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Abstract: Recently, numerous successful approaches have been de-
veloped for instrument recognition in monophonic sounds. Unfortu-
nately, none of them can be successfully applied to polyphonic sounds.
Identification of music instruments in polyphonic sounds is still difficult
and challenging. This has stimulated a number of research projects on
music sound separation and new features development for content-based
automatic music information retrieval. The paper introduces several
temporal features based on pitch to improve automatic music instru-
ment recognition. The results from experiments show that these new
features, with the pitch information removed from them, tend to pro-
vide less distraction for timber estimation. Sometime, the addition of
new features to the database of music instruments does not help and
related classifiers still do not perform well. One possibility to handle
this problem is to build classifiers which learn not only the descriptions
of music instruments but also their generalizations on different granu-
larity levels. We show that by introducing several optional hierarchical
classifications of musical instruments and constructing related classi-
fiers, we increase a chance to build a system of good performance in
terms of successful indexing of music by instruments and their types.

Keywords: music information retrieval, automatic indexing,
knowledge discovery.

1. Introduction

The ultimate goal of our project is a creation of a web-based storage and retrieval
system, called MIRAI, which can automatically index musical input (of polyphonic
type) into FS-tree type database and answer queries requesting specific musical
pieces (http://www.mir.uncc.edu/). When MIRAI receives a musical waveform, it
divides that waveform into segments of equal size and then its classifiers identify the
most dominating musical instruments and emotions associated with that segment.
Our database of musical instrument sounds is constantly growing and it currently
has about 4,000 sound objects and more than 1,100 features. Each sound object
is represented as a temporal sequence of approximately 150-300 tuples which gives
us a temporal database of more than 1,000,000 tuples, each one represented as a
vector of about 1,100 features. This database is mainly used to learn classifiers for
automatic indexing of musical instrument sounds. A separate database containing
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longer musical pieces which are indexed according to their scalar relations is used
for automatic indexing of emotions. Both databases have to be semantically reach
enough (in terms of successful sound separation and recognition) so the constructed
classifiers have a high level of accuracy in recognizing musical instruments and/or
their types when music is polyphonic. This paper shows that by adding new tem-
poral non-MPEG7 features to our database of musical instrument sounds, we can
improve the confidence of MIRAI classifiers. The same, the precision of MIRAI
retrieval engine is also getting improved.

Recently, a number of acoustical features for the construction of a computa-
tional model for music timbre estimation have been investigated in Music Infor-
mation Retrieval (MIR) area. Timbre is a quality of sound that distinguishes one
music instrument from another, while there are a wide variety of instrument fam-
ilies and individual categories. It is rather a subjective quality, defined by ANSI
as the attribute of auditory sensation, in terms of which a listener can judge that
two sounds, similarly presented and having the same loudness and pitch, are dif-
ferent. Such definition is clearly subjective and not of much use for automatic
sound timbre classification. Therefore, musical sounds must be very carefully pa-
rameterized to allow automatic timbre recognition. The real use of timbre-based
grouping of music and dimensional approach to timbre description is very nicely
discussed in (Bregman, 1990). So far, there is no standard parameterization used
as a classification basis. The sound descriptors used are based on various meth-
ods of analysis in time domain, spectrum domain, time-frequency domain and
cepstrum with Fourier Transform for spectral analysis being most common, such
as Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Dis-
crete Fourier Transform (DFT), and so on. Also, wavelet analysis gains increasing
interest for sound and especially for musical sound analysis and representation.
Based on recent research performed in this area, MPEG proposed an MPEG-
7 standard (http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm), in
which a set of low-level sound temporal and spectral features is described.

A short digital musical file may consist of a huge number of integers in its
content to represent sound vibration in time. For example, at a sample frequency
rate of 44,100Hz, a digital recording has 44,100 integers per second, which means,
in a one-minute long digital recording, the total number of integers in the time-
order sequence will be 2,646,000, which makes it a very big data item. Therefore,
features to capture subtle changes are normally in a form of matrix or vector.
High dimensionality brings another challenge to MIR area. Researchers explored
different statistical summations to describe signatures of music instruments based
on vectors or matrices in features, such as Tristimulus parameters (Pollard and
Jansson, 1982), brightness (Fujinaga and McMillan, 2000), and irregularity (Wold
et al., 1996), etc. Flattening these features for traditional classifiers increases the
number of features. Authors in their previous work already evaluated the quality of
classifiers based on additional features that they developed and added to MPEG7
features and other popular features, bringing the total number of features to three
hundred. In this paper, authors focus on development of new features to improve
the classification efficiency for harmonic sounds, which have steady pitch state.
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Authors also show that by introducing several optional hierarchical classifi-
cations of musical instruments and constructing related classifiers, we increase a
chance to build a system of good performance in terms of successful indexing of
music by instruments and their types.

2. Audio Features
There are many ways to present audio features by different categorization method.
In our system, audio features are first categorized as MPEG7 descriptors and
other/non-MPEG7 descriptors in the acoustical perspective of view, where both
spectrum features and temporal features are included. Then, the new temporal
features are presented. Finally, a derivative database of those features with single
valued data for KDD classification is demonstrated. The spectrum features have
two different frequency domains: Hz frequency and Mel frequency. Frame size is
carefully designed to be 120ms, so that the 0th octave G (the lowest pitch in our
audio database) can be detected. The hop size is 40ms with a overlapping of 80ms.
Since the sample frequency of all the music objects is 44,100Hz, the frame size is
5292. A hamming window is applied to all STFT transforms to avoid jittering in
the spectrum.

3. MPEG7 Based Descriptors
Based on latest research in the area, MPEG published a standard group of features
for the digital audio content data. They are either in the frequency domain or in
the time domain. A STFT with hamming window has been applied to the sample
data, where each frame generates a set of instantaneous values.

Spectrum Centroid describes the center-of-gravity of a log-frequency power
spectrum in the following formulas. It economically indicates the pre-dominant
frequency range. Px(k) is a power spectrum coefficient. Coefficients under 62.5Hz
have been grouped together for fast computation.

1.) Px(k), k = 0, ..., NFFT
2

2.) C =
∑

n log2

(
f(n)/1000

)
P
′
x(n)

/∑
n P

′
x(n).

A mean value and standard deviation of all frames have been used to describe the
Spectrum Centroid of a music object.

Spectrum Spread is the Root of Mean Square value of the deviation of the
Log frequency power spectrum with respect to the gravity center in a frame. Like
Spectrum Centroid, it is an economic way to describe the shape of the power
spectrum.

3.) S =
√∑

n

((
log2(f(n)/1000

)− C)2P ′(n)
)/ ∑

n P ′(n).
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A mean value and standard deviation of all frames have been used to describe
the Spectrum Spread of a music object.

Spectrum Flatness describes the flatness property of the power spectrum within
a frequency bin. The value of each bin is treated as an attribute value in the
database.

Spectrum Basis Functions are used to reduce the dimensionality by projecting
the spectrum from high dimensional space to low dimensional space with compact
salient statistical information.

Harmonic Centroid is computed as the average, over the sound segment dura-
tion, of the instantaneous Harmonic Centroid within a frame. The instantaneous
Harmonic Spectral Centroid is computed as the amplitude in linear scale weighted
mean of the harmonic peak of the spectrum.

Harmonic Spread is computed as the average over the sound segment duration
of the instantaneous harmonic spectral spread of frame. The instantaneous har-
monic spectral spread is computed as the amplitude weighted standard deviation
of the harmonic peaks of the spectrum with respect of the instantaneous harmonic
spectral centroid.

Harmonic Variation is defined as the mean value over the sound segment dura-
tion of the instantaneous harmonic spectral variation. The instantaneous harmonic
spectral variation is defined as the normalized correlation between the amplitude
of the harmonic peaks of two adjacent frames.

Harmonic Deviation is computed as the average over the sound segment dura-
tion of the instantaneous Harmonic Spectral Deviation in each frame. The instan-
taneous Harmonic Spectral Deviation is computed as the spectral deviation of the
log amplitude components from a global spectral envelope.

Log Attack Time is defined as the logarithm of the time duration between the
time when the signal starts to the time it reaches its stable part, where the signal
envelope is estimated by computing the local mean square value of the signal am-
plitude in each frame.

LAT = log10(T1− T0)

where T0 is the time when the signal starts, T1 is the time the signal reaches its
sustained part of maximum part.

Harmonicity Rate is the proportion of harmonics in the power spectrum. It
describes the degree of harmonicity of a frame. It is computed by the normalized
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correlation between the signal and a lagged representation of the signal.

Upper Limit of Harmonicity describes the frequency beyond which the spec-
trum cannot be considered harmonic. It is calculated based on the power spectrum
of the original and a comb-filtered signal.

Spectral Centroid is computed as the power weighted average of the frequency
bins in the power spectrum of all the frames in a sound segment with a Welch
method.

Temporal Centroid is calculated as the time average over the energy envelope.

4. Temporal Features Based on Pitch
Pitch trajectories of instruments behave very differently in time. Authors designed
parameters to capture the power change in time.

Pitch Trajectory Centroid PC is used to describe the center of gravity of the
power of the fundamental frequency during the quasi-steady state.

PC =
∑lenght(P )

n=1 [ n
length(P ) P (n)]

∑lenght(P )
n=1 P (n)

where P is the pitch trajectory in the quasi-steady state, n is the nth frame.
Pitch Trajectory Spread PS is the RMS deviation of the Pitch Trajectory with
respect to its gravity center.

PS =

√∑length(P )
n=1 [ n

length(P )−PC]2·P (n)
∑length(P )

n=1 P (N)
.

Pitch Trajectory Max Angle PM is an angle of the normalized power maximum
vs. its normalized frame position along the trajectory in the quasi-steady state.

PM =

[
MAX(P (n))−P (0)
1

length(P ) ·
∑length(P )

n=1 P (n)

]

F (n)−F (0)
length(P )

,

where F (n) is the position of nth frame in the steady state.

Harmonic Relation is a vector to describe the relationship among the harmonic
partials.

HR = 1
m

∑m
j=1

Hj

H0
,

where m is the total number of frames in the steady state, Hj is the jth harmonic
peak.
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5. Other Descriptors

In order to obtain compact representation of musical acoustical features, the fol-
lowing descriptors have been used in the paper.

Fundamental Frequency is the frequency that best explains the periodicity of
a signal. The ANSI definition of psycho-acoustical terminology says that pitch is
the auditory attribute of a sound according to which sounds can be ordered on a
scale from low to high. It is estimated by the maximum likelihood of candidate
frequencies (Zhang, Marasek, Raś, 2007).

Vector Descriptors. Since a value of a descriptor is a matrix, statistical value
retrieval has been performed for traditional classifiers. These statistical values
are maximum, minimum, mean value, and the standard deviation of the matrix,
maximum, minimum, mean value of dissimilarity of each column.

Tristimulus parameters and similar parameters describe the ratio of the
amplitude of a harmonic partial to the total harmonic partials (Pollard and Jansson,
1982). They are: first modified tristimulus parameter, power difference of the
first and the second tristimulus parameter, grouped tristimulus of other harmonic
partials, odd and even tristimulus parameters.

Brightness is calculated as the proportion of the weighted harmonic partials to
the harmonic spectrum.

Transient, steady and decay duration. The transient duration is considered
as the time to reach the quasi-steady state of fundamental frequency (Zhang and
Raś, 2006). In this duration the sound contains more timbre information than
pitch information that is highly relevant to the fundamental frequency. Thus dif-
ferentiated harmonic descriptors values in time are calculated based on the subtle
change of the fundamental frequency. The duration after the quasi-steady state is
treated as the decay state. All the duration values are normalized by the length of
their corresponding audio objects.

Zero crossing counts the number of times that the signal sample data changes
signs in a frame (Tzanetakis, Cook, 2002).

Spectrum Centroid describes the gravity center of the spectrum (Wieczorkowska
et al., 2003).

Roll-off is a measure of spectral shape, which is used to distinguish between voiced
and unvoiced speech. The roll-off is defined as the frequency below which C per-
centage of the accumulated magnitudes of the spectrum is concentrated, where C
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is an empirical coefficient.

∑K
k=1 |Xi(k)| ≤ C ·∑K

k=1 |Xi(k)|.

Flux is used to describe the spectral rate of change. It is computed by the total
difference between the magnitude of the FFT points in a frame and its successive
frame.

Fi =
∑N

2
k=1(|Xi(k)| − |Xi−1(k)|)2.

Mel frequency cepstral coefficients describe the spectrum according to the
human perception system in the Mel scale. They are computed by grouping the
STFT points of each frame into a set of 40 coefficients by a set of 40 weighting
curves with logarithmic transform and a discrete cosine transform (DCT).

6. Hierarchical Classifications of Musical Instruments

There are many ways to categorize music instruments, such as by playing methods,
by instrument type, or by other generalization concepts. Any categorization process
can be represented as a hierarchical schema which is used by a cooperative query
answering system to handle failing queries. By definition, a cooperative system is
relaxing a failing query with a goal to find its smallest generalization which will
not fail. Two different hierarchical schemas (Ras et al., 2007), used as models of a
decision attribute, have been investigated in authors previous research: Hornbostel-
Sachs classification of musical instruments and classification of musical instruments
by articulation, with 15 different articulation methods (seen as attribute values):
blown, bowed, bowed vibrato, concussive, hammered, lip-vibrated, martele, muted,
muted vibrato, percussive, picked, pizzicato, rubbed, scraped and shaken. Each
hierarchical classification represents a unique decision attribute, in a database of
music instruments, leading to a construction of a new classifier and the same to a
different system for automatic indexing of music by instruments and their types.

The main classification is based on the Hornbostel and Sachs system (with
extensions)(Hornbostel, 1914). Basic classification includes aerophones (wind in-
struments), chordophones (string instruments), idiophones (made of solid, non-
stretchable, resonant material), and membranophones (mainly drums); idiophones
and membranophones are together classified as percussion. Additional groups in-
clude electrophones, i.e. instruments where the acoustical vibrations are produced
by electric or electronic means (electric guitars, keyboards, synthesizers), com-
plex mechanical instruments (including pianos, organs, and other mechanical music
makers), and special instruments (include bullroarers, but they can be classified
as free aerophones). Each category can be further subdivided into groups, sub-
groups etc. and finally into instruments. Aerophones subcategories are also called
woodwinds or brass, but this criterion is not based on the material the instrument
is made of, but rather on the method of sound production. In woodwinds, the
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change of pitch is mainly obtained by the change of the length of the column of the
vibrating air. Additionally, over-blow is applied to obtain second, third or fourth
harmonic to become the fundamental. In brass instruments, over-blows are very
easy because of wide bell, and therefore they are seen as the main method of pitch
changing.

Sounds can be classified according to the articulation which can be performed in
three ways: (1) sustained or non-sustained sounds, (2) muted or not muted sounds,
(3) vibrated and not vibrated sounds. This partition may be difficult to obtain,
since vibration does not have to appear in the entire sound; some changes may be
visible, but no clear vibration. Also, brass is sometimes played with moving the
mute in and out of the bell.

According to the contents of the spectrum, the musical instrument sounds can
be classified into the following three types: (1) harmonic spectrum, (2) continuous
spectrum, or (3) mixed spectrum. Most of music instrument sounds of definite
pitch have some noises/continuity in their spectra. According to MPEG-7 clas-
sification [4], there are four classes of musical instrument sounds: (1) Harmonic,
sustained, coherent sounds - well detailed in MPEG-7, (2) Nonharmonic, sustained,
coherent sounds, (3) Percussive, nonsustained sounds - well detailed in MPEG-7,
(4) Noncoherent, sustained sounds. This also can be misleading, since pizzicato is
not clearly present in this classification, as harmonic, non-sustained sound.

We can also cluster musical instruments in many other ways and the same gen-
erate many possible hierarchical structures each defining a new decision-attribute.

A formal framework for evaluation and comparison of different classifications
of musical sounds is discussed in the rest of this section. Musical instruments are
represented as leaves of a hierarchical decision attribute, denoted in our case by d
and its different types and subtypes are represented as internal nodes of d. In our
database called MIRAI, musical instruments are represented as sample musical
sounds described by a large number sound features, denoted by A (Ras et al.,
2007). The goal of each classification is to find descriptions of musical instruments
or their classes (values of attribute d) in terms of values of attributes from A. Each
classification results in a classifier which can be evaluated using standard methods
like bootstrap or cross-validation. In our research we use ten-fold cross-validation.

Let us assume that S = (X, A ∪ {d}, V ) is a decision system, where d is a
hierarchical attribute. We also assume that d[i1,...,ik] (where 1 ≤ ij ≤ mj , j =
1, 2..., k) is a child of d[i1,...,ik−1] for any 1 ≤ ik ≤ mk. Clearly, attribute d has
Σ{m1 ·m2 · ... ·mj : 1 ≤ j ≤ k} values, where m1 ·m2 · ... ·mj shows the upper
bound for the number of values at the level j of d. By p([i1, ..., ik]) we denote a
path (d, d[i1], d[i1,i2], d[i1,i2,i3],..., d[i1,...,ik−1], d[i1,...,ik]) leading from the root of the
hierarchical attribute d to its descendant d[i1,...,ik].

Let us assume that Rj is a set of classification rules extracted from S, repre-
senting a part of a rule-based classifier R =

⋃{Rj : 1 ≤ j ≤ k}, and describing all
values of d at level j. The quality of a classifier at level j of attribute d can be
checked by calculating Q(Rj) =

∑{sup(r)·conf(r):r∈Rj}∑{sup(r:r∈Rj} , where sup(r) is the support
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of the rule r in S and conf(r) is its confidence. Then, the quality of the rule-based
classifier R can be checked by calculating Q(

⋃{Rj : 1 ≤ j ≤ k}) =
∑{Q(Rj):1≤j≤k}

k .

The quality of a tree-based classifier can be given by calculating its quality
for every node of a hierarchical decision attribute d. Let us take a node d[i1,...,ik]

and the path p([i1, ..., ik]) leading to that node from the root of d. There is a
set of classification rules R[i1,...,im], uniquely defined by the tree-based classifier,
assigned to a node d[i1,...,im] of a path p([i1, ..., ik]), for every 1 ≤ m ≤ k. Now,

we define Q(R[i1,...,im]) as
∑{sup(r)·conf(r):r∈R[i1,...,im]}∑{sup(r):r∈R[i1,...,im]} . Then, the quality of a tree-

based classifier for a node d[i1,...,im] of the decision attribute d can be checked by
calculating Q(d[i1,...,im]) =

∏{Q(R[i1,...,ij ]) : 1 ≤ j ≤ m}. In our experiments,
presented in Section 4 of this paper, we use J48 Tree as the tool to build tree-
based classifiers. Also, their performance on level m of the attribute d is checked
by calculating Q(d[i1,...,im]) for every node d[i1,...,im] at the level m. Finally, the
performance of both classifiers is checked by calculating Q(

⋃{Rj : 1 ≤ j ≤ k})
(the first method we proposed).

Learning values of a decision attribute at different generalization levels is ex-
tremely important not only for designing and developing an automatic indexing
system of possibly highest confidence but also for handling failing queries. Values
of a decision attribute and their generalizations are used to construct atomic queries
of a query language built for retrieving musical objects from MIRAI Database (see
http://www.mir.uncc.edu). When query fails, the cooperative strategy (Gaaster-
land, 1997), (Godfrey, 1993) will try to find its smallest generalization which does
not fail. Clearly, by having a variety of different hierarchical structures available
for d we have better chance not only to succeed but succeed with a more optimal
generalization of an instrument class.

7. Classification

The classifiers, applied in the investigations on musical instrument recognition,
represent practically all known methods. The authors applied Decision Tree-J48 in
the classification. Decision Tree-J48 is a supervised classification algorithm, which
has been extensively used for machine learning and pattern recognition. A Tree-
J48 is normally constructed top-down, where parent nodes represent conditional
attributes and leaf nodes represent decision outcomes. It first chooses a most in-
formative attribute that can best differentiate the dataset; it then creates branches
for each interval of the attribute where instances are divided into groups; it repeats
creating sub-branches until instances are clearly separated in terms of the decision
attribute; finally it tests the tree by new instances in a test dataset.

8. Experiments

We used a database of 1569 music recording sound objects from McGill Univer-
sity Master Samples CD Collection instruments, which has been widely used for
research on musical instrument recognition all over the world. All classifiers were
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10-fold cross validation with a split of 90% training and 10% testing. We used
WEKA for all classifications and Rough Set Library for data reduction.

Classification has been performed on different levels in a music instrument
categorization schema. The first level instrument types are aerophone, chordo-
phone, idiophone; the second level types include aero free, aero free-reed, aero
lip-vibrated, aero side, aero single-reed, chrd composite, chrd simple, idio concus-
sion, idio rubbed, idio scraped, idio shaken, idio struck; the third level types are
instruments (e.g., violin, piano, etc.).

J48− Tree with.new .Fe with.new .Fe without .new .Fe without .new .Fe

A B A B

Idiophone 91.8 % 94.9 % 91.4 % 89.8 %
Chordophone 92.7 % 89.1 % 89.5 % 86.7 %
Aerophone 90.8 % 92.9 % 87.9 % 91.3 %
Overall 91.7 % 89.2 %

Table 1. Results of Classification in 1th level

J48− Tree with.new .Fe with.new .Fe without .new .Fe without .new .Fe

A B A B

Lip 84.6 % 83.5 % 78.7 % 74.7 %
Side 68.4 % 68.4 % 66.7 % 63.2 %
Reed 73.5 % 86.2 % 66.7 % 82.8 %

Composite 90.0 % 84.1 % 85.6 % 88.0 %
Simple 78.3 % 85.7 % 77.3 % 81.0 %
Rubbed 90.9 % 100.0 % 100.0 % 40.0 %
Shaken 82.6 % 95.0 % 76.2 % 80.0 %
Struck 92.3 % 82.8 % 81.5 % 75.9 %
Overall 84.4 % 79.3 %

Table 2. Results of Classification in 2th level

Table 2 and Table 3 show that new features significantly improved the classifi-
cation of individual instruments.

9. Conclusions

The results from experiments show that the new features, with the pitch informa-
tion removed from them, tend to provide less distraction for timber estimation.
The pitch-removed features significantly improved the classification of individual
instruments. However, the higher level the classification is in, the less significant
is the improvement provided by the new features. This may be caused by fea-
ture distraction or the confliction of the music schema, which future research will
investigate.
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J48− Tree with.new .Fe with.new .Fe without .new .Fe without .new .Fe

A B A B

Con-clarinet 100.0 % 60.0 % 83.3 % 100.0 %
Electric-bas 100.0 % 73.3 % 93.3 % 93.3 %

Flute 100.0 % 50.0 % 60.0 % 75.0 %
Steel-drums 100.0 % 66.7 % 50.0 % 66.7 %

Tuba 100.0 % 100.0 % 100.0 % 85.7 %
Vibraphone 87.5 % 93.3 % 78.6 % 73.3 %

Cello 87.0 % 95.2 % 86.7 % 61.9 %
Violin 84.0 % 77.8 % 66.7 % 59.3 %
Piccolo 83.3 % 50.0 % 60.0 % 60.0 %
Marimba 82.4 % 87.5 % 83.3 % 93.8 %
C-trumpet 81.3 % 76.5 % 87.5 % 82.4 %
Alto-flute 80.0 % 80.0 % 80.0 % 80.0 %

English-horn 80.0 % 57.1 % 42.9 % 42.9 %
Trombone 80.0 % 94.1 % 81.3 % 76.5 %
Piano 79.2 % 90.5 % 70.4 % 90.5 %

Double-bass 77.8 % 63.6 % 41.7 % 45.5 %
French-horn 76.9 % 76.9 % 71.4 % 76.9 %

Oboe 75.0 % 85.7 % 77.8 % 100.0 %
Electric-guitar 70.6 % 66.7 % 90.0 % 50.0 %
Saxophone 66.7 % 80.0 % 66.7 % 80.0 %

Viola 66.7 % 42.9 % 38.9 % 50.0 %

Table 3. Results of Classification in 3th level
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