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Abstract: One of the crucial problems in the field of knowledge dis-
covery is development of good interestingness measures for evaluation
of the discovered patterns. In this paper, we consider quantitative, ob-
jective interestingness measures for “if. . . , then. . . ” association rules.
We focus on three popular interestingness measures being rule inter-
est function of Piatetsky-Shapiro, gain measure of Fukuda et al., and
dependency factor of Pawlak. We verify whether they satisfy valuable
property (M) of monotonic dependency on the number of objects sat-
isfying or not the premise or the conclusion of a rule, and property of
hypothesis symmetry (HS). Moreover, analytically and through experi-
ments we show an interesting relationship between those measures and
two other commonly used measures of rule support and anti-support.
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1. Introduction
It has been recognized early on in the knowledge discovery literature, that the
number of knowledge patterns, often expressed in a form of “if. . . , then. . . ” rules,
discovered in databases can be quite large, and that only a small portion of them
is actually useful for the user. To address the problem of evaluation of attrac-
tiveness of the mined rules, various quantitative measures of interestingness have
been defined and studied (e.g. support, confidence, anti-support, gain, rule interest
function, lift). They all reflect different characteristics of rules. However, the is-
sue of studying and analyzing relationships between various measures, has not yet
been fully investigated. Moreover, there is a need for verification whether particu-
lar interestingness measures satisfy some valuable features, which reflect the users’
expectations towards the behavior of the measures in particular situations. For ex-
ample, one may expect that the measure he uses will increase its value for a certain
rule (or at least will not decrease) when the number of objects in the dataset that
support the rule increases. It is, of course, quite intuitively understood property of
the measure, however it draws well our attention to the properties of the applied
measures. Studies verifying whether popular interestingness measures possesses
1 Faculty of Economics, University of Catania, Corso Italia, 55, 95129 Catania, Italy
e-mail: salgreco@mbox.unicit.it

2 Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland
e-mail: {Roman.Slowinski, Izabela.Szczech}@cs.put.poznan.pl

3 Institute for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland



152 S. Greco, R. Słowiński, I. Szczęch

valuable features would widen our understanding of those measures and of their
applicability. Moreover, through such property analysis one can also learn about
relationships between different measures.

In this paper, we focus on three well-known measures: rule interest function
proposed by Piatetsky-Shapiro (1991), gain measure of Fukuda et al. (1996) and
dependency factor introduced by Pawlak (2004). We investigate whether they
possess a useful feature called the property (M) introduced by Greco et al. (2004),
and hypothesis symmetry (HS) advocated by Eells et al. (2002) and Fitelson
(2001). Moreover, on the basis of satisfying the property (M), we draw some
conclusions about very particular relationship between rule interest and gain, and
two other simple but meaningful measures being rule support and anti-support.

In order to achieve the above objectives, the rest of the paper is organized
as follows. In section 2, there are preliminaries on rules and their quantitative
description. In section 3, we verify analytically whether rule interest function,
gain measure and dependency factor have the analyzed property (M). In section
4, we investigate the relationship between the first two measures and the Pareto-
optimal border with respect to support and anti-support. Illustration of the results
on a real life dataset is presented to support the theoretical considerations with
experimental results. Next, in section 5, we analyze if rule interest function, gain
measure and dependency factor satisfy the hypothesis symmetry. The paper ends
with conclusions.

2. Preliminaries

Let us consider information table S = (U , A), where U and A are finite, non-empty
sets called universe and set of attributes, respectively. One can associate a formal
language L of logical formulas with every subset of attributes. A rule induced from
S is denoted by φ → ψ (read as “if φ, then ψ”) and consists of condition and
decision formulas, called premise and conclusion, respectively.

2.1. Support and Anti-support Measures of Rules

One of the most popular measures used to identify frequently occurring association
rules in sets of items from information table S is support. The support of condition
φ, denoted as sup(φ), is equal to the number of objects in U having property φ. The
support of rule φ→ψ (also simply referred to as support), denoted as sup(φ → ψ),
is the number of objects in U having property φ and ψ. Thus, it corresponds to
statistical significance (Hilderman et al., 2001).

Anti−support of a rule φ→ψ (also simply referred to as anti-support), denoted
as anti−sup(φ → ψ), is equal to the number of objects in U having the property
φ but not having the property ψ. Thus, anti-support is the number of counter-
examples, i.e. objects for which the premise φ evaluates to true but which fall into a
class different than ψ. Note that anti-support can also be regarded as sup(φ → ¬ψ).
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2.2. Piatetsky-Shapiro’s Rule Interest Function, Gain and Dependency
Factor

The rule interest function RI introduced by Piatetsky-Shapiro (1991) is used to
quantify the correlation between the premise and conclusion. It is given by the
following formula:

RI(φ → ψ) = sup(φ → ψ)− sup(ψ)sup(φ)
|U | (1)

For rule φ → ψ, when RI = 0, then φ and ψ are statistically independent and
thus, such rule should be considered as uninteresting. When RI > 0 (RI < 0),
then there is a positive (negative) correlation between φ and ψ (Hilderman et al.,
2001).

The gain function of Fukuda et al. (1996) is defined in the following manner:

gain(φ → ψ) = sup(φ → ψ)−Θsup(φ) (2)

where Θ is a fraction constant between 0 and 1. Note that, for a fixed value of
Θ = sup(ψ)/|U |, the gain measure becomes identical to the above rule interest
function RI.

The dependency factor of Pawlak (2004) is defined in the following manner:

η(φ → ψ) =
sup(φ→ψ)

sup(φ) − sup(ψ)
|U |

sup(φ→ψ)
sup(φ) + sup(ψ)

|U |
(3)

The dependency factor expresses the degree of dependency, and can be seen
as a counterpart of correlation coefficient used in statistics. When φ and ψ are
independent on each other, then η(φ → ψ) = 0. If −1 < η(φ → ψ), then φ and ψ
are negatively dependent, and if 0 < η(φ → ψ) < 1, then φ and ψ are positively
dependent on each other.

2.3. Property of monotonicity (M) and Hypothesis Symmetry (HS)

Greco et al. (2004) have considered Bayesian confirmation measures from the
viewpoint of their usefulness for measuring interestingness of decision rules. They
claim that confirmation measures should enjoy a valuable property (M) describing
monotonic dependency on the number of objects satisfying or not the premise or
the conclusion of the rule. The property was introduced in Greco et al. (2004)
where it was defined as follows:

F = [sup(φ → ψ), sup(¬φ → ψ), sup(φ → ¬ψ), sup(¬φ → ¬ψ)] (4)

is a function non-decreasing with respect to sup(φ → ψ), and sup(¬φ → ¬ψ) and
non-increasing with respect to sup(¬φ → ψ), and sup(φ → ¬ψ).
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The property (M) with respect to sup(φ → ψ) (or, analogously, with respect to
sup(¬φ → ¬ψ)) means that any evidence in which φ and ψ (or, analogously, neither
φ nor ψ) hold together increases (or at least does not decrease) the credibility of
the rule φ → ψ. On the other hand, the property (M) with respect to sup(¬φ → ψ)
(or, analogously, with respect to sup(φ → ¬ψ)) means that any evidence in which φ
does not hold and ψ holds (or, analogously, φ holds and ψ does not hold) decreases
(or at least does not increase) the credibility of the rule φ → ψ.

Eells et al. (2002) have analysed some confirmation measures from the view-
point of four properties of symmetry introduced by Carnap (1962). Considering
an interestingness measure c(φ → ψ), the considered symmetries were defined as
follows:

• evidence symmetry (ES): c(φ → ψ) = −c(¬φ → ψ)

• commutativity symmetry (CS): c(φ → ψ) = c(ψ → φ)

• hypothesis symmetry (HS): c(φ → ψ) = −c(φ → ¬ψ)

• total symmetry (TS): c(φ → ψ) = c(¬φ → ¬ψ)

It has been concluded in Eells et al. (2002) that, in fact, only (HS) is a desirable
property, while (ES), (CS) and (TS) are not. The meaning behind the hypothesis
symmetry is that the significance of the premise with respect to the conclusion part
of a rule should be of the same strength, but of the opposite sign, as the significance
of the premise with respect to a negated conclusion.

Both, the property (M) as well as the hypothesis symmetry were introduced
in the perspective of confirmation measures, however there are no adversities for
applying them to any other interestingness measure, in particular RI, gain or depen-
dency factor. In fact, we believe that these properties are valuable and it is worth
verifying which commonly used interestingness measures really do have them.

2.4. Partial Preorder on Rules in terms of Rule Support and Anti-
support

Let us denote by ¹s¬a a partial preorder given by the dominance relation on a set
X of rules in terms of two interestingness measures: support and anti-support, i.e.
given a set of rules X and two rules r1, r2 ∈ X, r1 ≺s¬a r2 if and only if

sup(r1) ≤ sup(r2) ∧ anti− sup(r1) ≥ anti− sup(r2) (5)

Recall that a partial preorder on a set X is a binary relation R on X that is
reflexive and transitive. The partial preorder ¹s¬a can be decomposed into its
asymmetric part ≺s¬a and its symmetric part ∼s¬a in the following manner: given
a set of rules X and two rules r1, r2 ∈ X, r1 ≺s¬a r2 if and only if

sup(r1) ≤ sup(r2) ∧ anti− sup(r1) > anti− sup(r2), or
sup(r1) < sup(r2) ∧ anti− sup(r1) ≥ anti− sup(r2)

(6)
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moreover, r1 ∼s¬a r2 if and only if

sup(r1) = sup(r2) ∧ anti− sup(r1) = anti− sup(r2) (7)

If for a rule r ∈ X there does not exist any rule r′ ∈ X, such that r ≺s¬a r′ then
r is said to be non–dominated (i.e. Pareto–optimal) with respect to support and
anti-support. A set of all non-dominated rules forms a Pareto-optimal border of the
set of rules in the evaluation space. A set of all non-dominated rules with respect
to support and anti-support will be called a support-anti-support Pareto-optimal
border. In other words, it is the set of rules such that there is no other rule having
greater support and smaller anti-support.

The approach to evaluation of the set of rules in terms of two interestingness
measures being rule support and anti-support was proposed and presented in detail
in Brzezińska et al. (2007). The idea of combining those two dimensions came as a
result of looking for a set of rules that would include all rules optimal with respect to
any confirmation measure with the desirable property (M) (Greco et al., 2004). It
was proved by Brzezińska et al. (2007) that the best rule according to any of confir-
mation measures with (M) must reside on the support-anti-support Pareto-optimal
border. Though the theorem was particularly intended for confirmation measures,
it concerns, in fact, any measure that is a function non-decreasing with respect to
sup(φ → ψ) and sup(¬φ → ¬ψ), and non-increasing with respect to sup(¬φ → ψ)
and sup(φ → ¬ψ). Therefore, we can consider satisfying of the property of mono-
tonicity (M) by a measure as a sufficient condition for stating that rules optimal
with respect to this measure will be found on the support-anti-support Pareto-
optimal border. It is a valuable result as it unveils some relationships between
different interestingness measures. Moreover, it allows to identify a set of rules
containing most interesting (optimal) rules according to any interestingness mea-
sure with the property (M) simply by solving an optimized rule mining problem
with respect to rule support and anti-support.

3. Analysis of Property (M)

For the clarity of presentation, the following notation shall be used throughout
the next sections: a = sup(φ → ψ), b = sup(¬φ → ψ), c = sup(φ → ¬ψ), d =
sup(¬φ → ¬ψ), a+ c = sup(φ), a+ b = sup(ψ), b+ d = sup(¬φ), c+ d = sup(¬ψ),
a + b + c + d = |U |. We also assume that set U is not empty, so that at least
one of a, b, c or d is strictly positive. In order to prove that a measure has the
property (M) we need to show that it is non-decreasing with respect to a and d,
and non-increasing with respect to b and c.

Theorem 1. Measure RI has the property (M).

Proof. Let us observe that measure RI can be rewritten as:

RI(φ → ψ) = a− (a + b)(a + c)
a + b + c + d

. (8)
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After some simple algebraic transformation, we obtain

RI(φ → ψ) =
ad− bc

a + b + c + d
. (9)

Taking into account equation (9), to prove the monotonicity of RI with respect to
a we have to show that if a increases by ∆ > 0, then RI does not decrease, i.e.

(a + ∆)d− bc

a + b + c + d + ∆
− ad− bc

a + b + c + d
≥ 0. (10)

After few simple algebraic passages, and remembering that a, b, c and d are non-
negative, we get

(a+∆)d−bc
a+b+c+d+∆ − ad−bc

a+b+c+d =

= b(b+c+d)∆+bc∆
(a+b+c+d)(a+b+c+d+∆) > 0 ≥ 0

(11)

such that we can conclude that RI is non-decreasing (more precisely, strictly in-
creasing) with respect to a. Analogous proofs hold for the monotonicity of RI with
respect to b, c and d.

Theorem 2. Measure gain has the property (M).

Proof. Let us consider measure gain expressed as follows:

gain(φ → ψ) = a−Θ(a + c) (12)

where Θ is a fractional constant between 0 and 1. As gain(φ → ψ) does not depend
on b nor d, it is clear that the change of b or d does not result in any change of
gain(φ → ψ). Thus, we only need to verify if :

• (i) the increase of a results in non-decrease of gain(φ → ψ),

• (ii) the increase of c results in non-increase of gain(φ → ψ).

Ad.(i). Let us assume that ∆ > 0 is the number by which a increases. Condition
(i) will be satisfied if and only if

gain(φ → ψ) = a−Θ(a + c) ≤ gain′(φ → ψ) = (a + ∆)−Θ(a + ∆ + c) (13)

Let us observe that

a−Θ(a + c) ≤ (a + ∆)−Θ(a + ∆ + c) ⇔
⇔ a− aΘ− cΘ ≤ a + ∆− aΘ− cΘ−Θ∆ ⇔

⇔ ∆−Θ∆ ≥ 0 ⇔ ∆(1−Θ) ≥ 0
(14)

The last inequality is always satisfied as ∆ > 0 and (1 − Θ) ≥ 0 because Θ is a
fractional constant between 0 and 1. Thus, condition (i) is satisfied.
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Ad.(ii). Let us assume that ∆ > 0 is the number by which c increases. Condition
(ii) will be satisfied if and only if

gain(φ → ψ) = a−Θ(a + c) ≥ gain′(φ → ψ) = a−Θ(a + ∆ + c) (15)

Let us observe that

a−Θ(a + c) ≥ a−Θ(a + ∆ + c) ⇔
⇔ a− aΘ− cΘ ≥ a− aΘ− cΘ−Θ∆ ⇔

⇔ 0 ≥ −Θ∆ ⇔ ∆Θ ≥ 0
(16)

The last inequality is always satisfied as ∆ > 0 and Θ ≥ 0. Thus, condition (ii) is
satisfied. Since all four conditions are satisfied, the hypothesis that gain measure
has the property (M) is true.

Having determined that both of the analyzed measures do satisfy the desired
property (M), we can draw conclusion that rules optimal according to them will be
found on the support-anti-support Pareto-optimal border.

Now, let us prove by counterexample that the dependency factor η(φ → ψ) does
not have the property (M).

Theorem 3. Dependency factor η(φ → ψ) does not have the property (M).

Proof. Let us consider the dependency factor rewritten as follows:

η(φ → ψ) =
a

a+c − a+b
a+b+c+d

a
a+c + a+b

a+b+c+d

(17)

It will be shown by the following counterexample that η(φ → ψ) does not satisfy
the condition that the increase of a results in non-decrease of η(φ → ψ), thus this
measure does not have the property (M). Let us consider case α, in which a=7,
b=2, c=3, d=3, and case α′, in which a increases to 8 and b, c, d remain unchanged.
The dependency factor does not have the property (M) as such increase of a results
in the decrease of the measure:

η(φ → ψ) = 0.0769 > 0.0756 = η′(φ → ψ). (18)

4. Experimental illustration of the result
It was proved by Brzezińska et al. (2007) that rules optimal with respect to any
interestingness measure that has the property (M) will reside on the support-anti-
support Pareto-optimal border. Since, the above analysis shows that both RI and
gain enjoy the property (M), we can concude that rules optimal with respect to
them will be found in the set of rules non-dominated according to support and anti-
support. Several computational experiments analyzing rules optimal with respect
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to RI and gain in the perspective of rule support and anti-support have been
conducted in order to illustrate the theoretical results concerning their possession
of the property (M) and thus, their occurrence on the support-anti-support Pareto-
optimal border.

Below, in Fig. 1, there is an exemplary diagram from those experiments. For a
real life dataset containing information about technical state of buses, a set of all
possible rules was generated. A set of 85 rules with the same conclusion was then
isolated and rules non-dominated with respect to support and anti-support were
found. The support-anti-support Pareto-optimal border is indicated in Fig. 1 by
circles connected by a line. Four points marked as r1, r2, r3, r4 form the Pareto-
optimal border. Each of those points respresents rules characterized by particular
values of support and anti-support (i.e., r1 represents rules with sup(φ → ψ) = 50
and anti − sup(φ → ψ) = 4, r2 rules with sup(φ → ψ) = 49 and anti − sup(φ →
ψ) = 2, r3 rules with sup(φ → ψ) = 48 and anti − sup(φ → ψ) = 1, and r4 rules
with sup(φ → ψ) = 45 and anti − sup(φ → ψ) = 0). In the generated set of 85
rules, we have distinguished rules optimal according to RI (marked by r3), and gain
for different values of Θ. For Θ = 0.33 the rules with maximal gain are marked
as r1; when Θ = 0.5 these are rules marked as r2 or r3; finally when Θ = 0.66
these are rules marked as r3. The diagram shows that, indeed, rules optimal with
respect to those measures lie on the support-anti-support Pareto-optimal border.

During this experiment we have also calculated the optimal value of the de-
pendency factor. This measure does not have the property (M) so we could not
conclude right away that rules optimal according to it will be on the support-anti-
support Pareto-optimal border. However, since possession of the property (M) is
only a sufficient condition for laying on that border, we cannot exclude a situation
in which rules optimal with respect to the dependency factor will be found on the
support-anti-support Pareto-optimal border. For this dataset we have such a case.
Rules marked as r4 are optimal according to dependency factor and they also form
the support-anti-support Pareto-optimal border.

5. Analysis of Hypothesis Symmetry (HS)
The verification of the property of hypothesis symmetry was done for all three
considered measures separately, by checking if their values for rules φ → ψ and
φ → ¬ψ are the same but of opposite sign.

Theorem 4. Measure RI has the property of hypothesis symmetry.

Proof. Let us consider RI expressed as follows:

RI(φ → ψ) = a− (a + c)(a + b)
a + b + c + d

. (19)

For a negated conclusion RI is defined as:

RI(φ → ¬ψ) = c− (a + c)(c + d)
a + b + c + d

. (20)
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Figure 1. Pareto-optimal border with respect to rule support and anti-support
includes rules being optimal in RI, and gain

The hypothesis symmetry will be satisfied by RI if:

a− (a + c)(a + b)
a + b + c + d

= −[c− (a + c)(c + d)
a + b + c + d

]. (21)

Through simple mathematical transformation we obtain that:

a− (a + c)(a + b)
a + b + c + d

=
ad− bc

a + b + c + d
(22)

and

−c +
(a + c)(c + d)
a + b + c + d

=
ad− bc

a + b + c + d
(23)

and thus, we can conclude that RI has the property of hypothesis symmetry.

Theorem 5. Measure gain has the property of hypothesis symmetry iff Θ = 1/2.

Proof. Let us consider gain expressed as follows:

gain(φ → ψ) = a−Θ(a + c). (24)

For a negated conclusion gain is defined as:
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gain(φ → ¬ψ) = c−Θ(a + c). (25)

The hypothesis symmetry will be satisfied by gain if:

a−Θ(a + c) = −[c−Θ(a + c)]. (26)

Through simple mathematical transformation we obtain that the above equality is
satisfied only when Θ = 1/2.

Theorem 6. The dependency factor η does not have the property of hypothesis
symmetry.

Proof. Let us consider dependency factor expressed as follows:

η(φ → ψ) =
a

a+c − a+b
a+b+c+d

a
a+c + a+b

a+b+c+d

(27)

For a negated conclusion it is defined as:

η(φ → ¬ψ) =
c

a+c − c+d
a+b+c+d

c
a+c + c+d

a+b+c+d

(28)

To prove that the dependency factor does not satisfy the hypothesis symmetry let
us set a = b = c = 10 and d = 20. We can easily verify that

η(φ → ψ) = 0.11 6= 0.09 = η(φ → ¬ψ). (29)

6. Conclusions
As an active research area in data mining, rule evaluation has been considered by
many authors from different perspectives. This paper concentrated on measuring
the relevance and utility of induced rules according to three popular interestingness
measures: rule interest function of Piatetsky-Shapiro, gain measure of Fukuda et
al., and dependency factor of Pawlak. A theoretical analysis has been conducted for
verifying which of those measures satisfy valuable properties (M) and hypothesis
symmetry (HS). It has been proved that the rule interest function and gain measure
are characterized by both of those properties, while the dependency factor does not
satisfy any of them. Such analysis of properties of interestingness measures was
carried out in order to widen our knowledge and understanding of them, as well
as their applicability. Moreover, the possession of the property (M) unveils an
interesting relationship between rule interest function and gain on one hand, and
two other interestingness measures: rule support and anti-support, on the other
hand. It has been shown that rules maximizing rule interest function or gain will
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surely be found on the rule support-anti-support Pareto-optimal border. It has
also been illustrated on a real life dataset.

The obtained results are useful for practical applications because they show
which interestingness measures are relevant for meaningful rule evaluation. Using
the measures which enjoy the desirable properties one can avoid analyzing unim-
portant rules.
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