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Agenda

1 Extreme classification: applications and challenges
2 Algorithms

Label embeddings

Smart 1-vs-All approaches

Tree-based methods

Label filtering/maximum inner product search
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3 Live demonstration

Webpage: http://www.cs.put.poznan.pl/
kdembczynski/xmlc-tutorial-ecir-2018/
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Extreme multi-label classification is a problem of
labeling an item with a small set of tags out of an
extremely large number of potential tags.
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Alan Turing, 1912 births, 1954 deaths

20th-century mathematicians, 20th-century philosophers

Academics of the University of Manchester Institute of Science and Technology
Alumni of King's College, Cambridge Artificial intelligence researchers

Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War Il
Computability theorists, Computer designers, English atheists

English computer scientists, English inventors, English logicians

English long-distance runners, English mathematicians

English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men

Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists

LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow

People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists
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stackoverflow

Stack Overflow is a question and answer Here's how it works:
site for professional and enthusiast

programmers. It's 100% free, no
registration required. @
Take the 2-minute tour
Anybody can ask Anybody can Th

Top Questions

0

votes

votes

0

answers
answers

1

views

views

views

1k

views

a question answer

interesting m featured hot  week month

sending and receiving mails from registered user emailaddresses
php email web-applications asked 34s ago Angelo A 489
How to create sprites using ConfigParser in Pygame

python | pygame modified 37s ago Sudoadmin §

Fortran: possible fibonacci logical error
fortran  fibonacel  fortrangs answered 40s ago oropendola 326
Angular - Using one controller for many coherent views across
multiple HTTP requests

New question = Assignment/recommendation of users
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The next word o
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Sequence of words = Recommendation of the next word
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ZURICH™

TR o wsucance | vanosarce T s o nsance_ Busness nsunce Gl _Exising ustomers | Farm Safety

Carnsuranc Beneiis
Roadside Asssance
Gurage Finder
ocument Dowroad
Fayment Optons
Gender Directive
Rewning Emigians

Reasons for an increase i
your premium

Requesta calback.

suance > Electic Ca Insurance Quote

Zurich Ireland's Electric Car Insurance

Call us in

i Wexford
S —— .. A
S 053 915 7775

Possible bid phrases:

Zurich car insurance
Car insurance

Auto insurance
Vehicle insurance

Electric car insurance

On-line ad = Recommendation of queries to an advertiser
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@ Home [\ Notifications  [&] Messages L Search Twitter Q . m

Ansaitse rahaa netissa! Rekisteridy onlinekyselyyn ja ansaitse 5 € per
tutkimus => bit.ly/23UeF0D

] poUpTey
Import your contacts from Gmail

Connect other address books & Translate from Finnish

Trends for you - crange

#Leijonat
1,496 Tweets

#hiihtoloma

#MSC2018
14K Tweets

#Russia
21K Tweets

#olympialaiset2018
#turpo
#Silta

6,848 Tweets
#talviloma

#sunnuntai

Suggestion of top Twitter Trends
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Setting

e Multi-class classification:

h
w:(ml,xg,...,xd)E]Rd&ye{l,...,m}
T T2 ... Zq

x 40 25 -15 5
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Setting

e Multi-class classification:

h
x = (x1,22,...,24) E]Rd&ye {1,...,m}
1 T9 T4
x 40 25 -15 5
e Multi-label classification:
da h@) _ m
m:(xhx?v"'vxd)ER —>y—(y1,y2,...,ym)€{0,1}
r1 X2 Zq Y1 Y2 Ym
x 40 25 -15 1 1 0
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Extreme classification

Extreme classification = a large number of labels m (> 10°)

¢ Predictive performance:

» Performance measures: Hamming loss, prec@k, NDCGQ@Fk, Macro F
» Learning theory for large m

» Training and prediction under limited time and space budged
» Learning with missing labels and positive-unlabeled learning
» Long-tail label distributions and zero-shot learning

e Computational complexity:

> time vs. space
» #Hexamples vs. #features vs. #labels
» training vs. validation vs. prediction
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Computational challenges: naive solution

e Size of the problem:
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Computational challenges: naive solution

e It does not have to be so hard:

» High performance computing resources available
» Large data — sparse data (sparse features and labels)
» Fast learning algorithms for standard learning problems exist
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finished run

number of examples = 7

weighted example sum

weighted label sum = -4.018e+04

average loss = 0.1645

best constant = -0.05143

total feature number = 59936469

vw -c rcvl.train.txt 1.46s user 0.21s system 189% cpu 0.883 total
5:29PM 1-of-3-8: ] ~frevifnorm [j1/ttypts/18]

0824 3945 4 —@— [
Vowpal Wabbit! at a lecture of John Langford?

1 Vowpal Wabbit, http://hunch.net/~vw
2 http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start



http://hunch.net/~vw
http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start

Fast binary classification

Data set: RCV1

Predicted category: CCAT

# training examples: 781 265

# features: 60M

Size: 1.1 GB

Command line: time vw -sgd rcvl.train.txt -c

Learning time: 1-3 secs on a laptop
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Extreme classification with fast binary classifiers

e Running Vowpal Wabbit for 10° labels will still require:
1 x 106-3 x 106 secs ~ 11.6-34.7 days
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Extreme classification with fast binary classifiers

e Running Vowpal Wabbit for 10° labels will still require:
1 x 106-3 x 106 secs ~ 11.6-34.7 days
e Can we further reduce computational costs?

Smart 1-vs-All approaches

Embeddings

Tree-based methods

Label filtering/maximum inner product search (MIPS)

vV vy VvYyy
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Statistical challenges

e Learning theory for an extremely large number of labels:

» Statistical guarantees for the error rate that do not depend, or
depend very weakly (sublinearly), on the total number of labels.

» The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

» Particular performance guarantees depend on the considered loss
function.

» Different theoretical settings: statistical learning theory, learning
reductions, online learning.
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Statistical challenges

e Training and prediction under limited time and space budget:

» Restricted computational resources (time and space) for both
training and prediction.

» A trade-off between computational (time and space) complexity and
the predictive performance.

» By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.
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Statistical challenges

e Unreliable learning information:
» We cannot expect that all labels will be properly checked and
assigned to training examples.
» Therefore we often deal with a problem of learning with missing labels
or learning from positive and unlabeled examples.
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Statistical challenges

e Performance measures:
» Typical performance measures such as 0/1 or Hamming loss do not
fit well to the extreme setting.
» Other measures are often used such as precision@k or the F-measure.

» However, it remains an open question how to design loss functions
suitable for extreme classification.
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Do we search in the right place?

THEMWHY ARE|. &3
No, L DROPPED | L%, o oana | BECAPSE .s
THE LIGHT { .

- EE DIl You DROP
1'~;\ Lm;dlhﬂsxtf T HERER
1roR r-waua.m’ET)"_.

PPED!
2|1 DRoPPED!

T Two BLOCKS| 0 o1 HERE?
powM THE Ve

Figure: 3 A similar comics has been earlier used by Asela Gunawardana.

3 Source: Florence Morning News, Mutt and Jeff Comic Strip, Page 7, Florence, South Carolina, 1942
4 Asela Gunawardana, Evaluating Machine Learned User Experiences. Extreme Classification Workshop. NIPS 2015
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Statistical challenges

o Long-tail label distributions and zero-shot learning:

» A close relation to the problem of estimating distributions over
large alphabets.

» The distribution of label frequencies is often characterized by a
long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

» In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (= zero-shot learning)

24 /94



Statistical challenges

o Long-tail label distributions and zero-shot learning:
» Frequency of labels in the WikiLSHTC dataset:®

12

10
|

#labels (log)

T T T T T T T
0 50000 100000 150000 200000 250000 300000

label

» Many labels with only few examples (= one-shot learning).

5 http://manikvarma.org/downloads/XC/XMLRepository .html
25 /94
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Statistical challenges

o Long-tail label distributions and zero-shot learning:
» Frequency of frequencies for the WikiLSHTC dataset:

frequency of frequencies
40000 60000 80000
| | |

20000
|

T T T T T T T T
0 10 20 30 40 50 60 70

frequencies

» The missing mass obtained by the Good-Turing estimate: 0.014.
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Formal setting

Object of interest: documents, images, ads, posts ...

]

Feature engineering:
feature extraction,
deep learning,
TF-IDF, ...

Training/Prediction

Focus of the tutorial |
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Formal setting

Input € X’ drawn from a distribution P(x).
» usually a feature vector, X C R%.
Outcome y € Y drawn from a distribution P(y | ).
» a vector of labels y = (y1,y2,. -+, Ym)-
Prediction ¢ = h(x) by means of prediction function h: X — ).
» h returns prediction § = h(x) for every input .
Loss of our prediction: ¢(y,y).
» (1Y x )Y — Ry is a task-specific loss function.

Goal: find a prediction function with small loss.
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Formal setting

¢ Goal: minimize the expected loss over all examples (risk):

Lf(h’) = E(:c,y)NP [E(ya h(a:))] :
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Formal setting

¢ Goal: minimize the expected loss over all examples (risk):

Lf(h’) = E(:c,y)NP [E(y) h(il?))] :

e The optimal prediction function over all possible functions expressed
conditionally for a given x:

h*(x) = argmin Ly(h|x),
h

(so called Bayes prediction function).
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Hamming loss

¢ Hamming loss:

m

Z[[yj # h](m)]] )

j=1

iy, hl@) = -

6 K. Dembczyriski, W. Waegeman, W. Cheng, and E. Hiillermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5-45, 2012 31/94
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Hamming loss

¢ Hamming loss:
by, h(@) = >y # (@],
j=1

e Sparse labels = Hamming loss of an all-zero classifier close to 0.
e The optimal strategy:®

() = [ny() > 0.5,
where n;(x) =P(y; = 1| x).
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Hamming loss

¢ Hamming loss:
by, h(@) = >y # (@],
j=1

e Sparse labels = Hamming loss of an all-zero classifier close to 0.
e The optimal strategy:®

() = [ny() > 0.5,
where n;(x) =P(y; = 1| x).

n(x) () (@) (@) ds(x) de(x) dr(z)

6 K. Dembczyriski, W. Waegeman, W. Cheng, and E. Hiillermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5-45, 2012 31/94



Precision

¢ Precision at position k:

precQk(y, h, x) =2 Z ly; = 1],
JEVk

where ) is a set of k labels predicted by h.
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J€Vk

where ) is a set of k labels predicted by h.
e The optimal strategy: select top & labels according to 7;(x).
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Precision

¢ Precision at position k:
prec@k(y, b, z) = - LSy — 1],
JEV

where ) is a set of k labels predicted by h.
e The optimal strategy: select top & labels according to 7;(x).

fs(x) fa(x) Mi(z) s(z) dr(z) a(x) u(z)

32/94



Normalized Discounted Cumulative Gain

¢ Normalized Discounted Cumulative Gain at position k:

k
Yo (r)
“— log(1+r)

where o is a permutation of labels for x returned by ranker f, and
Ni(y) normalizes NDCGQF to the interval [0, 1]:

max(k, 7 yi) . -1

Ni(y) = Z log(1 1)

r=1
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Normalized Discounted Cumulative Gain

e The optimal strategy: rank labels according to the following
marginal quantities:

Aj(x)= Y Ni(y)P(y|z)

yiy;=1
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Normalized Discounted Cumulative Gain

e The optimal strategy: rank labels according to the following

marginal quantities:
Z Ni(y)P(y | )
y: yj_l

Ag(z) Aa(z) As(m) Ai(z) Ar(m) As(z) Ad(z)
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Macro-averaging of the F-measure

e The macro F-measure (F-score):

1 & 1 & 9 Zn i Ui
Fy(Y,)Y)=—>» Fy;,9,)=— =
- J; Yi) =, ; D1 Yij T i1 Ui
True labels Predicted labels

Yi1 | Y12 | Y13 | Y14 Y11 | Y12 | Y13 | Y14

Yo1 | Y22 | Y23 | Y24 P21 | Y22 | Y23 | Y24

Y31 | Y32 | Y33 | Y34 U31 | U32 | U33 | Y34

Y4l | Y42 | Y43 | Yaa Ua1 | Pa2 | a3 | Yaa

Ys1 | Ys2 | Ys3 | Ysa Us1 | Us2 | Us3 | Usa

Y1 | Ye2 | Y63 | You Ue1 | Uo2 | Ue3 | Yos
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Macro-averaging of the F-measure

e The macro F-measure (F-score):

1 & 1 & 25" il
Fy(Y,)Y)=—>» Fy;,9,)=— =
- ; Y9 = ]; D lim Yig + i Ui
True labels Predicted labels

Y11 | Y12 | Y13 | Y14 U1 | Y12 | D13 | T4

Y21 | Y22 | Y23 | Y24 o1 | Y22 | Y23 | Y24

Y31 | Y32 | Y33 | Y34 U31 | Y32 | U3z | Usa

Yal | Y42 | Y43 | Yaa Ua1 | Da2 | a3 | Yaa

Ysi | Ys2 | Y53 | Ysa Us1 | Us2 | Us3 | Usa

Yl | Ye2 | Y63 | Vo4 Uo1 | Ue2 | Y63 | Yoa
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Macro-averaging of the F-measure

e The macro F-measure (F-score):

1 & 1 & 25" il
Fu(Y,¥) = 23 Py ) = © SV
- ; Yi) =, ]; D1 Yij T i1 Ui
True labels Predicted labels

Y1 | vi2 | Y13 | Y14 91 | Y12 | D13 | T4

Y21 | Y22 | Y23 | Y24 P21 | U2 | Y23 | Y24

Y31 | Y32 | Y33 | Y34 U31 | Us2 | U3z | U3a

Ya1 | Y42 | Y43 | Yaa Ua1 | Ua2 | Ya3 | Yaa

Ys1 | Ys2 | Ys3 | Ysa Us1 | Us2 | Us3 | Usa

Y1 | Ye2 | Y63 | Y64 U1 | Us2 | Us3 | Usa
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Macro-averaging of the F-measure

e The macro F-measure (F-score):

1 & 1 & 25" il
Fy(Y,)Y)=—>» Fy;,9,)=— =
- ; Y9 = ]; D lim Yig + i Ui
True labels Predicted labels

Y11 | Y12 | Y13 | Y14 Y11 | Y12 | V13 | Y14

Yo1 | Y22 | Y23 | Y24 P21 | Y22 | U23 | Y24

Y31 | Y32 | Y33 | Y34 Y31 | Us2 | Uss | U3a

Y4l | Y42 | Y43 | Yaa Ua1 | Da2 | Ua3 | Yaa

Ys1 | Ys2 | Us3 | Ysa Us1 | Us2 | Uss | Usa

Y1 | Ye2 | Y63 | Yeu U1 | Ue2 | Uss | Yos
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Macro-averaging of the F-measure

e The macro F-measure (F-score):

1 & 1 & 25" il
Fy(Y,)Y)=—>» Fy;,9,)=— =
- ; Yi) =, ]; D1 Yij T i1 Ui
True labels Predicted labels

yi1 | Y12 | v13 | Y14 11 | Gi2 | D13 | U4

Yo1 | Y22 | Y23 | Y24 U21 | Y22 | Y23 | Y24

Y31 | Y32 | Y33 | Y34 U31 | Y32 | Y33 | Uza

Y4l | Y42 | Y43 | Yas Ua1 | Pa2 | a3 | Jas

Ys1 | Ys2 | Ys3 | Usa Us1 | Us2 | Us3 | Usa

Y1 | Ye2 | Y63 | Yos U1 | Ue2 | 63 | Uos

35/94



Macro-averaging of the F-measure

e Can be solved by reduction to m independent binary problems.”

7 0. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
36 /94



Macro-averaging of the F-measure

e Can be solved by reduction to m independent binary problems.”

e Thresholding the conditional probabilities:

2 [x n(@)[n(=) > 7] dp(x)

FO) = T 0@ dule) + [yln(@) > 7] du@)

7 0. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
36 /94



Macro-averaging of the F-measure

e Can be solved by reduction to m independent binary problems.”

e Thresholding the conditional probabilities:
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Macro-averaging of the F-measure

Can be solved by reduction to m independent binary problems.’

Thresholding the conditional probabilities:

2 [x n(@)[n(=) > 7] dp(x)

FO) = T 0@ dule) + [yln(@) > 7] du@)

The optimal F-measure is F'(7%): no binary classifier can be better.

The optimal solution satisfies the following condition: F(7%) = 27*.

7 0. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
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Macro-averaging of the F-measure

e Can be solved by reduction to m independent binary problems.”
e Thresholding the conditional probabilities:
Fir) 2y @Iz > 7l due)
Jen(@) du(z) + [yIn(e) > 7] du(z)
e The optimal F-measure is F'(7%): no binary classifier can be better.
e The optimal solution satisfies the following condition: F(7*) = 27%*.

in(x) () i(x) (@) ds(x) qe(®) dr(z)

Te ==
T —
oy !
oy !
T — 7

T3 = T =

7 0. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
36 /94



Predictive model

e From the above analysis we can conclude:
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Predictive model

e From the above analysis we can conclude:

We need to train models that accurately estimate marginal
probabilities or other related marginal quantities

37/94



Agenda

1 Extreme classification: applications and challenges
2 Algorithms
3 Live demonstration
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Label embedding methods
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Low-dimensional Label Embeddings

e Shallow Networks - SVM
» Direct mapping of
input to output

Input Output
layer layer
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Low-dimensional Label Embeddings

e Shallow Networks - SVM e Label embedding
» Direct mapping of » Mapping input to output
input to output via embedding layer
Input Output Input Embedding Output
layer layer layer layer layer
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Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m x n such that each row
denotes the labels in an instance

e Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by i < m columns
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Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m x n such that each row
denotes the labels in an instance

e Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by i < m columns

Y1 B
Y2 U k2

—z—|
Yn nxm n nxm
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Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m x n such that each row
denotes the labels in an instance

e Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by i < m columns

Y1 2
Yo U —2zo—
Yn nxm Zn nxm

e Each label vector g, € {0,1}™ is hence projected to z; € R by a
projection matrix U € R™ ™ such that Uy, = z;

41
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Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m x n such that each row
denotes the labels in an instance

e Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by i < m columns

Y1 — 21—
Yo U — %2
Yn nxm Zn nxm

e Each label vector g, € {0,1}™ is hence projected to z; € R by a
projection matrix U € R™ ™ such that Uy, = z;

e Regressors V are then trained to predict z; = Vx;

41
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Low-dimensional Label Embeddings

e Otherwise, we may directly map the input x to its corresponding
prediction § = UV

e Here U is the decompression matrix which lifts intermediary
prediction V& from the embedding space to original label space
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Low-dimensional Label Embeddings

e Otherwise, we may directly map the input x to its corresponding
prediction § = UV

e Here U is the decompression matrix which lifts intermediary
prediction V& from the embedding space to original label space

T —z1— Al
%) v |—=2— Ut Yo
Ln nxd Zn nxm Yn

nxm
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Label Embedding Methods

Various methods differ in terms of the embedding/compression and
de-compression methods they employ

e Methods for label embedding

» Compressed Sensing &
» Label Embedding for Missing Labels (LEML) °
» Sparse Local Embeddings for Extreme Classification (SLEEC) 1°

8 D, Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS, 2009
9 Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale Multi-label Learning with Missing Labels.
In ICML, 2014

10 Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local embeddings for extreme multi-
label classification. In NIPS, 2015
43 /94



LEML - Global Embeddings

LEML learns global embeddings under the assumption :

e The label matrix is low rank
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e Preserve global distances
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LEML - Global Embeddings

LEML learns global embeddings under the assumption :

e The label matrix is low rank

e Preserve global distances

T —2z— Y1
o v | —=22— Ut Yo
Ln nxd Zn nxm Yn

nxm
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LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min Zf y;, U'Va:) + N|VI[7 + M[UT|IE

v,ut
T —21— Y1
() 1% Z) Ut Yo
Ln nxd “n nxm Yn

nxm
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LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min Zf y;, U'Va:) + N|VI[7 + M[UT|IE

Vv, Ut
T —21— Y1
() 1% Z) Ut Yo
Ln nxd “n nxm Yn nxm

e The above optimization problem is non-convex
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LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min Zf y;, U'Va;) + N|VI[7 + MU|IE

Vv, Ut
T —21— Y1
() 1% Z) Ut Yo
Ln nxd “n nxm Yn nxm

e The above optimization problem is non-convex

e Fixing one of UT or V' leads convex optimization
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LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min Zf y;, U'Va;) + N|VI[7 + MU|IE

v,ut
T —21— Y1
() 1% Z) Ut Yo
Ln nxd “n nxm Yn

e The above optimization problem is non-convex
e Fixing one of UT or V' leads convex optimization

e Alternating minimization over UT and V is performed

nxm

45 /94



LEML - Pros and Cons

e Advantages of label embedding

» Exploit label correlations
» Ease of implementation
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LEML - Pros and Cons

e Advantages of label embedding

» Exploit label correlations
» Ease of implementation

e Disadvantages of label embedding

» Assuption fails for long tail of labels
» Prediction complexity - Q(ri(m + d))

46 /94



SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

e The embedding matrix Z € R™*™ into which the original labels are
projected is learnt by

min ||Po(YTY) — Po(Z72)|)% + N |Z|1

Zemxn

where  denotes the index set of nearest neighbors (7, j) € € iff
j € N;, and N is the set of nearest neighbors of instance i.
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SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

e The embedding matrix Z € R™*™ into which the original labels are
projected is learnt by

min ||Po(YTY) — Po(Z72)|)% + N |Z|1

Zemxn

where  denotes the index set of nearest neighbors (7, j) € € iff
j € N;, and N is the set of nearest neighbors of instance i.

S
Y2 2xm 22 laxm
Yn—2 U, —2*n—2—
Yn—1 = —Zp-1—
Yn 3xm — RnT

3xm
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SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

e Sparsity in embedding is obtained by ¢; regularization || Z||;
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SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

e Sparsity in embedding is obtained by ¢; regularization || Z||

o Locality in the embedding is based on following a nearest neighbors
approach and is related to N given by

N = argmax Z(Y?Yj)

S,|1S|<an jes
om— g
Y, 2xm 227 loxm
Yn—2 U —Zn_92—
Y. == —2Znp-1—
Yo 3xm Al
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SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

Overall optimization
o The overall SLEEC objective is therefore given by

pin [1Po(YTY) = Poa(XTVIVX)|[E + MVI[E+ pl VX

e To optimize above is challenging due to non-convexity,
non-differentiability and scale of the problem

49 /94



SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

o Simplification
» Finding the embedding matrix, without ¢; regularization

in ||Po(YTY)=Po(ZT 2)|% = i Po(YTY)—Po(M
zren#in” o )—Pa( iz Mto,rﬁ?ﬂmgm” o )—Pa(M)]|

where M = Z1Z
» After learning Z in the above step,

min [|Z - VX||5 +M[VI[E + ul[VX]
VeRmxd
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Smart 1-vs-all approaches
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Learning Linear Decision Boundaries
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Learning process typically involves finding the optimal linear separator as
follows:

e Template of the optimization problem being solved
w = arg min Rey,p(w) + A Reg(w)
w

where Reg(w) is the regularization term to avoid complex models
and Repyp(.) represents the empirical



Learning Linear Decision Boundaries
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Learning process typically involves finding the optimal linear separator as
follows:

o For Support Vector Machine - using squared hinge loss

)\ n
arg min = ||w]||* + Z(maX(O, 1 — yiw’z;))?
w2 i=1

53
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Bag of Words Data Representation

Top-3 training instances and their corresponding labels from a Wikipedia
Subset

1,2,3,4,5 1:0.1498 2:0.1216 3:0.0521 4:0.0637 5:0.0517 6:0.0891 7:0.0994 8:0.1944 9:0.3821 10:0.093
8 11:0.0361 12:0.186 13:0.0859 14:0.0641 15:0.0616 16:0.0821 17:0.1085 18:0.0636 19:0.0714 20:0.076
8 21:0.1532 22:0.0491 23:0.1017 24:0.1542 25:0.1136 26:0.0965 27:0.0473 28:0.1223 29:0.0936 30:0.09
29 31:0.1665 32:0.1444 33:0.0581 34:0.0622 35:0.0578 36:0.1462 37:0.0704 38:0.0623 39:0.2466 40:0.1
539 41:0.0992 42:0.071 43:0.1106 44:0.0849 45:0.1113 46:0.0725 47:0.1093 48:0.073 49:0.1415 50:0.09
23 51:0.0547 52:0.1022 53:0.1009 54:0.0431 55:0.0889 56:0.1311 57:0.0637 58:0.1108 59:0.0656 60:0.0
873 61:0.0813 62:0.0864 63:0.2023 64:0.2295 65:0.067 66:0.067 67:0.0614 68:0.0447 69:0.0878 70:0.06
8 71:0.0711 72:0.0755 73:0.0598 74:0.1457 75:0.058 76:0.0862 77:0.0748 78:0.0351 79:0.0552 477142:1

6,7,8,9 14:0.0562 27:0.0414 28:0.0633 42:0.0623 51:0.1006 54:0.0639 63:0.068 66:0.0587 71:0.0624 80
:0.0799 81:0.0477 82:0.1125 83:0.0356 84:0.0627 85:0.0989 86:0.0517 87:0.0395 88:0.3179 89:0.1795 9
.0576 91:0.0916 92:0.0349 93:0.069 94:0.1272 95:0.0683 96:0.0836 97:0.0427 98:0.0502 99:0.046 10
.1292 101:0.0429 102:0.048 103:0.0469 104:0.0839 105:0.0737 106:0.1424 107:0.0534 108:0.0818 109
:0.0804 110:0.0917 111:0.1455 112:0.1166 113:0.1168 114:0.0621 115:0.0995 116:0.6526 117:0.0891 118
:0.0714 119:0.0529 120:0.0555 121:0.0891 122:0.07 123:0.0525 124:0.1049 125:0.0255 126:0.0452 127:0
.0789 128:0.0503 129:0.0959 130:0.3668 131:0.0821 132:0.0715 133:0.2504 134:0.0647 135:0.0521 136:0
.0988 137:0.0579 138:0.0449 139:0.0682 140:0.0683 141:0.0694 142:0.0797 143:0.0615 144:0.0826 145:0
.1357 146:0.0608 147:0.0629 148:0.0724 149:0.0884 150:0.063 151:0.0537 152:0.0481 153:0.1023 154:0.
0436 155:0.0609 156:0.0338 157:0.0565 158:0.0628 159:0.1356 160:0.221 161:0.0468 162:0.0684 163:0.0
659 164:0.0483 165:0.0884 166:0.063 167:0.1083 168:0.0503 169:0.0853 170:0.0794 171:0.0364 172:0.07
26 173:0.0414 174:0.0744 175:0.1535 176:0.0482 177:0.0417 178:0.0629 179:0.083 180:0.0709 181:0.050
8 182:0.1009 477142:1
10,11,12,13,14,15,16 34:0.0992 125:0.0463 173:0.0752 183:0.0718 184:0.0924 185:0.219 186:0.0927 187
:0.1781 188:0.1625 189:0.135 190:0.0868 191:0.1272 192:0.103 193:0.1285 194:0.1504 195:0.1447 196:0
.1869 197:0.3767 198:0.1646 199:0.4598 200:0.2042 201:0.0736 202:0.1852 203:0.1223 204:0.0782 205:0
.2479 206:0.0893 207:0.1112 208:0.0861 209:0.1697 210:0.1213 211:0.2672 212:0.1393 477142:1




Computational Challenge - Big Data

#Labels (m) | #Features (d) | #Instances (n) | Parameters (mxd) | Training Data | Model size
DMOZ!! 12,294 347,256 93,805 4,269,165,264 125MB 17 GB
Wikipedia 325,056 1,617,899 1,778,351 525,907,777,344 1GB 870GB
Delicious'? | 205,443 782,585 196,606 160,776,610,155 1GB 350GB
Amazon 670,091 135,909 490,449 91,071,397,719 600MB 250GB

¢ Naive application of binary one-vs-rest linear classification

» Billions of parameters - Computational complexity

» TeraBytes of disk space to store the model - Space Complexity

1 From LSHTC challenge
12 From XMC repository
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Distribution of Learnt Weights

Weights (W g ,,,/) learnt by using One-vs-rest SVM for Wiki-31K dataset
(101k dimensional data with 31k labels) from XMC repository

n
min w3 +C E(maX(f’, 1 — sy wy,@;))?
1=
$m; = +1 if instance 7 has label m’, — 1 otherwise .

Number of weights
Number of weights

o
05 0 05 10 05 [] 05
Weight Value Weight Value

Figure: Distribution of learnt weights Figure: Distribution of learnt weights
before pruning after pruning small weights
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Distribution of Learnt Weights

am

Number of weights
S

Number of weights

o
05 05 1 -1 05 05 1

0 []
Weight Value Weight Value

Figure: Distribution of learnt weights Figure: Distribution of learnt weights
before pruning after pruning small weights

e Of the 3 Billion weights, 97% are s.t, Wy ,,,y < |0.01|, and hence
non-discriminative

e Storing them leads to large model sizes but no benefit in classification
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DiSMEC - Distributed Sparse Machines for XMC

Require: Training data 7 = {(x1,y;) ... (%n,y,)}, input dimensionality
d, label set {1...m}, B = | 5] +1and A
Ensure: Learnt matrix W, in sparse format
1. Load single copy of input vectors X = {x;...x,} in the main
memory
2: Load binary sign vectors s, = {+1, —1}" ;| separately for each label
3: for {b=0;b< B;b+ +} do > Ist parallelization
4: #pragma omp parallel for private(m’) > 2nd parallelization
5 for {m' = b x 1000; m" < (b+ 1) x 1000; m' + +} do
6 Using (X, s,/), train weight vector w,, on a single core
7 Prune ambiguous weights in w,, > Model reduction
8 return W 1000 > Learnt matrix for a batch on one node
9

: return W ., > Learnt matrix from all the nodes

e Learns model for LSHTCWiki-325K in 6 hours on 400 cores
o Model size is 3GB due to pruning step
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PDSparse - Primal Dual Sparsity for Extreme Classification 13

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

e For prediction score z € R™ and true label y € {1,...,m},

L(z,y) = maX,,_c(n(y)}mye{Py)}(1 + 2m_ — 2m )+, where N(y)
and P(y) are respectively the sets of negative and positive labels for

that instance

Blan E.H. Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S. Dhillon. PD-Sparse: A Primal and Dual Sparse

Approach to Extreme Multiclass and Multilabel Classification. In ICML, 2016
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and P(y) are respectively the sets of negative and positive labels for
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scores of support labels :
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Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

e For prediction score z € R™ and true label y € {1,...,m},
L(Z, y) = maxm,E{N(y)},ere{P(y)}(l + 2Zm_ — Zm+)+, where /\/(y)
and P(y) are respectively the sets of negative and positive labels for
that instance

e W* € R¥™ obtained by Yo L(WTx;, y,) is determined by the
scores of support labels :

(m_,my) = arg max 1+ zm_ — 2my )+
m_e{N(y)},m+e{P(y)}
that attain the above maximum
e On the dual side, since the max is attained for very few label pairs

(m_,m4), the dual variable is non-zero very infrequently i.e.
nnz(oy;) << m

Blan E.H. Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S. Dhillon. PD-Sparse: A Primal and Dual Sparse
Approach to Extreme Multiclass and Multilabel Classification. In ICML, 2016
59 /94



PDSparse - Primal Dual Sparsity for Extreme Classification

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

e On the primal side, this is achieved by ¢; regularization

m n
W* cargminA > [fwylls + > LW xi, ;)
w — i
m/=1 =1
then it satisfies d x my, = nnz(W*) < nnz(A*) =n x mg, where
m,, are average number of active labels per feature in the optimal
weight matrix W*.
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PDSparse - Primal Dual Sparsity for Extreme Classification

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

o For ease of optimization, the following strongly convex elastic net
regularized problem is solved

arg min Z [|wne |5 + A Z [ +ZL W, y,)

m/=1 m/=1 i=1

which is empirically observed to give a similar sparsity level as the /4
regularized problem
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PDSparse - Primal Dual Sparsity for Extreme Classification

Simultaneous primal dual updates

xT;
Vol w o, O
(=== » = =s) '
K ) i Lo Val
b - -Az = a' + Aay, = proje (o — i )
Most violating label T, »Ai
* e Search Update

(utilize primal sparsity)

w Aas,

Maintain

(utilize dual sparsity)

T (EEC—] FAV
W || = prox, (X A )

Dk Nx K

Figure: Simultaneous Primal Dual Updates in PDSparse
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Dataset and Evaluation Metrics for Comparison

Datasets taken from Extreme Classification repository

Dataset # Training # Test # Categories | # Features
APpL | ALpP
Amazon-13K 1,186,239 306,782 13,330 203,882 4485 | 5.04
Amazon-14K 4,398,050 1,099,725 14,588 597,540 1330.1 | 3.53
Wikipedia-31K 14,146 6,616 30,938 101,938 8.5 18.6
Delicious-200K 196,606 100,095 205,443 1,123,497 72.3 75.5
WikiLSHTC-325K 1,778,351 587,084 325,056 1,617,899 17.4 3.2
Wikipedia-500K 1,813,391 783,743 501,070 2,381,304 24.7 4.7
Amazon-670K 490,499 153,025 670,091 135909 3.9 5.4

Table: Multi-label datasets taken from the Extreme Classification Repository.
APpL and ALpP represent average points per label and average labels per point.

For true label vector y, and predicted vector ¢ :
. 1 DCG@k
precision@k := z Z y; ; nDCGOk := Zmin(kﬂHyHo) :
leranky (9) =1 log(l+1)

where DCG@k := %ZZETankk(@) ozt » and ranky(y) returns the k largest indices of

y ranked in descending order, and ||y||o returns the 0-norm of the true-label vector.
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Comparison among state-of-the-art methods on Precision@k metric

Dataset Proposed approach || Embedding based approaches Tree based approaches Sparsity inducing approaches
DiSMEC SLEEC | LEML | RobustXML Fast-XML | LPSR-NB | PLT || PD-Sparse L1-SVM
Amazon-13K
PoI1 93.4 90.4 | 782 88.4 92.9 75.1 91.4 911 91.8
P@3 79.1 75.8 | 65.4 74.6 775 60.2 75.8 76.4 7.8
PO5 64.1 613 | 55.7 60.6 625 57.3 61.0 63.0.8 62.9
Amazon-14K
PeI1 91.0 803 | 75.2 83.2 90.3 74.2 86.4 88.4 88.2
P@3 70.3 67.2 | 625 66.4 70.1 55.7 65.2 68.1 67.6
P@5 55.9 50.6 | 40.8 52.3 55.4 443 50.7 50.5 51.2
Wikipedia-31K
P@1 85.2 85.5 | 735 85.5 825 2.7 84.3 73.8 83.2
P@3 74.6 736 | 62.3 74.0 66.6 58.5 723 60.9 721
P@5 65.9 63.1 54.3 63.8 56.7 49.4 62.7 50.4 63.7
Delicious-200k
PoI1 45.5 47.0 | 403 45.0 428 18.6 453 412 421
P@3 38.7 416 | 377 40.0 38.7 15.4 38.9 353 34.8
PO5 355 38.8 | 36.6 38.0 363 14.0 35.8 31.2 30.4
WikiLSHTC-325K
pPe1 64.4 55.5 19.8 53.5 49.3 27.4 45.6 58.2 60.6
P@3 42.5 338 11.4 318 327 16.4 29.1 36.3 386
P@5 31.5 24.0 8.4 29.9 24.0 12.0 219 28.7 285
Wiki-500K
Po1 70.2 482 | 413 - 54.1 38.2 515 - 65.3
P@3 50.6 294 | 30.1 - 355 293 357 - 46.1
P@5 39.7 21.2 19.8 - 26.2 18.7 277 - 35.3
Amazon-670K
Pe1 44.7 350 | 81 310 333 28.6 36.6 - 39.8
P@3 39.7 31.2 6.8 28.0 293 24.9 321 - 343
P@5 36.1 28.5 6.0 24.0 26.1 22.3 28.8 B 30.1

Table: Comparison of Precision@k for k=1,3 and 5
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Comparison among methods on nDCG@k metric
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Impact of A parameter
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Label Embedding versus One-vs-Rest - What to choose when?

Algebraic graph theoretic view-point

e Let A(G) be adjacency matrix for the label co-occurrence graph

e Let D(G) be degree matrix representing degrees of labels
The Laplacian of the graph G, is given by L(G) = D(G) — A(G).
Theorem

14 Given the training data T, let L(G) be defined as above. Let

M(G), ..., \L(G) be the eigen-values of L(G), then :

(a) Me(G) >0 V¢, and X\1(G) =0

(b) The multiplicity of 0 as an eigen value gives the number of connected
components of G, = Xo(G) > 0 if and only if G is connected.

(c) \2(G) < v(G) < n(G), where \2(G),v(G) and n(G) are respectively
the algebraic, edge and vertex connectivities.

14 Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):298-305, 1973



Label Embedding vs One-vs-Rest - What to choose When?

Dataset # Training | # Categories Algebraic # Connected Better
APpL | ALpP | Connectivity, A\2(G) | Components | Performance
Mediamill 30993 101 1902.1 4.4 0.46 1 SLEEC
Bibtex 4880 159 111.7 2.4 0.05 1 SLEEC
Delicious-small 12,920 983 311.6 19.3 0.3 1 SLEEC
EUR-Lex 15,539 3,993 25.7 5.3 0.22 1 DiSMEC
Wikipedia-31K 14,146 30,938 8.5 18.6 0.4 1 Comparable
WikiLSHTC-325K | 1,778,351 325,056 17.4 3.2 0.002 740 DiSMEC
Wiki-500K 1,813,391 501,070 24.7 4.7 0.001 370 DiSMEC
Amazon-670K 490,499 670,091 3.9 5.4 0.0001 9,566 DiSMEC

Table: Multi-label datasets from XMC repository. APpL and ALpP represent
average points per label and average labels per point respectively

e For smaller datasets, the algebraic connectivity is much higher and
label embedding based methods such as SLEEC work relatively well in
this regime
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Dataset # Training | # Categories Algebraic # Connected Better
APpL | ALpP | Connectivity, A\2(G) | Components | Performance
Mediamill 30993 101 1902.1 4.4 0.46 1 SLEEC
Bibtex 4880 159 111.7 2.4 0.05 1 SLEEC
Delicious-small 12,920 983 311.6 19.3 0.3 1 SLEEC
EUR-Lex 15,539 3,993 25.7 5.3 0.22 1 DiSMEC
Wikipedia-31K 14,146 30,938 8.5 18.6 0.4 1 Comparable
WikiLSHTC-325K | 1,778,351 325,056 17.4 3.2 0.002 740 DiSMEC
Wiki-500K 1,813,391 501,070 24.7 4.7 0.001 370 DiSMEC
Amazon-670K 490,499 670,091 3.9 5.4 0.0001 9,566 DiSMEC

Table: Multi-label datasets from XMC repository. APpL and ALpP represent
average points per label and average labels per point respectively

e For smaller datasets, the algebraic connectivity is much higher and
label embedding based methods such as SLEEC work relatively well in
this regime

e For much larger datasets, the algebraic connectivity is close to 0 and
one-vs-rest approach such as DiISMEC works better in this regime
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Tree-based models
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Tree-based models

e Decision trees

e Label trees
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Decision trees

e Decision trees:

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015

16Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In
KDD, pages 263-272. ACM, 2014
71/94



Decision trees

e Decision trees:

» Partition of the feature space to small subregions:

X1 <ty
t
Rs5
B2 ta Xo Jt2 X <t3
o
= R3
t Ry
Xp <ty
Ry R; Rs R3
t1 i3
X1 Ry Rs

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015

16Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263-272. ACM, 2014
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» Fast prediction: logarithmic in n
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» Training can be expensive: computation of split criterion
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e Decision trees:
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small subregions:

X1 <ty
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Xo Jt2 Xy <tg

Xo <ty
R; Rs R3

R4 Rs

» Training can be expensive: computation of split criterion
» Two new algorithms: LomTree!® and FastXML'®

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015

16Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263-272. ACM, 2014
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FastXML

Uses an ensemble of standard decision trees

Sparse linear classifiers trained in internal nodes

Very efficient training procedure

Empirical distributions in leaves

A test example passes one path from the root to a leaf

(, 45)=0.45 (@, 3)=0.46 Zﬁi’i‘éifg'is
B > 0 —( = ks ! o
(wi-z>0) n(x,2)=0.4 n.(myl) 0.15 s (x)=0.15
— (@, 44)=0.46 -
n(z, 1)=0.6 n(z, 3)=0.15

n(x,12)=0.45

(=, 102)=0.05
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Empirical distributions in leaves
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Optimization in FastXML

e In each internal node FastXML solves:

min  |Jw|; + Z C5(6;) log(1 4 exp(—dw ')
—C, Z (1 + 6;)NDCG@m(r*, y,)

—C, Z (1 —6;) NDCG@m(r~,y,)

wrt.  weE Rd,(S e {-1,1}",»",r~ €II(1,m)
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Optimization in FastXML

e In each internal node FastXML solves:

min  |Jw|; + Z C5(6;) log(1 4 exp(—dw ')
—C, Z (1 + 6;)NDCG@m(r*, y,)

—C, Z (1 —6;) NDCG@m(r~,y,)
wrt.  weE Rd,(S e {-1,1}",»",r_ €II(1,m)

linear split
label ranking in positive
partitioning of training examples and negative partition
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Optimization in FastXML

e In each internal node FastXML solves:

min  ||w| + Z C5(6;) log(1 + exp(—dw " x)
i=1

—C, (1+6;)NDCG@m(r*,y,)

‘M:
DN | =

i=1

—Cr (1 - 6;)NDCG@m(r~, y,)

||'M:
N | —

56{ L1y et e € (1, m)

-J/
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FastXML"

7 https://www.youtube.com/watch?v=1X71£Tx1LKA
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Label trees
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Label trees

e Label trees:
» Organize classifiers in a tree structure (one leaf < one label):

18g, Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163-171. Curran
Associates, Inc., 2010

19, Fox. Applied regression analysis, linear models, and related methods. Sage, 1997
E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In /CML, 2004

204, Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and
algorithms. In UAI, pages 51-58, 2009

21 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246-252,
2005

22 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,
abs/1607.01759, 2016

23K, Dembczyniski, W. Cheng, and E. Hiillermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In
ICML, pages 279-286. Omnipress, 2010 76 /94



Label trees

e Label trees:
» Organize classifiers in a tree structure (one leaf < one label):

©/ \® ®/ \@

Y1 Y2 Y3 Ya

» Fast prediction: almost logarithmic in m
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Label trees

e Label trees:
» Organize classifiers in a tree structure (one leaf < one label):

o

©/ \® ®/ \@

Y1 Y2 Y3 Ya

» Fast prediction: almost logarithmic in m

» Algorithms: Label embedding trees,'® Nested dichotomies,
Conditional probability trees,?® Hierarchical softmax,?* FastText,??
Probabilistic classifier chains?3

19

18g, Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163-171. Curran
Associates, Inc., 2010

19, Fox. Applied regression analysis, linear models, and related methods. Sage, 1997
E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In /CML, 2004

204, Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and
algorithms. In UAI, pages 51-58, 2009

21 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246-252,
2005

22 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,
abs/1607.01759, 2016

23K, Dembczyniski, W. Cheng, and E. Hiillermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In
ICML, pages 279-286. Omnipress, 2010 76 /94



Probabilistic classifier trees = Hierarchical softmax

Nested dichotomies, Hierarchical softmax, Conditional probability trees,
Probabilistic classifier chains

4

Probability classifier trees?

I

Hierarchical softmax

4

24 Krzysztof Dembczynski, Wojciech Kottowski, Willem Waegeman, Rébert Busa-Fekete, and Eyke Hiillermeier. Consistency of
probabilistic classifier trees. In ECMLPKDD. Springer, 2016
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Hierarchical softmax (HSM)

e Encode the labels by a prefix code (= tree structure)
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Hierarchical softmax (HSM)

e Encode the labels by a prefix code (= tree structure)

2 =(0) z'=(1)
0 1 0 1
=y S e B ) B
z=1(0,0) z=1(0,1) z=(1,0) z=(1,1)
e Each label y coded by z = (21,...,2) € C
e An internal node identified by a partial code 2% = (z1,..., %)

The code does not have to be binary = b-ary trees

Different structures possible: random tree, Huffman tree, trained
structure
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Hierarchical softmax (HSM)

e HSM estimates P(y | x) by following a path from the root to a leaf:

P(y’m) z|m HPZz|Z 5 )

P(z =0|x) =04 P(z =1]z)=0.6

29=0 zp=1 =0 zp=1

P(2=0] z1=0,2)=1.0 } { P(z=1|2=0,2)=0.0 } { P(2=0|z=1,2)=0.4 } { P(z=1|z=1,2)=0.6

P(2=(0,0) | 2)=0.4 P(2=(0,1) | 2)=0.0 P(2=(1,0) | )=0.24 P(z=(1,1)|2)=0.36

e Training: separate learning problems in the internal nodes

¢ Prediction: depth first search/beam search
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Hierarchical softmax (HSM)

e HSM estimates P(y | x) by following a path from the root to a leaf:

P(z1,z) P(22,21,x)
P(x) P(z,x)

P(z1|x)P(22] 21, ) = =P(21, 22| x)

P(z =0|x) =04 P(z =1]z)=0.6

29=0 zp=1 =0 zp=1

P(25=0| 21=0, z)=1.0 } { P(20=1|2=0,x)=0.0 } { P(20=0|z1=1,x)=0.4 } { P(z=1|z1=1,2)=0.6

P(2=(0,0) | 2)=0.4 P(2=(0,1)| 2)=0.0 P(2=(1,0) |z)=0.24 P(z=(1,1)|2)=0.36

e Training: separate learning problems in the internal nodes

¢ Prediction: depth first search/beam search
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¢ Pick-one-label heuristic used, for example, in FastText:
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yey 1 y]

80 /94



HSM for MLC

¢ Pick-one-label heuristic used, for example, in FastText:

P(y|x)
() =P'(y; =1|x) = Z Vs
yeY y'=1Y7'

e Theorem: inconsistent for label-wise logistic loss and precision@k

labels y  probability P(y | ) True marg. probs P-o-l marg. probs
{1} 0.15 m(z) =04 nh(z) = 0.3
{2} 0.10 ne(x) = 0 35 7y (z) = 0.275
{1,2} 0.25 7]3(:1)) = na(x) = 0.225
{3} 030 () = n(x) = 0.2
{4} 0.20

80 /94



HSM for MLC

¢ Pick-one-label heuristic used, for example, in FastText:

/ / P(y|x)
() =P(y; = 1]z) =
J J Z ]Z]/,ﬂ/g

yey

e Theorem: inconsistent for label-wise logistic loss and precision@k

labels y  probability P(y | ) True marg. probs P-o-l marg. probs
{1} 0.15 m(z) =04 nh(z) = 0.3
{2} 0.10 ne(x) = 0 35 7y (z) = 0.275
{1,2} 0.25 7]3(:1)) = na(x) = 0.225
{3} 030 mi(x) = n(x) = 0.2
{4} 0.20

e Theorem: consistent for precision@k for independent labels

80 /94



Probabilistic label trees (PLT)%>

e Similar tree structure and encoding of y; =1 by 2 = (1,21,..., %)

P(zy=1]2=12)=06

2=0 =1 2 =0 =1

P(20=0| z9=1, 2,=0, z)=1.0 } { P(z0=1]z=1, 2,=0, 2)=0.1 } { P(20=0| zp=1, z1=1,2)=0.5 } { P(z0=1]20=1, z1=1,2)=0.7

P(2=(1,0,0) |2)=0.5 P(2=(1,0,1)| 2)=0.2 P(2=(1,1,0)|2)=0.3 P(z=(1,1,1) | 2)=0.42

25K, Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hiillermeier. Extreme F-measure maximization
using sparse probability estimates. In /ICML, 2016

81/94



Probabilistic label trees (PLT)%>

e Similar tree structure and encoding of y; =1 by 2 = (1,21,..., %)

P(zy=1]2=12)=06

2=0 =1 2 =0 =1

P(20=0| z9=1, 2,=0, z)=1.0 } { P(z0=1]z=1, 2,=0, 2)=0.1 } { P(20=0| zp=1, z1=1,2)=0.5 } { P(z0=1]20=1, z1=1,2)=0.7

P(2=(1,0,0) |2)=0.5 P(2=(1,0,1)| 2)=0.2 P(2=(1,1,0)|2)=0.3 P(z=(1,1,1) | 2)=0.42

¢ Marginal probabilities 7;(x) obtained by:
ni(x) = P(z|z) = Hle|z )

25K, Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hiillermeier. Extreme F-measure maximization
using sparse probability estimates. In /ICML, 2016

81/94



Probabilistic label trees (PLT)%>

e Similar tree structure and encoding of y; =1 by 2 = (1,21,..., %)

P(zy=1]2=12)=06

z22=0 z=1 2 =0 =1

P(20=0| z9=1, 2,=0, z)=1.0 } { P(z0=1]z=1, 2,=0, 2)=0.1 } { P(20=0| zp=1, z1=1,2)=0.5 } { P(z0=1]20=1, z1=1,2)=0.7

P(z=(1,0,0) |z)=0.5 P(z=(1,0,1) | 2)=0.2 P(z=(1,1,0) | x)=0.3 P(z=(1,1,1) |x)=0.42

¢ Marginal probabilities 7;(x) obtained by:
ni(x) = P(z|z) = Hle|z )

e 2! & at least one positive label in the corresponding subtree
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P(2=(1,0,0) |2)=0.5 P(2=(1,0,1)| 2)=0.2 P(2=(1,1,0)|2)=0.3 P(z=(1,1,1) | 2)=0.42

¢ Marginal probabilities 7;(x) obtained by:
ni(x) = P(z|z) = HPz1|z )

e 2! & at least one positive label in the corresponding subtree

>, Pla | 2!71) > 1 = separate classifiers in all nodes of the tree

25K, Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hiillermeier. Extreme F-measure maximization
using sparse probability estimates. In /ICML, 2016
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Probabilistic label trees (PLT)

¢ Training:

>

>
>
>

independent training of all node classifiers

reduced complexity by the conditions used in the nodes

batch or online learning of node classifiers

sparse representation: small number of active features in lower nodes,
feature hashing

dense representation: hidden representation of features (strong
compression)
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independent training of all node classifiers

reduced complexity by the conditions used in the nodes

batch or online learning of node classifiers

sparse representation: small number of active features in lower nodes,
feature hashing

dense representation: hidden representation of features (strong
compression)

¢ Theoretical guarantees

»

Regret bounds for the absolute error of marginal probability estimates
and precision@k

e Tree structure:
» Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical

clustering of labels), online training

e Prediction:
» depth first search/beam search
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Empirical studies

2By, Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018
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b-ary trees
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FastText: Huffman tree and hidden representation of features

°
0
vvvv:vvvv
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Empirical studies

e HSM with pick-one-label
» online training
» b-ary trees
» Vowpal Wabbit: complete-sorted tree and feature hashing
» FastText: Huffman tree and hidden representation of features

o PLT

» online training

» b-ary trees

» Vowpal Wabbit: complete-sorted tree and feature hashing

» FastText: Huffman tree and hidden representation of features
e Parabel®®

» PLT-like algorithm

» Batch learning with squared hinge loss

» Binary tree with higher arity of the last tree level
» Tree structure obtained via 2-means++ algorithm

2By, Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018
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Empirical studies

e Results on the WikiLSHTC dataset
» Stats: m = 325056, d = 1617899, niest = ORT084, Nirain = 1778351

» Results for precision@k:

Method Pail

HSM-vw 36.90
PLT-vw 41.63
FastText 41.28
PLT-FastText 41.58

Parabel

59.23
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Decision trees vs. Label trees

Decision trees Label trees

tree structure v v
structure learning v v

batch learning v v

online learning v v
number of trees >1 >1
number of leaves O(n) m
internal node models cuts/linear linear/any model
prediction empirical distribution  score along a path
visited paths during prediction 1 several
sparse probability estimation v v

85 /94



Label filtering
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Test time complexity for linear models

o Classification of a test example in case of linear models can be
formulated as:
j* = arg max w]-Ta:,
je{1,...m}

i.e., as the problem of maximum inner product search (MIPS)

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS 01, pages 102-113.
ACM, New York, NY, USA, 2001
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Test time complexity for linear models

Classification of a test example in case of linear models can be
formulated as:
j* = arg max w]-Tw,
je{1,...m}

i.e., as the problem of maximum inner product search (MIPS)

Naive solution is O(m)

Optimal exact algorithm: the threshold algorithm 27
» Does not perform well with a large number of features and labels

There is a need for approximate solution ...

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS 01, pages 102-113.
ACM, New York, NY, USA, 2001
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MIPS vs. nearest neighbors

e MIPS is similar to the nearest neighbor search under the square or
cosine distance:

. T w3
jto= argmln |w; — |3 = arg max w; T —
je{l,...m} JE{L,....,m}
w) w)
j* = argmax = argmax ——
jettymy lwillllel jeq, . my llw;ll

28 A Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum inner product search (mips). In
UAI, 2015
88 /94



MIPS vs. nearest neighbors

e MIPS is similar to the nearest neighbor search under the square or
cosine distance:

. T w3
jto= argmln |w; — |3 = arg max w; T —
je{l,...m} JE{L,....,m}
w) w)
j* = argmax = argmax ——
jettymy lwillllel jeq, . my llw;ll

e Some tricks needs to be used to treat MIPS as nearest neighbor
search?®

28 A Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum inner product search (mips). In
UAI, 2015
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Nearest neighbors

o A well-studied problem with many existing algorithms:

29 J H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209-226, 1977

30piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In ACM
Symposium on Theory of Computing, STOC '98, pages 604-613, New York, NY, USA, 1998. ACM

31 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017

32 Alex Auvolat, Hugo Larochelle, Sarath Chandar, Pascal Vincent, and Yoshua Bengio. Clustering is efficient for approximate
maximum inner product search. CoRR, abs/1507.05910, 2015
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Nearest neighbors

o A well-studied problem with many existing algorithms:

» For low-dimensional problems efficient tree-based structures exist?’
» Approximate nearest neighbor search via locality-sensitive hashing3°
» Fast search via k-means3! or hierarchical k-means32

29 J H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209-226, 1977
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Agenda

1 Extreme classification: applications and challenges
2 Algorithms
3 Live demonstration
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Live demonstration
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Useful Links

Extreme Classification Repository 33
e DataSets

» Around a dozen datasets from Wikipedia, Amazon, Delicious
» Datasets in raw and tf-idf format

33 http://manikvarma.org/downloads/XC/XMLRepository.html
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Useful Links

Extreme Classification Repository 33
e DataSets

» Around a dozen datasets from Wikipedia, Amazon, Delicious
» Datasets in raw and tf-idf format

e Code

» Around a dozen open source codes
» State-of-the-art embedding, tree and linear methods

e Comparisons

» Comparison among state-of-the-art methods on various datasets
» On Precision@k and nDCG@k and their propensity scored variants

e Papers
» Links to most of the recent papers in extreme classification

33 http:/ /manikvarma.org/downloads/XC/XMLRepository. html
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Extreme classification: #examples, #features, #labels
Complexity: time vs. space, training vs. validation vs. prediction
Computational and stastistical challenges

Different learning paradigms:

label embeddings,

smart 1-vs-All approaches,

tree-based methods,

label filtering/maximum inner product search.

v
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Acknowledgments:  Kalina Jasinska, Marek Wydmuch, Robert Busa-
Fekete, Eyke Hiillermeier, Bernhard Schélkopf

94 /94


http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/
http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/

