {LTT, LCC}, EQ3= {LIR, LIRR}, EQ4= {LIU, LIUU}, EQ5= {LIW, LID, LIWW,
LIDD}, EQ6= {LW, LD, LDD, LWW}, EQ7= {LICW, LICWW}. Therefore, we introduce
representative for each equivalence class. Let the representative of equivalence
classes EQ1, EQ2, EQ3, EQ4, EQ5, EQ6, EQ7 are lock modes LT, LTT, LIR, LIU,
LIW, LW and LICW respectively. Lock modes not included in presented equivalence
classes are, in the fact, members of the one element equivalence classes, and they



306 K. Jankiewicz

primitive
operation

range of
operation

acquired locks in SXCCP+ protocol

C n LIC(ancestor(n)), LC(n)
C desc(n) LICC(ancestor(n)), LCC(n)
T n LIT(ancestor(n)), LT(n)
T desc(n) LITT(ancestor(n)), LTT(n)
R n LIR(ancestor(n)), LR(n)
R desc(n) LIRR(ancestor(n)), LRR(n)
U n LIU(ancestor(n)), LU(n)
U desc(n) LIUU(ancestor(n)), LUU(n)
D n LID(ancestor(n)), LD(n)
D desc(n) LIDD(ancestor(n)), LDD(n)
I n LIW(ancestor(n)-parent(n)), LICW(parent(n)),

LW(n)
I desc(n) LIWW(ancestor(n)-parent(n)),

LICWW(parent(n)), LWW(n)

Table 4. Locks acquired by SXCCP+ protocol

are this class’s representatives. After this introduction we can present on Tab.5
the lock compatibility matrix of SXCCP+ with the usage of the representatives of
equivalence classes.

Lock modes, which are members of equivalence class, are replaced in SXCCP+
by equivalence class’s representative. For example, D operation performed accord-
ing to XQuery update expression do delete /book/title, requires LIW locks,
instead of LID locks, on document node and book[1] node as well as LW lock, in-
stead of LD lock, on title[2] node. It is due to the fact that LID lock mode is a
member of EQ5 where LIW lock mode is the equivalence class representative, and
LD lock mode is a member of EQ6 where LW lock mode is the equivalence class
representative.

Additionally, SXCCP+ can use lock modes which are the combinational lock
modes, and which could be used with the conversion of locks. Due to page limi-
tation these lock modes, lock conversion matrix and lock compatibility matrix of
combinational lock modes are not presented in this paper.

Let’s analyze the following example. Assume that transactions T2 and T2 are
performed concurrently. Transaction T1 executes DOM API operations presented
on Fig.3, whereas transaction T2 executes XQuery expression presented on Fig.4.
Tab.6 presents example of theirs realization and required locks. Realization from
1 to 4 executes smoothly – only node access (T) and node content access (R) oper-
ations are performed. Their locks are compatible. In 5 transaction T1 performs U
operation on [12] node, it requires LIU lock mode on [r], [1], [5], [10] nodes.
Unfortunately, transaction T2 aquired LRR lock mode on [4] node. According to



SXCCP+: Simple XML Concurrency Control Protocol for XML Database Systems 307

granted
requested LT LC LR LU LW LTT LRR LUU LIR LIU LIW LICW

LT + + + + – + + + + + + +
LC + + + + – + + + + + + –
LR + + + – – + + – + + + +
LU + + – – – + – – + + + +
LW – – – – – – – – – – – –
LTT + + + + – + + + + + – –
LRR + + + – – + + – + – – –
LUU + + – – – + – – – – – –
LIR + + + + – + + – + + + +
LIU + + + + – + – – + + + +
LIW + + + + – – – – + + + +
LICW + – + + – – – – + + + +

Table 5. Lock compatibility matrix of SXCCP+

compatibiliy matrix (Tab.5) LRR lock mode is incompatible with LIU lock mode.
Therefore transaction T1 stops until transactions T2 ends in 6.

3. Experimental results

Our experiments were conducted with support of XML database system simulator,
which was created at Institute of Computing Science at Poznan University of Tech-
nology. This simulator was constructed due to needs of researches on concurrency
control mechanisms in XML database systems.

3.1. Tested protocols

We conducted our experiments for the following concurrency control protocols:
NO2PL, Node2PL, OO2PL, taDOM and SXCCP+. Protocols NO2PL, Node2PL,
OO2PL introduced in (Kanne, 2001) have two versions: basic and extended. In
extended versions of these protocols additional locks were added. These additional
locks correspond with read content node and modification node operations. We
performed experiments with extended versions of these protocols. Protocol ta-
DOM has special lock mode U which supports read with potential write access and
prevents granting further read locks. This lock mode decreases deadlock probabil-
ity, but also decreases the degree of concurrency. Similar lock modes do not exist
with other tested protocols, although they could. Therefore, in our tests we use
version of taDOM protocol without U lock mode. Additionally, due to lack of lock
conversion tables in NO2PL, Node2PL and OO2PL protocols, we do not do such
conversions. This fact has influence on number of acquired locks, but this way this
number is comparable between different protocols.



308 K. Jankiewicz

no. operation aquired locks no. operation aquired locks

1 T1:
(1)–(3)

LT([r]), LC([r]),
LIT([r]), LT([1]),
LIC([r]), LC([1]),
LIT([1]), LT([5])

4 T2: S2,1 LT([1]),
LRR([1])

2 T2: S1,1,
S1,1,1,
S2,1,1

LT([r]), LIR([r]),
LR([1]), LIT([r]),
LT([1]), LIR([1]),
LR([2]), LR([3]),
LR([5]), LIT([1]),
LT([2]), LIR([2]),

R([6])

5 T1:
(6)–(7)

LIC([5]),
LC([10]),
LIT([10]),
LT([12]),

LIU([r],[1],
[5],[10]),
LU([12])

3 T1:
(4)–(5)

LIC([1]), LC([5]),
LIT([5]), LT([10]),
LIR([5]), R([10])

6 T2: CN LIU([r],[1],
[5]), LU([9])

Table 6. Concurrent realization of transactions T1 and T2

3.2. Characteristic of XML document

Our experiments were performed on several types of XML documents. We present
results of experiments performed on one XML document bench0065.xml, which was
generated by xmlgen – The Benchmark Data Generator, created as a part XMark
– An XML Benchmark Project (Schmidt, 2002).

3.3. Transaction classes

Access to XML documents was realized by set of transactions which were concur-
rently started. Cardinality of transactions set was changed from 1 to 49. Operations
performed by transactions were based on DOM API. Each transaction was one out
of four transaction classes. The choice of transaction class for each transaction was
random with the same probability. Each of transaction classes has characteristics
as follows. OneDocumentPointModify – transaction navigates from root node to
one of leaf nodes, and modifies its content. OneDocumentRandomLevelModify –
transaction navigates from root node to node on one of random levels, and modi-
fies the node’s content. OneDocumentRandomLevelDelete – transaction navigates
from root node to node on one of random levels, and removes destination node.
OneDocumentRandomLevelInsert – transaction navigates from root node to node
on one of random levels, and inserts a new node as a child or neighbor of destination
node.

3.4. Results

Presented figures reflect the results of performed experiments as the average value
of the following chosen measures: time of test (Fig.5) – the time required to service
all concurrent transactions as a function of cardinality of transactions’ set, number



SXCCP+: Simple XML Concurrency Control Protocol for XML Database Systems 309

Figure 5. Time of test Figure 6. No. of conflics Figure 7. No. of locks

of conflicts (Fig.6) – the number of conflict situations as a function of cardinality
of transactions’ set. Each conflict situation was resolved by restart or waiting of
transaction because of WAIT-DIE algorithm was used, number of locks (Fig.7) –
the maximum number of locks held by the transactions as a function of cardinality
of transactions’ set.

3.5. Analysis of the results

Let us take a closer look at the results. As we can see in Fig.7, number of locks
held by OO2PL protocol is higher then in other protocols. This difference is due to
the number of node locks which are acquired for every operational lock in OO2PL.
Number of locks held by SXCCP+ is not lower then in other protocols. It is because
of their intentional locks. These intentional locks have crucial meaning because they
enable SXCCP+ usage with other XML interfaces and they enable operational tree
lock mode usage which can decrease number of locks in many cases (tree lock modes
were not used in presented experiments). Fig.5 and Fig.6 reflect that the SXCCP+
does have medium ability to lead transaction to the successful commitment, but
SXCCP+ does not allow phantom anomaly, and gives serializable realizations, and
therefore it must be more restrictive then OO2PL, NO2PL or Node2PL which allow
phantom anomaly.

4. Conclusions and future work

In this paper we have presented a new locking protocol for concurrency control
access in XML database systems named SXCCP+. It is the first protocol which
is not assigned to any particular XML interface. It is based on primitive and
indivisible operations which may be treated as components of any operations of
any XML access interface. It means that SXCCP+ is the protocol which can be
treated as general and neither assigned to nor dependent from particular XML
interface. This fact has the key meaning for most XML database systems, when
different interfaces coexist. Moreover, presented results of conducted experiments



310 K. Jankiewicz

show that SXCCP+ is not worse then specialized protocols, assigned to particular
interface, like taDOM, OO2PL, NO2PL, and Node2PL.

Our experiments presented in this work are focused on DOM API based pro-
tocols. Therefore, in our next work we will conduct series of experiments which
examine SXCCP+ with other concurrency control protocols which are based on
XPath expressions. Then, we plan to introduce some modifications into SXCCP+
which give as results higher degree of concurrency.

References
Choi, E.H., Kanai, T. (2003) Xpath-based concurrency control for xml data. In:

Proceedings of the 14th Data Engineering Workshop (DEWS 2003), Kaga
city, Ishikawa, Japan

Dekeyser, S., Hidders, J. (2002) Path locks for xml document collaboration.
In: WISE ’02: Proceedings of the 3rd International Conference on Web In-
formation Systems Engineering, Washington, DC, USA, IEEE Computer So-
ciety 105–114

Grabs, T. and Böhm, K. and Schek, H.J. (2002) Xmltm: Efficient transac-
tion management for xml documents. In: CIKM ’02: Proceedings of the
eleventh international conference on Information and knowledge manage-
ment, New York, NY, USA, ACM Press 142–152

Haustein, M.P. and Härder, T. (2003) tadom: A tailored synchronization
concept with tunable lock granularity for the dom api. In: ADBIS. 88–102

Jankiewicz, K. (2006) Survey and analysis of concurrency control methods for
xml database systems. In: Proceedings of the 5th International Conference
MISSI’06 - Multimedia and Network Information Systems, Wroclaw, Poland
51–66

Jea, K.F. and Chen, S.Y. and Wang, S.H. (2002) Concurrency control in xml
document databases: Xpath locking protocol. In: ICPADS ’02: Proceedings
of the 9th International Conference on Parallel and Distributed Systems,
Washington, DC, USA, IEEE Computer Society 551

Kanne, C.C. and Moerkotte, G. and Helmer, S. (2003) Lock-based proto-
cols for cooporation on xml documents. Technical Report Reihe Informatik
06/2003, University of Mannheim, Germany

Kanne, C.C. and Moerkotte, G. and Helmer, S. (2001) Isolation in xml
bases. Technical Report Reihe Informatik 15/2001, University of Mannheim,
Germany

Schmidt, A. and Waas, F. (2002) Xmark: A benchmark for xml data manage-
ment. In 28th International Conference on Very Large Data Bases, Hong
Kong, China. 974–985


