
How to Improve Efficiency of Analysis of Sequential Data?1

Witold Andrzejewski2, Zbyszko Królikowski2, Tadeusz Morzy2

Abstract: In order to extract useful knowledge from large databases
of sales data, data mining algorithms (the so-called market basket anal-
ysis) are used. Unfortunately, these algorithms, depending on data and
parameters, may generate a large number of patterns. Analysis of these
results is performed by the user and involves executing a lot of queries
on complex data types that are not well supported by commercially
available database management systems. To increase efficiency of anal-
ysis of data mining results, new index structures need to be developed.
In this paper we propose the indexing scheme for non-timestamped se-
quences of sets, which supports set subsequence queries. Experimental
evaluation of the index proves the feasibility and benefit of the index in
query processing.

Keywords: data mining, indexing, market basket analysis

1. Introduction

Analysis of large volumes of data (such as sales data) is impossible to do “by
hand”. To solve this problem, a large number of different techniques for knowledge
discovery in databases (also known as data mining) have been developed. The
purpose of these techniques is to discover new, useful, correct and understandable
patterns in large databases. Such patterns are very useful in many applications,
such as: science, medicine, finances and marketing.

Many different types of data may be analysed using data mining algorithms
including: stock prices, cash register data or web server logs. Particularly inter-
esting is the analysis of sales data also known as market basket analysis. Through
market basket analysis one may obtain frequent itemsets, association rules or se-
quential patterns. Unfortunately, very often, the number of discovered patterns
is very large, and thus they need to be stored in a separate database for further
analysis. Such analysis involves searching for either itemsets or sequential patterns
which are in some way related to the user specified set or sequence of sets. Possible
relations include sequence or set containment and sequence or set similarity. All of
the aforementioned patterns have a complex structure. Frequent itemsets are sets
of categorical data, association rules are represented by two itemsets and sequential
patterns are sequences of itemsets. Such complex data types, although possible to
store, are not well supported in commercial database systems. Thus, the search for
sets and sequences is very costly.
1 The paper is sponsored by The Polish Ministry of Science and Higher Education, grant no.
N206 011 32/1221.

2 Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań
e-mail: {wandrzejewski,zkrolikowski,tmorzy}@cs.put.poznan.pl

24 W. Andrzejewski, Z. Królikowski, T. Morzy

Concluding, there is evidently a need to design efficient, possibly general, index-
ing schemes for sets and sequences of sets. Several indexing schemes for sequences
and sets have been proposed so far. Most of indexes for sequences were designed
either for time series (see Agrawal et al., 1993 and Faloutsos et al., 1994) or se-
quences of atomic values (see Wang et al, 2003 and Mamoulis et al., 2004). Several
indexes for sets were proposed as well in Morzy et al., 2003, Aggarwal et al., 1999,
Andrzejewski et al., 2003, Ishikawa et al., 1993, Hellerstein et al., 1994, Deppisch,
1986, Helmer et al., 1999, Goczyła, 1997 and Faloutsos et al., 1984.

However the aformentioned solutions could only be used either to index sets
or to index sequences of non-complex data. Almost nothing has been done with
regard to more general indexing of sets and sequences of sets. According to our
knowledge, the only other general solutions developed so far were proposed by us
in Andrzejewski et al., 2005 and Andrzejewski et al., 2006 (two papers).

The original contribution of this paper is the proposal of a new indexing scheme
capable of efficient retrieval of sets and sequences of non-timestamped sets based on
sequence containment. We present the physical structure of the index and develop
algorithms for query processing. The index has a very simple structure and may
be easily implemented over existing database management systems.

2. Related work

Most of research on indexing of sequential data is focused on three distinct ar-
eas: indexing of time series, indexing of strings (DNA and protein sequences), and
indexing of web logs. Indexes proposed for time series support searching for simi-
lar or exact subsequences by exploiting the fact, that the elements of the indexed
sequences are numbers. This is reflected both in index structure and in similar-
ity metrics. Popular similarity metrics include Minkowski distance (see Keogh et
al., 2001), compression-based metrics (see Keogh et al., 2004) and dynamic time
warping metrics (see Vlachos et al., 2003)). Often, a technique for reduction of
the dimensionality of the problem is employed, such as discrete Fourier transform
see Agrawal et al., 1993 and Faloutsos et al., 1994). String indexes usually sup-
port searching for subsequences based on identity or similarity to a given query
sequence. Most common distance measure for similarity queries is the Levenshtein
distance (see Levenshtein, 1965), and index structures are built on suffix tree (see
Ukkonen, 1995 and Weiner, 1973) or suffix array (see Manber, 1990).

Indexing of web logs data differs significantly from indexing of strings. The main
difference is that each element in such a sequence is assigned a timestamp that must
be taken into consideration when processing a query. Several different approaches
have been considered so far. The first one used a special transformation technique
to transform the original problem into the well-researched problem of indexing of
sets (see Nanopoulos et al., 2002). Other approaches include ISO-Depth index (see
Wang et al., 2003) which is based on a trie structure and SEQ-Join index (see
Mamoulis, 2004) which uses a set of relational tables and a set of B+-tree indexes.

Recently, works on sequences of categorical data were extended to sequences of
sets. The Generalized ISO-Depth Index proposed in Andrzejewski et al. (2005)

How to Improve Efficiency of Analysis of Sequential Data? 25

supports timestamped set subsequence queries and timestamped set subsequence
similarity queries. Construction of the index involves storing all of the sequences in
a trie structure and numbering the nodes in depth first search order. Final index is
obtained from such trie structure. The SeqTrie index , presented in Andrzejewski
et al. (2006), is based on an idea similar to the Generalized Iso-Depth Index,
however it was designed to support non-timestamped set subsequence queries. The
AISS Index proposed in Andrzejewski et al. (2006) was designed to support non-
timestamped set subsequence queries on sequences of sets and subset queries on
multisets, and uses a structure based on the inverted file.

3. Basic definitions & problem formulation
Let I = {i1, i2, . . . , in} denote the set of items. A non-empty set of items is called
an itemset. We define a sequence as an ordered list of itemsets and denote it:
S = 〈s1, s2, . . . , sn〉, where si, i ∈ 〈1, n〉 are itemsets. Each itemset in the sequence
is called an element of a sequence. Each element si of a sequence S is denoted as
{x1, x2, . . . , xn}, where xi, i ∈ 〈1, n〉 are items. We define the length of a sequence
as a number of sets in the sequence, and denote it |S|. We also define the size of
the sequence as the number of items in the sequence and denote it ‖S‖. Given the
item x and a sequence S we say that the item x is contained within the sequence
S, denoted x ∈ S, if there exists any itemset in the sequence such that it contains
the given item. Given sequences S and T , the sequence T is a subsequence of S,
denoted T v S, if the sequence T may be obtained from sequence S by removing
of some of items from the elements, and removing of empty elements, if such occur.
We also say, that if, and only if T v S, the sequence T is contained within the
sequence S. Conversely, we say that the sequence S contains the sequence T and
that S is a supersequence of T .

We define a database, denoted DB, as a set of sequences, called database se-
quences. Each database sequence in the database has a unique identifier. Without
the loss of generality we assume those identifiers to be positive integers. A database
sequence identified by the number id is denoted Sid. Let the support of the item
x, denoted supp(x), be the number of sequences that contain the item. Formally
supp(x) = |{Sid ∈ DB : x ∈ Sid}|. Given the query sequence Q, the set subse-
quence query retrieves a set of identifiers of all sequences from the database, such
that they contain the query sequence, i.e. {id : Sid ∈ DB ∧ Q v Sid}. Such sets
are called result sets. Our problem is to design an auxiliary structure (an index) for
database tables storing sequences of sets, and an algorithm utilizing this structure,
which allows efficient set subsequence query processing.

4. The FIRE Index
In this section we present our new index for sequences of non-timestamped sets.
The idea of the index is based on the well known inverted file index. The new index
may be used to increase performance of set subsequence queries.

Basic Inverted File structure, which may be used for indexing itemsets, is com-
posed of two parts: dictionary and appearance lists. The dictionary is the list of all

26 W. Andrzejewski, Z. Królikowski, T. Morzy

Table 1. Examples
(a) Exemplary database

Id Sequence
1. 〈{1, 2, 3} , {1, 5} , {4, 6}〉
2. 〈{2, 6} , {1, 5}〉
3. 〈{1, 2, 3} , {3} , {3, 4, 5}〉

(b) FIRE index for an exemplary database

Dictionary (items support)
1 (3) 2 (3) 3 (2) 4 (2) 5 (3) 6 (2)
Appearance lists
(1,1) (1,1) (1,1) (1,3) (1,2) (1,3)
(1,2) (2,1) (3,1) (3,3) (2,2) (2,1)
(2,2) (3,1) (3,2) (3,3)
(3,1) (3,3)

the items that appear at least once in the database. Each item has an appearance
list associated with it. Given the item x, the appearance list associated with item
x lists identifiers of all the sets from database, that contain that item. Inverted
file index is particurarly efficient in supporting subset queries. Such queries are
performed by reading appearance lists of all of the items from the query set, and
finding their intersection.

In order to be able to store sequences of sets, we propose a straightforward
modification. On appearance lists associated with items, we store sequence iden-
tifiers, as well as elements’ number in this sequence. We also require, that the
entries on appearance lists were ordered first by the identifier of the sequence, and
next by the elements number. Notice, that such modification allows us to store full
information about sequences of sets. Exemplary database and index are shown on
tables 1(a) and 1(b) respectively.

Basic idea for the set subsequence query algorithm is as follows. Let us consider
the appearance list of any of the items in the query sequence. It is easy to notice,
that the set of different sequences, which are referred to by the entries on this
list, is the upper bound on the result set. The best (smallest) upper bound may
be obtained from the appearance list of the item with the lowest support. Any
further processing of the query should just narrow the first estimate of the result
set. Therefore, the next step of the algorithm, should be to analyze the entries
on the remaining appearance lists to verify, if the sequences from the previously
obtained upper bound, are indeed results of the query. If we assume that there is
no correlation between the items, then the best pruning may obtained if the next
analysed appearance list is the list corresponding to the next item with the lowest
support. Therefore, we process the items from the query sequence in the order
of their support. Let us now consider the main loop of the algorithm. As stated
before, we read the appearance list of the item from the query sequence, which has
the lowest support. For each of the entries on this list, we check if the sequence,
which is referred to by the entry is indeed a supersequence of the query sequence.
The above discussion is summarized by the algorithm 1

In the previous discussion we omitted the problems associated with the order of
the items in the query sequence. We shall address them now. Let us start with the
main loop of the algorithm. Consider a situation in which the item x from the query

How to Improve Efficiency of Analysis of Sequential Data? 27

Algorithm 1 An algorithm for set subsequence queries
INPUT: Query sequence Q.
OUTPUT: Result set results.

1. Allocate temporary table called map of size equal to |Q| and fill it with NULLs.
2. lastId ← −1
3. Convert the query sequence Q to the sequence of pairs 〈x, s〉i, where x is an item, and s is the

number of the element in the query sequence. These pairs should be ordered by the increasing
support of the items. For the sake of simplicity, we shall denote this transformed query sequence
as QT .

4. For each of the entries (id, sn) on the appearance list of the item x from the pair 〈x, s〉1 (corre-
spoding to the item with the lowest support), such that sn >= s and id > lastId, perform the
following steps:

(a) map[s] ← sn
(b) Call function checkSub(2, id) (algorithm 2).
(c) If the result of the last call to the checkSub function is TRUE, then:

i. lastId ← id
ii. Store id in the result set results.

(d) map[s] ← null

sequence, which has the lowest support, is in the element si of the query sequence.
Let the S be any sequence such, that Q v S. Because Q v S, the sequence S
must contain an element s′j such that si ⊆ s′j . It is easy to notice, that there must
exist such s′j that j ≥ i. The above discussion is reflected by the condition sn ≥ s
in the point 4 of the algorithm 1. The verification algorithm is based on similar
observations. The verification algorithm, given the sequence number, reads the
appearance list of the second item with the lowest support. Only entries referring
to the analysed sequence need to be analysed (other entries are irrelevant, because
we verify only a single sequence). Next, we further narrow the set of entries (from
the appearance list) which need to be analysed, by using the information about the
order of the items. We will describe this process in detail in the next paragraph. For
now, lets just assume, that the verification algorithm determines which entries on
the appearance list of the next item from the query sequence refer to the elements,
which do not violate the order of elements in the query sequence. For each of the
entries on the appearance list, which weren’t eliminated, we recursively call the
verification algorithm and analyze the appearance list of the third item from the
query sequence. This process is repeated until we find an entry in some appearance
list for each of the items from the query sequence (this is possible only if the
database sequence is the supersequence of the query sequnce), or determine, that
we can’t find such entries. The above discussion is summarized by the algorithm 2

The performance of the algorithm depends heavily on the algorithms, which
eliminate entries from the appearance lists. In order to perform such pruning we
allocate an auxiliary table called map of the size equal to |Q|. This table is used to
“map” query sequence element number, to the database sequence element number.
The verification algorithm can use the information stored in this table to narrow
the relevant set of entries on the next appearance list. Let us first consider a
situation, in which the next analysed item from the query sequence is in the same
element, as one of the previously analysed items. It is easy to notice, that, by
reading the appropriate entry in the table map, we know in which element of the

28 W. Andrzejewski, Z. Królikowski, T. Morzy

Algorithm 2 Function checkSub used by the algorithm 1, which verifies if the
candidate sequence is indeed the supersequence of the query sequence.
ASSUMPTIONS: We assume, that the transformed query sequence QT , result set results and tempo-
rary table map are globally accessible.
INPUT: Recursion level level, candidate sequence identifier id.
OUTPUT: TRUE, if the sequence id is the supersequence of the query sequence, FALSE if not.

1. If level > ‖Q‖ then return TRUE. If the condition is not satisfied, then perform the following
steps:

2. Retrieve the pair 〈x, s〉level from QT .
3. If map[s] 6= NULL then perform the following steps:

(a) Check on the appearance list of the item x if it contains the entry {id, map[s]}.
(b) If it doesn’t, return false.
(c) If it does, return the value returned by the function call: checkSub(id, level + 1).

4. If map[s] = NULL then perform the following steps:

(a) l ← lowerBound(s) (algorithm 3)
(b) u ← upperBound(s) (algorithm 4)
(c) For each of the entries (i, sn) on the appearance list of the item x, such that sn ≥ l∧sn ≤ u

perform the following steps:
i. map[s] ← sn
ii. If the value returned by the call to the function checkSub(id, level + 1) is TRUE

then return TRUE.
iii. map[s] ← NULL

(d) Return FALSE.

verified sequence should the next query sequence item be stored, thereby narrowing
the relevant entries on the appearance list to just one. Now, let us consider the
situation, in which the analysed item from is not from one of the mapped elements.
Because the element is not mapped we may not narrow relevant element numbers
to just one. However, we may calculate the upper and lower bounds of the element
number. Steps for calculating these bounds are shown on algorithms 3 and 4. Due
to lack of space, we are not able to explain these algorithms, however, they are
very simple and straightforward.

Algorithm 3 Function lowerBound calculating the smallest possible set mapping
for the given set number in the query sequence.
ASSUMPTIONS: We assume, that the temporary table map is globally accessible.
INPUT: Query sequence element number s.
OUTPUT: The least element number in the database sequence, which may be analysed as a potential
superset of the element s.

1. Find the largest index in the table map, which is smaller then s, and the value stored in the
table under this index is not NULL.

2. If such index does not exist, return s.
3. If such index exists, store it in the variable i.
4. Return map[i] + s− i.

The algorithm for incremental updates of the index is straightforward. To reflect
changes in database, just remove entries on appearance lists which correspond to
the removed items, and add new entries, which correspond to the added items.
Detailed steps for updating the sequences are presented by the algorithm 5

How to Improve Efficiency of Analysis of Sequential Data? 29

Algorithm 4 Function upperBound calculating the largest possible set mapping
for the given set number in the query sequence.
ASSUMPTIONS: We assume, that the temporary table map is globally accessible.
INPUT: Query sequence element number s.
OUTPUT: The largest possible element number in the database sequence, which may be analysed as a
potential superset of the element s.

1. Find the smallest index in the table map, which is larger then s, and the value stored in the
table under this index is not NULL.

2. If such index does not exist, return ∞.
3. If such index exists, store it in the variable i.
4. Return map[i] + s− i.

Algorithm 5 An algorithm for incremental updates of the index
INPUT: Old version of the sequence Sold (if inserting ‖Sold‖ = 0), new version of the sequence Snew

(if deleting ‖Snew‖ = 0), sequence identifier id.
OUTPUT: Modified index.

1. Let O =
{

(x, s) : x ∈ Aold ∧ s is the set number of an item x
}

2. Let N = {(x, s) : x ∈ Anew ∧ s is the set number of an item x}.
3. For each (x, s) ∈ O \N delete from the appearance list of the item x entry (id, s).
4. For each (x, s) ∈ N \ O insert into the appearance list of the item x entry (id, s).

We shall now discuss the physical structure of an index. It is easy to notice,
that the algorithm for query execution reads the index in three different ways: scan
the whole appearance list, scan appearance list entries refering to a single sequence
and only a given interval of elements and read a single entry on the appearance list
(check if a given entry is on the list, or not). Our physical structure of the index
should support such access methods and furthermore, it should allow us to easily
insert, delete and sort entries on the appearance lists. Let us consider the slightly
modified B+ tree which stores only keys (no data is associated with them). Let
keys be the triples 〈x, id, s〉, where x is the items identifier, id is the identifier of a
sequence and s is the number of the element in the sequence id in which the item
x is contained. Let the order imposed on those triples be the lexicographic one,
first by items, then by sequence identifier and finally by the set number. Such B+

tree has all of the required properties. All of the aforementioned index access types
can be represented as either range or point queries to the B+ tree index. Notice,
that such implementation has other advantages: very simple insertion, deletion and
modification of entries, as well as “automatic” removal, or insertion of appearance
lists (each list only exists, if there is at least one entry from it stored in the tree).

5. Performance tests

We have performed three different experiments testing impact of the: number of
sequences, average sequence size and average element size on the index performance.
For each of the experiments we built 20 databases, 10 of which were built using
the uniform distribution and the other 10 were built using the zipfian distribution

30 W. Andrzejewski, Z. Królikowski, T. Morzy

Table 2. Experiment parameters

Parameter Exp.1 Exp.2 Exp.3
number of different items 150000 150000 150000

item distribution zipfian and uniform
minimal set size [items] 1 1 5-95
maximal set size [items] 30 30 15-105

minimal sequence size [items] 1 5-95 5
maximal sequence size [items] 10 15-105 15

number of sequences 10000-100000 10000 10000
page/node size [bytes] 4096B 4096B 4096B

for itemset generation. For each of the databases we randomly built 40 queries.
During experiments these sets of queries were executed 10 times. Obtained query
processing times were averaged. We compare the performance of the FIRE index
to the performance of the only other incrementally updatable index for sequences
of sets, the AISS index. Table 2 summarizes the experiment parameters.

The first experiment tested the impact of the number of sequences stored in
database on the index performance. Figure 1(a) presents the performance of the
FIRE index for zipfian and uniform distributions in comparison to the performance
of the AISS index. Figure 1(b) presents the same experiments without index.
Analysing the figure 1(a) one may notice a few things. First, the query processing
times of both, the AISS index and the FIRE index depend linearly on the number of
sequences stored in the database. Second, the query processing times of the FIRE
index are smaller than those of the AISS index. Third, query processing times do
not depend significantly on the distribution of the items. Fourth, when we compare
query processing times to those presented on Figure 1(b) we may notice, that they
are three orders of magnitude smaller.

The second experiment tested impact of the average size of sequences stored
in the database on the index performance. Figure 2(a) presents the performance
of the FIRE index for zipfian and uniform distributions in comparison to the per-
formance of the AISS index. Figure 2(b) presents query processing times for the
same experiments when full scan of database is used. Let us consider the results
presented on the Figure 2(a). Once again we may observe linear dependency of
query processing times on the average size of sequences stored in the database. The
FIRE index, as before, processes queries faster then the AISS index. However, we
may notice, that query processing times for databases with the zipfian distribution
are a bit smaller then the query processing times for the uniform distribution. This
may be explained by the following observations. When the zipfian distribution is
used, some appearance lists are very long, but there are also multiple very short
appearance lists. Because we start query processing with the items with the low-
est support (and probably with shortest appearance lists), we obtain smaller sets
of sequences to verify in the main loop of the query processing algorithm, which

How to Improve Efficiency of Analysis of Sequential Data? 31

20000 40000 60000 80000 100000
0,0000

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

0,0009

Ti
m

e
[s

]

Number of sequences

 FIRE, uniform distribution
 AISS, uniform distribution
 FIRE, zipfian distribution
 AISS, zipfian distribution

(a) Using index

20000 40000 60000 80000 100000
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Ti
m

e
[s

]

Number of sequences

 Full scan, uniform distribution
 Full scan, zipfian distribution

(b) Not using index

Figure 1. Number of sequences

20 40 60 80 100
0,0000

0,0005

0,0010

0,0015

0,0020

0,0025

0,0030

0,0035

0,0040

Ti
m

e
[s

]

Average size of sequences

 FIRE, uniform distribution
 AISS, uniform distribution
 FIRE, zipfian distribution
 AISS, zipfian distribution

(a) Using index

20 40 60 80 100
0

2

4

6

8

10

Ti
m

e
[s

]

Average size of sequences

 Full scan, uniform distribution
 Full scan, zipfian distribution

(b) Not using index

Figure 2. Average size of sequences

20 40 60 80 100
0,0000

0,0005

0,0010

0,0015

0,0020

Ti
m

e
[s

]

Average size of sets

 FIRE, uniform distribution
 AISS, uniform distribution
 FIRE, zipfian distribution
 AISS, zipfian distribution

(a) Using index

20 40 60 80 100
0

1

2

3

4

5

Ti
m

e
[s

]

Average size of sets

 Full scan, uniform distribution
 Full scan, zipfian distribution

(b) Not using index

Figure 3. Average size of sets

32 W. Andrzejewski, Z. Królikowski, T. Morzy

improves performance of the index. One may also make another interesting obser-
vation: the trend of growth of query execution times, when the zipfian distribution
is used, is not as stable as in experiments with uniform distribution. This is partic-
urarly apparent for the average query execution times on databases with sequences
of average size equal to 100. In this case, one of the randomly generated queries
was very short, and composed of only frequent items. As was pointed out in An-
drzejewski, et al. (2006), this is a very bad case for the AISS index, as it requires
to retrieve and analyze a large part of the database. As we can clearly see, the
FIRE index behaves much better in this case. When we compare query processing
times to those presented on Figure 2(b) we may notice, that they are three orders
of magnitude smaller.

The third experiment tested impact of the average size of sets in the database
on the index performance. Figure 3(a) presents the performance of the FIRE index
for zipfian and uniform distributions in comparison to the performance of the AISS
index. Figure 3(b) presents the same experiments without index. Let us analyse
the Figure 3(a). The dependency of the query execution times on the average size of
sets is also linear. As in previous experiments FIRE index is faster then the AISS
index, query processing times are a little bit smaller for the databases with the
zipfian distribution of items, and finally, when compared to the query processing
times observed on the Figure 3(b), FIRE index is three orders of magnitude faster
then the full scan of database.

6. Conclusions & Future work
We have proposed a new indexing scheme capable of retrieving of sequences of sets
based on sequence containment. We have proposed the logical and physical struc-
ture, and we have developed the algorithms for index construction, set subsequence
query processing and incremental updates of the index. Our index is capable of
storing full information about indexed sequences and therefore it doesn’t need to
make any assumptions as to the database physical and logical structure. As we
have experimentally shown, the FIRE index is faster then the AISS index and pro-
cesses set subsequence queries three orders of magnitude faster then the full scan of
database. Query processing times are also almost independent on the distribution
of the items (they may be even shorter when the items have skewed distribution).

In future we plan on designing algorithms for other classes of queries for se-
quences of sets as well as performing extensive performace tests on real world data
to determine more of the possible application domains of our index. We also plan on
designing compression schemes of our index, to lessen the number of disk accesses
required to process the queries.

References
Aggarwal, C. C., Wolf, J. L. and Yu, P. S. (1999) A new method for sim-

ilarity indexing of market basket data. Proceedings of the ACM SIGMOD
Conference on Management of Data, 407–418, New York, ACM Press.

How to Improve Efficiency of Analysis of Sequential Data? 33

Agrawal, R., Faloutsos, C. and Swami, A. N. (1993) Efficient similarity
search in sequence databases. Proceedings of the 4th International Confer-
ence on Foundations of Data Organization and Algorithms, 69–84, Chicago,
Springer Verlag.

Andrzejewski, W., Gaertig, P., Radom, M. and Antoniewicz, M. (2003)
Opracowanie i analiza wydajnościowa indeksu dla przybliżonego wyszukiwa-
nia podzbiorów danych (polish).

Andrzejewski, W. and Morzy, T. (2006) AISS: An index for non timestamped
set subsequence queries. Proceedings of the 8th International Conference on
Data Warehousing and Knowledge Discovery, 503–512, Cracow, Springer.

Andrzejewski, W. and Morzy, T. (2006) SeqTrie: An index for data mining
applications. Proceedings of the 2nd ADBIS Workshop on Data Mining and
Knowledge Discovery, 13–25.

Andrzejewski, W., Morzy, T. and Morzy, M. (2005) Indexing of sequences
of sets for efficient exact and similar subsequence matching. Proceedings of
the 20th International Symposium on Computer and Information Sciences,
864–873, Istanbul, Springer-Verlag.

Deppisch. U. (1986) S-Tree: a dynamic balanced signature index for office re-
trieval. Proceedings of the 9th annual international ACM SIGIR conference
on Research and development in information retrieval, 77–87, Pisa, ACM
Press.

Faloutsos, C., Christodoulakis, S. (1984) Signature files: an access method
for documents and its analytical performance evaluation. ACM Transactions
on Information Systems (TOIS) 2, 4, 267–288.

Faloutsos, C., Ranganathan, M. and Manolopoulos, Y. (1994) Fast sub-
sequence matching in time-series databases. Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, 419–429, Mineapo-
lis, ACM Press.

Goczyła, K. (1997) The Partial-Order Tree: A New Structure for Indexing on
Complex Attributes in Object-Oriented Databases. Proceedings of the 23rd
Euromicro Conference, 47–54, Budapest, IEEE.

Hellerstein, J. M. and Pfeffer, A. (1994) The RD-Tree: an index structure
for sets. Technical Report 1252, University of Wisconsin at Madison.

Helmer, S. and Moerkotte, G. (1999) A study of four index structures for
set-valued attributes of low cardinality. The VLDB Journal — The Interna-
tional Journal on Very Large Data Bases, 12, 3, 244–261.

Ishikawa, Y., Kitagawa, H. and Ohbo, N. (1993) Evaluation of signature files
as set access facilities in oodbs. Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, Washington DC, 247–256,
ACM Press.

34 W. Andrzejewski, Z. Królikowski, T. Morzy

Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S. (2001)
Locally adaptive dimensionality reduction for indexing large time
series databases. Proceedings of the 2001 ACM SIGMOD international con-
ference on Management of data, 151–162, Santa Barbara, ACM Press.

Keogh, E., Lonardi, S. and Ratanamahatana, C. A. (2004)
Towards parameter free data mining. Proceedings of the 2004 ACM SIGKDD
international conference on Knowledge discovery and data mining, 206–215,
Seattle, ACM Press.

Levenshtein, V. I. (1965) Binary codes capable of correcting deletions, inser-
tions and reversals. Doklady Akademia Nauk SSSR, 163, 1, 845–848.

Mamoulis, N. and Yiu, M. L. (2004) Non-contiguous sequence pattern queries.
Proceedings of the 9th International Conference on Extending Database Tech-
nology, LNCS 2992, 783–800.

Manber, U. and Myers, G. (1990) Suffix arrays: a new method for on-line
string searches. Proceedings of the first annual ACM-SIAM symposium on
Discrete algorithms, 319–327, Philadelphia, Society for Industrial and Ap-
plied Mathematics.

Morzy, M. and Królikowski, Z. (2003) Approximate queries on set-valued at-
tributes. T. Morzy and B. D. Czejdo, editors, The 1st Symposium on
Databases, Data Warehouses and Knowledge Discovery, 87–96, Baden-Baden,
Germany, Scientific Publishers OWN.

Nanopoulos, A., Manolopoulos, Y., Zakrzewicz, M. and Morzy, T.
(2002) Indexing web access-logs for pattern queries. Proceedings of the 4th
international workshop on Web information and data management, 63–68,
Virginia, ACM Press.

Ukkonen, E. (1995) On-line construction of suffix trees. Algorithmica, 14, 3,
249–260.

Vlachos, M., Hadjieleftheriou, M., Gunopulos, D. and Keogh, E.
(2003) Indexing multidimensional time-series with support for multiple dis-
tance measures. Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 216–225, Washington, ACM
Press

Wang, H., Perng, C.-S., Fan, W., Park, S., and Yu, P. S. (2003) Indexing
weighted-sequences in large databases. Proceedings of International Confer-
ence on Data Engineering, 63–74, Bangalore, IEEE Computer Society.

Weiner, P. (1973) Linear pattern matching algorithms. Proceedings of the 14th
IEEE Annual Symposium on Switching and Automata Theory, 1–11, Iowa,
IEEE

