
Extreme Multi-label Classification
for Information Retrieval

XMLC4IR Tutorial at ECIR 2018

Rohit Babbar1 and Krzysztof Dembczyński2

1Aalto University, Finland,
2Poznań University of Technology, Poland

European Conference on Information Retrieval
Grenoble, France, March 26, 2018

• Rohit Babbar:
I Affiliation: University Aalto
I Previous affiliations: Max-Planck

Institute for Intelligent Systems,
Université Grenoble Alpes

I Main interests: extreme
classification, multi-label
classification, multi-class
classification, text classification

1 / 94

• Krzysztof Dembczyński:
I Affiliation: Poznan University of

Technology
I Previous affiliations: Marburg

University
I Main interests: extreme

multi-machine learning, multi-label
classification, label tree algorithms,
learning theory

2 / 94

Agenda

1 Extreme classification: applications and challenges
2 Algorithms

I Label embeddings
I Smart 1-vs-All approaches
I Tree-based methods
I Label filtering/maximum inner product search

3 Live demonstration

Webpage: http://www.cs.put.poznan.pl/

kdembczynski/xmlc-tutorial-ecir-2018/

3 / 94

http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/
http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/

Agenda

1 Extreme classification: applications and challenges
2 Algorithms

I Label embeddings
I Smart 1-vs-All approaches
I Tree-based methods
I Label filtering/maximum inner product search

3 Live demonstration

Webpage: http://www.cs.put.poznan.pl/

kdembczynski/xmlc-tutorial-ecir-2018/

3 / 94

http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/
http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/

Extreme multi-label classification is a problem of
labeling an item with a small set of tags out of an

extremely large number of potential tags.

4 / 94

Yann LeCun

Geoff Hinton

Yoshua Bengio

Andrew Ng

5 / 94

Yann LeCun

Geoff Hinton

Yoshua Bengio

Andrew Ng

5 / 94

Yann LeCun

Geoff Hinton

Yoshua Bengio

Andrew Ng

5 / 94

6 / 94

Alan Turing, 1912 births, 1954 deaths
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
English computer scientists, English inventors, English logicians
English long-distance runners, English mathematicians
English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men
Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists
LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow
People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists

6 / 94

New question ⇒ Assignment/recommendation of users
7 / 94

Selected item ⇒ Recommendation of top 3 items
8 / 94

Sequence of words ⇒ Recommendation of the next word

9 / 94

Possible bid phrases:

• Zurich car insurance

• Car insurance

• Auto insurance

• Vehicle insurance

• Electric car insurance

On-line ad ⇒ Recommendation of queries to an advertiser

10 / 94

Suggestion of top Twitter Trends

11 / 94

Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0

12 / 94

Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0

12 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F

I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m

I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged

I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning

I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:
I time vs. space

I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:
I time vs. space
I #examples vs. #features vs. #labels

I training vs. validation vs. prediction

13 / 94

Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:
I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F
I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Long-tail label distributions and zero-shot learning

• Computational complexity:
I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction

13 / 94

Computational challenges: naive solution

• Size of the problem:

I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity:

> 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity:

> 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity:

> 1011

14 / 94

Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

14 / 94

Computational challenges: naive solution

• It does not have to be so hard:

I High performance computing resources available
I Large data −→ sparse data (sparse features and labels)
I Fast learning algorithms for standard learning problems exist

15 / 94

Computational challenges: naive solution

• It does not have to be so hard:
I High performance computing resources available

I Large data −→ sparse data (sparse features and labels)
I Fast learning algorithms for standard learning problems exist

15 / 94

Computational challenges: naive solution

• It does not have to be so hard:
I High performance computing resources available
I Large data −→ sparse data (sparse features and labels)

I Fast learning algorithms for standard learning problems exist

15 / 94

Computational challenges: naive solution

• It does not have to be so hard:
I High performance computing resources available
I Large data −→ sparse data (sparse features and labels)
I Fast learning algorithms for standard learning problems exist

15 / 94

Vowpal Wabbit1 at a lecture of John Langford2

1 Vowpal Wabbit, http://hunch.net/~vw
2 http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start

16 / 94

http://hunch.net/~vw
http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start

Fast binary classification

• Data set: RCV1

• Predicted category: CCAT

• # training examples: 781 265

• # features: 60M

• Size: 1.1 GB

• Command line: time vw -sgd rcv1.train.txt -c

• Learning time: 1-3 secs on a laptop

17 / 94

Extreme classification with fast binary classifiers

• Running Vowpal Wabbit for 106 labels will still require:

1× 106-3× 106 secs ≈ 11.6-34.7 days

• Can we further reduce computational costs?

I Smart 1-vs-All approaches
I Embeddings
I Tree-based methods
I Label filtering/maximum inner product search (MIPS)

18 / 94

Extreme classification with fast binary classifiers

• Running Vowpal Wabbit for 106 labels will still require:

1× 106-3× 106 secs ≈ 11.6-34.7 days

• Can we further reduce computational costs?

I Smart 1-vs-All approaches
I Embeddings
I Tree-based methods
I Label filtering/maximum inner product search (MIPS)

18 / 94

Extreme classification with fast binary classifiers

• Running Vowpal Wabbit for 106 labels will still require:

1× 106-3× 106 secs ≈ 11.6-34.7 days

• Can we further reduce computational costs?
I Smart 1-vs-All approaches

I Embeddings
I Tree-based methods
I Label filtering/maximum inner product search (MIPS)

18 / 94

Extreme classification with fast binary classifiers

• Running Vowpal Wabbit for 106 labels will still require:

1× 106-3× 106 secs ≈ 11.6-34.7 days

• Can we further reduce computational costs?
I Smart 1-vs-All approaches
I Embeddings

I Tree-based methods
I Label filtering/maximum inner product search (MIPS)

18 / 94

Extreme classification with fast binary classifiers

• Running Vowpal Wabbit for 106 labels will still require:

1× 106-3× 106 secs ≈ 11.6-34.7 days

• Can we further reduce computational costs?
I Smart 1-vs-All approaches
I Embeddings
I Tree-based methods

I Label filtering/maximum inner product search (MIPS)

18 / 94

Extreme classification with fast binary classifiers

• Running Vowpal Wabbit for 106 labels will still require:

1× 106-3× 106 secs ≈ 11.6-34.7 days

• Can we further reduce computational costs?
I Smart 1-vs-All approaches
I Embeddings
I Tree-based methods
I Label filtering/maximum inner product search (MIPS)

18 / 94

Statistical challenges

• Learning theory for an extremely large number of labels:

I Statistical guarantees for the error rate that do not depend, or
depend very weakly (sublinearly), on the total number of labels.

I The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

19 / 94

Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.

I The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

19 / 94

Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.
I The bound on the error rate could be expressed in terms of the

average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

19 / 94

Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.
I The bound on the error rate could be expressed in terms of the

average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

19 / 94

Statistical challenges

• Learning theory for an extremely large number of labels:
I Statistical guarantees for the error rate that do not depend, or

depend very weakly (sublinearly), on the total number of labels.
I The bound on the error rate could be expressed in terms of the

average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.

19 / 94

Statistical challenges

• Training and prediction under limited time and space budget:

I Restricted computational resources (time and space) for both
training and prediction.

I A trade-off between computational (time and space) complexity and
the predictive performance.

I By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.

20 / 94

Statistical challenges

• Training and prediction under limited time and space budget:
I Restricted computational resources (time and space) for both

training and prediction.

I A trade-off between computational (time and space) complexity and
the predictive performance.

I By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.

20 / 94

Statistical challenges

• Training and prediction under limited time and space budget:
I Restricted computational resources (time and space) for both

training and prediction.
I A trade-off between computational (time and space) complexity and

the predictive performance.

I By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.

20 / 94

Statistical challenges

• Training and prediction under limited time and space budget:
I Restricted computational resources (time and space) for both

training and prediction.
I A trade-off between computational (time and space) complexity and

the predictive performance.
I By imposing hard constraints on time and space budget, the challenge

is then to optimize the predictive performance of an algorithm under
these constraints.

20 / 94

Statistical challenges

• Unreliable learning information:

I We cannot expect that all labels will be properly checked and
assigned to training examples.

I Therefore we often deal with a problem of learning with missing labels
or learning from positive and unlabeled examples.

21 / 94

Statistical challenges

• Unreliable learning information:
I We cannot expect that all labels will be properly checked and

assigned to training examples.

I Therefore we often deal with a problem of learning with missing labels
or learning from positive and unlabeled examples.

21 / 94

Statistical challenges

• Unreliable learning information:
I We cannot expect that all labels will be properly checked and

assigned to training examples.
I Therefore we often deal with a problem of learning with missing labels

or learning from positive and unlabeled examples.

21 / 94

Statistical challenges

• Performance measures:

I Typical performance measures such as 0/1 or Hamming loss do not
fit well to the extreme setting.

I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.

22 / 94

Statistical challenges

• Performance measures:
I Typical performance measures such as 0/1 or Hamming loss do not

fit well to the extreme setting.

I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.

22 / 94

Statistical challenges

• Performance measures:
I Typical performance measures such as 0/1 or Hamming loss do not

fit well to the extreme setting.
I Other measures are often used such as precision@k or the F-measure.

I However, it remains an open question how to design loss functions
suitable for extreme classification.

22 / 94

Statistical challenges

• Performance measures:
I Typical performance measures such as 0/1 or Hamming loss do not

fit well to the extreme setting.
I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.

22 / 94

Do we search in the right place?

Figure: 3 A similar comics has been earlier used by Asela Gunawardana.4

3 Source: Florence Morning News, Mutt and Jeff Comic Strip, Page 7, Florence, South Carolina,1942
4 Asela Gunawardana, Evaluating Machine Learned User Experiences. Extreme Classification Workshop. NIPS 2015

23 / 94

Statistical challenges

• Long-tail label distributions and zero-shot learning:

I A close relation to the problem of estimating distributions over
large alphabets.

I The distribution of label frequencies is often characterized by a
long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)

24 / 94

Statistical challenges

• Long-tail label distributions and zero-shot learning:
I A close relation to the problem of estimating distributions over

large alphabets.

I The distribution of label frequencies is often characterized by a
long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)

24 / 94

Statistical challenges

• Long-tail label distributions and zero-shot learning:
I A close relation to the problem of estimating distributions over

large alphabets.
I The distribution of label frequencies is often characterized by a

long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)

24 / 94

Statistical challenges

• Long-tail label distributions and zero-shot learning:
I A close relation to the problem of estimating distributions over

large alphabets.
I The distribution of label frequencies is often characterized by a

long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)

24 / 94

Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of labels in the WikiLSHTC dataset:5

0 50000 100000 150000 200000 250000 300000

0
2

4
6

8
10

12

label

#l
ab

el
s

(lo
g)

I Many labels with only few examples (⇒ one-shot learning).

5 http://manikvarma.org/downloads/XC/XMLRepository.html

25 / 94

http://manikvarma.org/downloads/XC/XMLRepository.html

Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of frequencies for the WikiLSHTC dataset:

0 10 20 30 40 50 60 70

0
20

00
0

40
00

0
60

00
0

80
00

0

frequencies

fr
eq

ue
nc

y
of

 fr
eq

ue
nc

ie
s

I The missing mass obtained by the Good-Turing estimate: 0.014.

26 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Object of interest: documents, images, ads, posts . . .

Feature engineering:
feature extraction,

deep learning,
TF-IDF, . . .

x

Training/Prediction

ŷ = h(x) Focus of the tutorial
27 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)

28 / 94

Formal setting

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

29 / 94

Formal setting

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

29 / 94

Formal setting

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

29 / 94

Formal setting

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

29 / 94

Formal setting

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

29 / 94

Formal setting

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

29 / 94

Formal setting

• Goal: minimize the expected loss over all examples (risk):

L`(h) = E(x,y)∼P [`(y,h(x))] .

• The optimal prediction function over all possible functions expressed
conditionally for a given x:

h∗(x) = arg min
h

L`(h|x),

(so called Bayes prediction function).

30 / 94

Formal setting

• Goal: minimize the expected loss over all examples (risk):

L`(h) = E(x,y)∼P [`(y,h(x))] .

• The optimal prediction function over all possible functions expressed
conditionally for a given x:

h∗(x) = arg min
h

L`(h|x),

(so called Bayes prediction function).

30 / 94

Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K ,

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0.
• The optimal strategy:6

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x).

6 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5–45, 2012 31 / 94

Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K ,

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0.

• The optimal strategy:6

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x).

6 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5–45, 2012 31 / 94

Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K ,

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0.
• The optimal strategy:6

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x).

6 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5–45, 2012 31 / 94

Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K ,

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0.
• The optimal strategy:6

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x).

η̂1(x) η̂2(x) η̂3(x) η̂4(x) η̂5(x) η̂6(x) η̂7(x)

τ = 0.5

6 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5–45, 2012 31 / 94

Precision

• Precision at position k:

prec@k(y,h,x) =
1

k

∑
j∈Ŷk

Jyj = 1K ,

where Ŷk is a set of k labels predicted by h.

• The optimal strategy: select top k labels according to ηj(x).

32 / 94

Precision

• Precision at position k:

prec@k(y,h,x) =
1

k

∑
j∈Ŷk

Jyj = 1K ,

where Ŷk is a set of k labels predicted by h.
• The optimal strategy: select top k labels according to ηj(x).

32 / 94

Precision

• Precision at position k:

prec@k(y,h,x) =
1

k

∑
j∈Ŷk

Jyj = 1K ,

where Ŷk is a set of k labels predicted by h.
• The optimal strategy: select top k labels according to ηj(x).

η̂6(x) η̂2(x) η̂1(x) η̂5(x) η̂7(x) η̂3(x) η̂4(x)

32 / 94

Normalized Discounted Cumulative Gain

• Normalized Discounted Cumulative Gain at position k:

NDCG@k(y, f,x) = Nk(y)

k∑
r=1

yσ(r)

log(1 + r)
,

where σ is a permutation of labels for x returned by ranker f , and
Nk(y) normalizes NDCG@k to the interval [0, 1]:

Nk(y) =

max(k,
∑m

i=1 yi)∑
r=1

1

log(1 + r)

−1

33 / 94

Normalized Discounted Cumulative Gain

• The optimal strategy: rank labels according to the following
marginal quantities:

∆j(x) =
∑
y:yj=1

Nk(y)P(y |x)

34 / 94

Normalized Discounted Cumulative Gain

• The optimal strategy: rank labels according to the following
marginal quantities:

∆j(x) =
∑
y:yj=1

Nk(y)P(y |x)

∆6(x) ∆2(x) ∆5(x) ∆1(x) ∆7(x) ∆3(x) ∆4(x)

34 / 94

Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

.

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

35 / 94

Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

.

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

35 / 94

Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

.

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

35 / 94

Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

.

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

35 / 94

Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

.

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

35 / 94

Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.7

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

7 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015

36 / 94

Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.7

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

7 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015

36 / 94

Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.7

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

7 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015

36 / 94

Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.7

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

7 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015

36 / 94

Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.7

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

η̂1(x) η̂2(x) η̂3(x) η̂4(x) η̂5(x) η̂6(x) η̂7(x)

τ6

τ2

τ1

τ5
τ7τ3

τ4

7 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015

36 / 94

Predictive model

• From the above analysis we can conclude:

We need to train models that accurately estimate marginal
probabilities or other related marginal quantities

37 / 94

Predictive model

• From the above analysis we can conclude:

We need to train models that accurately estimate marginal
probabilities or other related marginal quantities

37 / 94

Agenda

1 Extreme classification: applications and challenges

2 Algorithms

3 Live demonstration

38 / 94

Label embedding methods

39 / 94

Low-dimensional Label Embeddings

• Shallow Networks - SVM
I Direct mapping of

input to output

... ...

x(1)

x(2)

x(3)

x(100 000)

y1

y2

y3

y4

y670,000

Input
layer

Output
layer

• Label embedding
I Mapping input to output

via embedding layer

...

...
...

x(1)

x(2)

x(3)

x(100 000)

y1

y2

y3

y4

y670,000

Input
layer

Embedding
layer

Output
layer

40 / 94

Low-dimensional Label Embeddings

• Shallow Networks - SVM
I Direct mapping of

input to output

... ...

x(1)

x(2)

x(3)

x(100 000)

y1

y2

y3

y4

y670,000

Input
layer

Output
layer

• Label embedding
I Mapping input to output

via embedding layer

...

...
...

x(1)

x(2)

x(3)

x(100 000)

y1

y2

y3

y4

y670,000

Input
layer

Embedding
layer

Output
layer

40 / 94

Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m× n such that each row
denotes the labels in an instance

• Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by m̂� m columns


y1

y2
...
yn


n×m

U
==⇒


z1

z2
...
zn


n×m̂

• Each label vector yi ∈ {0, 1}m is hence projected to zi ∈ Rm̂ by a
projection matrix U ∈ Rm×m̂, such that Uyi = zi

• Regressors V are then trained to predict zi = V xi

41 / 94

Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m× n such that each row
denotes the labels in an instance

• Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by m̂� m columns

y1

y2
...
yn


n×m

U
==⇒


z1

z2
...
zn


n×m̂

• Each label vector yi ∈ {0, 1}m is hence projected to zi ∈ Rm̂ by a
projection matrix U ∈ Rm×m̂, such that Uyi = zi

• Regressors V are then trained to predict zi = V xi

41 / 94

Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m× n such that each row
denotes the labels in an instance

• Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by m̂� m columns

y1

y2
...
yn


n×m

U
==⇒


z1

z2
...
zn


n×m̂

• Each label vector yi ∈ {0, 1}m is hence projected to zi ∈ Rm̂ by a
projection matrix U ∈ Rm×m̂, such that Uyi = zi

• Regressors V are then trained to predict zi = V xi

41 / 94

Low-dimensional Label Embeddings

Let Y be the label matrix of dimensionality m× n such that each row
denotes the labels in an instance

• Label embedding methods - Assume a low rank structure in the
label matrix Y i.e. the m columns of the Y can be effectively
represented by m̂� m columns

y1

y2
...
yn


n×m

U
==⇒


z1

z2
...
zn


n×m̂

• Each label vector yi ∈ {0, 1}m is hence projected to zi ∈ Rm̂ by a
projection matrix U ∈ Rm×m̂, such that Uyi = zi

• Regressors V are then trained to predict zi = V xi

41 / 94

Low-dimensional Label Embeddings

• Otherwise, we may directly map the input x to its corresponding
prediction ŷ = U †V x

• Here U † is the decompression matrix which lifts intermediary
prediction V x from the embedding space to original label space


x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

42 / 94

Low-dimensional Label Embeddings

• Otherwise, we may directly map the input x to its corresponding
prediction ŷ = U †V x

• Here U † is the decompression matrix which lifts intermediary
prediction V x from the embedding space to original label space
x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

42 / 94

Label Embedding Methods

Various methods differ in terms of the embedding/compression and
de-compression methods they employ

• Methods for label embedding
I Compressed Sensing 8

I Label Embedding for Missing Labels (LEML) 9

I Sparse Local Embeddings for Extreme Classification (SLEEC) 10

8 D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS, 2009
9 Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale Multi-label Learning with Missing Labels.

In ICML, 2014
10 Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local embeddings for extreme multi-

label classification. In NIPS, 2015

43 / 94

LEML - Global Embeddings

LEML learns global embeddings under the assumption :

• The label matrix is low rank

• Preserve global distances
x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

44 / 94

LEML - Global Embeddings

LEML learns global embeddings under the assumption :

• The label matrix is low rank

• Preserve global distances


x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

44 / 94

LEML - Global Embeddings

LEML learns global embeddings under the assumption :

• The label matrix is low rank

• Preserve global distances
x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

44 / 94

LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min
V ,U†

n∑
i=1

`(yi,U
†V xi) + λ||V ||2F + λ||U †||2F


x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

• The above optimization problem is non-convex

• Fixing one of U † or V leads convex optimization

• Alternating minimization over U † and V is performed

45 / 94

LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min
V ,U†

n∑
i=1

`(yi,U
†V xi) + λ||V ||2F + λ||U †||2F


x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

• The above optimization problem is non-convex

• Fixing one of U † or V leads convex optimization

• Alternating minimization over U † and V is performed

45 / 94

LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min
V ,U†

n∑
i=1

`(yi,U
†V xi) + λ||V ||2F + λ||U †||2F


x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

• The above optimization problem is non-convex

• Fixing one of U † or V leads convex optimization

• Alternating minimization over U † and V is performed

45 / 94

LEML - Global Embeddings

LEML Optimization - Direct mapping of input to output

min
V ,U†

n∑
i=1

`(yi,U
†V xi) + λ||V ||2F + λ||U †||2F


x1

x2
...
xn


n×d

V
==⇒


z1

z2
...
zn


n×m̂

U†
==⇒


y1

y2
...
yn


n×m

• The above optimization problem is non-convex

• Fixing one of U † or V leads convex optimization

• Alternating minimization over U † and V is performed

45 / 94

LEML - Pros and Cons

• Advantages of label embedding
I Exploit label correlations
I Ease of implementation

• Disadvantages of label embedding
I Assuption fails for long tail of labels
I Prediction complexity - Ω(m̂(m+ d̂))

46 / 94

LEML - Pros and Cons

• Advantages of label embedding
I Exploit label correlations
I Ease of implementation

• Disadvantages of label embedding
I Assuption fails for long tail of labels
I Prediction complexity - Ω(m̂(m+ d̂))

46 / 94

SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

• The embedding matrix Z ∈ Rm̂×n into which the original labels are
projected is learnt by

min
Z∈m̂×n

||PΩ(Y TY)− PΩ(ZTZ)||2F + λ||Z||1

where Ω denotes the index set of nearest neighbors (i, j) ∈ Ω iff
j ∈ Ni, and Ni is the set of nearest neighbors of instance i.

[
y1

y2

]
2×m

U1==⇒
[

z1

z2

]
2×m̂ yn−2

yn−1

yn


3×m

Uk==⇒

 zn−2

zn−1

zn


3×m̂

47 / 94

SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

• The embedding matrix Z ∈ Rm̂×n into which the original labels are
projected is learnt by

min
Z∈m̂×n

||PΩ(Y TY)− PΩ(ZTZ)||2F + λ||Z||1

where Ω denotes the index set of nearest neighbors (i, j) ∈ Ω iff
j ∈ Ni, and Ni is the set of nearest neighbors of instance i.[

y1

y2

]
2×m

U1==⇒
[

z1

z2

]
2×m̂ yn−2

yn−1

yn


3×m

Uk==⇒

 zn−2

zn−1

zn


3×m̂

47 / 94

SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

• Sparsity in embedding is obtained by `1 regularization ||Z||1

• Locality in the embedding is based on following a nearest neighbors
approach and is related to Ni given by

Ni = arg max
S,|S|≤α.n

∑
j∈S

(Y T
i Y j)

[
Y 1

Y 2

]
2×m

U1==⇒
[

z1

z2

]
2×m̂ Y n−2

Y n−1

Y n


3×m

Uk==⇒

 zn−2

zn−1

zn


3×m̂

48 / 94

SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

• Sparsity in embedding is obtained by `1 regularization ||Z||1
• Locality in the embedding is based on following a nearest neighbors

approach and is related to Ni given by

Ni = arg max
S,|S|≤α.n

∑
j∈S

(Y T
i Y j)

[
Y 1

Y 2

]
2×m

U1==⇒
[

z1

z2

]
2×m̂ Y n−2

Y n−1

Y n


3×m

Uk==⇒

 zn−2

zn−1

zn


3×m̂

48 / 94

SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

Overall optimization

• The overall SLEEC objective is therefore given by

min
V ∈Rm̂×d

||PΩ(Y TY)− PΩ(XTV TV X)||2F + λ||V ||2F + µ||V X||1

• To optimize above is challenging due to non-convexity,
non-differentiability and scale of the problem

49 / 94

SLEEC - Sparse Local Embeddings for Extreme Multi-label
Classification

• Simplification
I Finding the embedding matrix, without `1 regularization

min
Z∈m̂×n

||PΩ(Y TY)−PΩ(ZTZ)||2F ≡ min
M�0,rank(M)≤m̂

||PΩ(Y TY)−PΩ(M)||2F

where M = ZTZ
I After learning Z in the above step,

min
V ∈Rm̂×d

||Z − V X||2F + λ||V ||2F + µ||V X||1

50 / 94

Smart 1-vs-all approaches

51 / 94

Learning Linear Decision Boundaries

Learning process typically involves finding the optimal linear separator as
follows:

• Template of the optimization problem being solved

ŵ = arg min
w

Remp(w) + λ Reg(w)

where Reg(w) is the regularization term to avoid complex models
and Remp(.) represents the empirical

52 / 94

Learning Linear Decision Boundaries

Learning process typically involves finding the optimal linear separator as
follows:

• For Support Vector Machine - using squared hinge loss

arg min
w

λ

2
||w||2 +

n∑
i=1

(max(0, 1− yiwTxi))
2

53 / 94

Bag of Words Data Representation

Top-3 training instances and their corresponding labels from a Wikipedia
Subset

54 / 94

Computational Challenge - Big Data

#Labels (m) #Features (d) #Instances (n) Parameters (m×d) Training Data Model size

DMOZ11 12,294 347,256 93,805 4,269,165,264 125MB 17 GB
Wikipedia 325,056 1,617,899 1,778,351 525,907,777,344 1GB 870GB
Delicious12 205,443 782,585 196,606 160,776,610,155 1GB 350GB
Amazon 670,091 135,909 490,449 91,071,397,719 600MB 250GB

• Naive application of binary one-vs-rest linear classification
I Billions of parameters - Computational complexity
I TeraBytes of disk space to store the model - Space Complexity

11 From LSHTC challenge
12 From XMC repository

55 / 94

Distribution of Learnt Weights

Weights (W d′,m′) learnt by using One-vs-rest SVM for Wiki-31K dataset
(101k dimensional data with 31k labels) from XMC repository

min
wm′

[
||wm′ ||22 + C

n∑
i=1

(max(0, 1− sm′iw
T
m′xi))

2

]
sm′i = +1 if instance i has label m′,− 1 otherwise .

Figure: Distribution of learnt weights
before pruning

Figure: Distribution of learnt weights
after pruning small weights

56 / 94

Distribution of Learnt Weights

Figure: Distribution of learnt weights
before pruning

Figure: Distribution of learnt weights
after pruning small weights

• Of the 3 Billion weights, 97% are s.t, Wd′,m′ ≤ |0.01|, and hence
non-discriminative

• Storing them leads to large model sizes but no benefit in classification

57 / 94

DiSMEC - Distributed Sparse Machines for XMC

Require: Training data T = {(x1,y1) . . . (xn,yn)}, input dimensionality
d, label set {1 . . .m}, B = b m

1000c+ 1 and ∆
Ensure: Learnt matrix W d,m in sparse format
1: Load single copy of input vectors X = {x1 . . .xn} in the main

memory
2: Load binary sign vectors sm′ = {+1,−1}ni=1 separately for each label
3: for {b = 0; b < B; b+ +} do . 1st parallelization
4: #pragma omp parallel for private(m′) . 2nd parallelization
5: for {m′ = b× 1000;m′ ≤ (b+ 1)× 1000;m′ + +} do
6: Using (X, sm′), train weight vector wm′ on a single core
7: Prune ambiguous weights in wm′ . Model reduction

8: return W d,1000 . Learnt matrix for a batch on one node

9: return W d,m . Learnt matrix from all the nodes

• Learns model for LSHTCWiki-325K in 6 hours on 400 cores

• Model size is 3GB due to pruning step

58 / 94

PDSparse - Primal Dual Sparsity for Extreme Classification 13

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

• For prediction score z ∈ Rm and true label y ∈ {1, . . . ,m},
L(z,y) = maxm−∈{N (y)},m+∈{P(y)}(1 + zm− − zm+)+, where N (y)
and P(y) are respectively the sets of negative and positive labels for
that instance

• W ∗ ∈ Rd×m obtained by
∑n

i=1 L(W Txi,yi) is determined by the
scores of support labels :

(m−,m+) = arg max
m−∈{N (y)},m+∈{P(y)}

(1 + zm− − zm+)+

that attain the above maximum

• On the dual side, since the max is attained for very few label pairs
(m−,m+), the dual variable is non-zero very infrequently i.e.
nnz(αi) << m

13 Ian E.H. Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S. Dhillon. PD-Sparse: A Primal and Dual Sparse
Approach to Extreme Multiclass and Multilabel Classification. In ICML, 2016

59 / 94

PDSparse - Primal Dual Sparsity for Extreme Classification 13

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

• For prediction score z ∈ Rm and true label y ∈ {1, . . . ,m},
L(z,y) = maxm−∈{N (y)},m+∈{P(y)}(1 + zm− − zm+)+, where N (y)
and P(y) are respectively the sets of negative and positive labels for
that instance

• W ∗ ∈ Rd×m obtained by
∑n

i=1 L(W Txi,yi) is determined by the
scores of support labels :

(m−,m+) = arg max
m−∈{N (y)},m+∈{P(y)}

(1 + zm− − zm+)+

that attain the above maximum

• On the dual side, since the max is attained for very few label pairs
(m−,m+), the dual variable is non-zero very infrequently i.e.
nnz(αi) << m

13 Ian E.H. Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S. Dhillon. PD-Sparse: A Primal and Dual Sparse
Approach to Extreme Multiclass and Multilabel Classification. In ICML, 2016

59 / 94

PDSparse - Primal Dual Sparsity for Extreme Classification 13

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

• For prediction score z ∈ Rm and true label y ∈ {1, . . . ,m},
L(z,y) = maxm−∈{N (y)},m+∈{P(y)}(1 + zm− − zm+)+, where N (y)
and P(y) are respectively the sets of negative and positive labels for
that instance

• W ∗ ∈ Rd×m obtained by
∑n

i=1 L(W Txi,yi) is determined by the
scores of support labels :

(m−,m+) = arg max
m−∈{N (y)},m+∈{P(y)}

(1 + zm− − zm+)+

that attain the above maximum

• On the dual side, since the max is attained for very few label pairs
(m−,m+), the dual variable is non-zero very infrequently i.e.
nnz(αi) << m

13 Ian E.H. Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S. Dhillon. PD-Sparse: A Primal and Dual Sparse
Approach to Extreme Multiclass and Multilabel Classification. In ICML, 2016

59 / 94

PDSparse - Primal Dual Sparsity for Extreme Classification

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

• On the primal side, this is achieved by `1 regularization

W ∗ ∈ arg min
W

λ

m∑
m′=1

||wm′ ||1 +

n∑
i=1

L(W T xi,yi)

then it satisfies d×mw = nnz(W ∗) ≤ nnz(A∗) = n×ma, where
mw are average number of active labels per feature in the optimal
weight matrix W ∗.

60 / 94

PDSparse - Primal Dual Sparsity for Extreme Classification

Primal Dual Sparsity in Max-margin Multi-label SVM Formulation

• For ease of optimization, the following strongly convex elastic net
regularized problem is solved

arg min
W

m∑
m′=1

||wm′ ||22 + λ

m∑
m′=1

||wm′ ||1 +
n∑
i=1

L(W Txi,yi)

which is empirically observed to give a similar sparsity level as the `1
regularized problem

61 / 94

PDSparse - Primal Dual Sparsity for Extreme Classification

Simultaneous primal dual updates

Figure: Simultaneous Primal Dual Updates in PDSparse

62 / 94

Dataset and Evaluation Metrics for Comparison

Datasets taken from Extreme Classification repository

Dataset # Training # Test # Categories # Features
APpL ALpP

Amazon-13K 1,186,239 306,782 13,330 203,882 448.5 5.04
Amazon-14K 4,398,050 1,099,725 14,588 597,540 1330.1 3.53

Wikipedia-31K 14,146 6,616 30,938 101,938 8.5 18.6
Delicious-200K 196,606 100,095 205,443 1,123,497 72.3 75.5

WikiLSHTC-325K 1,778,351 587,084 325,056 1,617,899 17.4 3.2
Wikipedia-500K 1,813,391 783,743 501,070 2,381,304 24.7 4.7
Amazon-670K 490,499 153,025 670,091 135909 3.9 5.4

Table: Multi-label datasets taken from the Extreme Classification Repository.
APpL and ALpP represent average points per label and average labels per point.

For true label vector y, and predicted vector ŷ :

precision@k :=
1

k

∑
l∈rankk(ŷ)

yl ; nDCG@k :=
DCG@k∑min(k,||y||0)

l=1
1

log(l+1)

where DCG@k := 1
k

∑
l∈rankk(ŷ)

yl
log(l+1)

, and rankk(y) returns the k largest indices of

y ranked in descending order, and ||y||0 returns the 0-norm of the true-label vector.
63 / 94

Comparison among state-of-the-art methods on Precision@k metric

Dataset
Proposed approach Embedding based approaches Tree based approaches Sparsity inducing approaches

DiSMEC SLEEC LEML RobustXML Fast-XML LPSR-NB PLT PD-Sparse L1-SVM

Amazon-13K
P@1 93.4 90.4 78.2 88.4 92.9 75.1 91.4 91.1 91.8
P@3 79.1 75.8 65.4 74.6 77.5 60.2 75.8 76.4 77.8
P@5 64.1 61.3 55.7 60.6 62.5 57.3 61.0 63.0.8 62.9
Amazon-14K
P@1 91.0 80.3 75.2 83.2 90.3 74.2 86.4 88.4 88.2
P@3 70.3 67.2 62.5 66.4 70.1 55.7 65.2 68.1 67.6
P@5 55.9 50.6 40.8 52.3 55.4 44.3 50.7 50.5 51.2
Wikipedia-31K
P@1 85.2 85.5 73.5 85.5 82.5 72.7 84.3 73.8 83.2
P@3 74.6 73.6 62.3 74.0 66.6 58.5 72.3 60.9 72.1
P@5 65.9 63.1 54.3 63.8 56.7 49.4 62.7 50.4 63.7
Delicious-200k
P@1 45.5 47.0 40.3 45.0 42.8 18.6 45.3 41.2 42.1
P@3 38.7 41.6 37.7 40.0 38.7 15.4 38.9 35.3 34.8
P@5 35.5 38.8 36.6 38.0 36.3 14.0 35.8 31.2 30.4
WikiLSHTC-325K
P@1 64.4 55.5 19.8 53.5 49.3 27.4 45.6 58.2 60.6
P@3 42.5 33.8 11.4 31.8 32.7 16.4 29.1 36.3 38.6
P@5 31.5 24.0 8.4 29.9 24.0 12.0 21.9 28.7 28.5
Wiki-500K
P@1 70.2 48.2 41.3 - 54.1 38.2 51.5 - 65.3
P@3 50.6 29.4 30.1 - 35.5 29.3 35.7 - 46.1
P@5 39.7 21.2 19.8 - 26.2 18.7 27.7 - 35.3
Amazon-670K
P@1 44.7 35.0 8.1 31.0 33.3 28.6 36.6 - 39.8
P@3 39.7 31.2 6.8 28.0 29.3 24.9 32.1 - 34.3
P@5 36.1 28.5 6.0 24.0 26.1 22.3 28.8 - 30.1

Table: Comparison of Precision@k for k=1,3 and 5

64 / 94

Comparison among methods on nDCG@k metric

 0%

 10%

 20%

 30%

 40%

 50%

 60%

nDCG@1 nDCG@3 nDCG@5

n
D

C
G

 i
n
 %

DiSMEC
SLEEC
LEML
RobustXML
FastXML
LPSR−NB

Figure: nDCG for Amazon-670K

 10%

 20%

 30%

 40%

 50%

 60%

nDCG@1 nDCG@3 nDCG@5

n
D

C
G

 i
n
 %

DiSMEC
SLEEC
LEML
RobustXML
FastXML
LPSR−NB

Figure: nDCG for Delicious-200K

 10%

 20%

 30%

 40%

 50%

 60%

 70%

nDCG@1 nDCG@3 nDCG@5

n
D

C
G

 i
n
 %

DiSMEC
SLEEC
LEML
RobustXML
FastXML
LPSR−NB

Figure: nDCG for WikiLSHTC-325K

 50%

 55%

 60%

 65%

 70%

 75%

 80%

 85%

 90%

nDCG@1 nDCG@3 nDCG@5

n
D

C
G

 i
n
 %

DiSMEC
SLEEC
LEML
RobustXML
FastXML
LPSR−NB

Figure: nDCG for Wiki-30K

65 / 94

Impact of ∆ parameter

Figure: Variation of Precision@k for
WikiLSHTC-325K with ∆

Figure: Variation of Model size for
WikiLSHTC-325K with ∆

66 / 94

Label Embedding versus One-vs-Rest - What to choose when?

Algebraic graph theoretic view-point

• Let A(G) be adjacency matrix for the label co-occurrence graph

• Let D(G) be degree matrix representing degrees of labels

The Laplacian of the graph G, is given by L(G) = D(G)−A(G).

Theorem
14 Given the training data T , let L(G) be defined as above. Let
λ1(G), . . . , λL(G) be the eigen-values of L(G), then :
(a) λ`(G) ≥ 0 ∀`, and λ1(G) = 0
(b) The multiplicity of 0 as an eigen value gives the number of connected
components of G, =⇒ λ2(G) > 0 if and only if G is connected.
(c) λ2(G) ≤ ν(G) ≤ η(G), where λ2(G), ν(G) and η(G) are respectively
the algebraic, edge and vertex connectivities.

14 Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):298–305, 1973

67 / 94

Label Embedding vs One-vs-Rest - What to choose When?

Dataset # Training # Categories Algebraic # Connected Better
APpL ALpP Connectivity, λ2(G) Components Performance

Mediamill 30993 101 1902.1 4.4 0.46 1 SLEEC

Bibtex 4880 159 111.7 2.4 0.05 1 SLEEC

Delicious-small 12,920 983 311.6 19.3 0.3 1 SLEEC

EUR-Lex 15,539 3,993 25.7 5.3 0.22 1 DiSMEC

Wikipedia-31K 14,146 30,938 8.5 18.6 0.4 1 Comparable
WikiLSHTC-325K 1,778,351 325,056 17.4 3.2 0.002 740 DiSMEC

Wiki-500K 1,813,391 501,070 24.7 4.7 0.001 370 DiSMEC

Amazon-670K 490,499 670,091 3.9 5.4 0.0001 9,566 DiSMEC

Table: Multi-label datasets from XMC repository. APpL and ALpP represent
average points per label and average labels per point respectively

• For smaller datasets, the algebraic connectivity is much higher and
label embedding based methods such as SLEEC work relatively well in
this regime

• For much larger datasets, the algebraic connectivity is close to 0 and
one-vs-rest approach such as DiSMEC works better in this regime

68 / 94

Label Embedding vs One-vs-Rest - What to choose When?

Dataset # Training # Categories Algebraic # Connected Better
APpL ALpP Connectivity, λ2(G) Components Performance

Mediamill 30993 101 1902.1 4.4 0.46 1 SLEEC

Bibtex 4880 159 111.7 2.4 0.05 1 SLEEC

Delicious-small 12,920 983 311.6 19.3 0.3 1 SLEEC

EUR-Lex 15,539 3,993 25.7 5.3 0.22 1 DiSMEC

Wikipedia-31K 14,146 30,938 8.5 18.6 0.4 1 Comparable
WikiLSHTC-325K 1,778,351 325,056 17.4 3.2 0.002 740 DiSMEC

Wiki-500K 1,813,391 501,070 24.7 4.7 0.001 370 DiSMEC

Amazon-670K 490,499 670,091 3.9 5.4 0.0001 9,566 DiSMEC

Table: Multi-label datasets from XMC repository. APpL and ALpP represent
average points per label and average labels per point respectively

• For smaller datasets, the algebraic connectivity is much higher and
label embedding based methods such as SLEEC work relatively well in
this regime

• For much larger datasets, the algebraic connectivity is close to 0 and
one-vs-rest approach such as DiSMEC works better in this regime

68 / 94

Tree-based models

69 / 94

Tree-based models

• Decision trees

• Label trees

70 / 94

Decision trees

• Decision trees:

I Partition of the feature space to small subregions:

I Fast prediction: logarithmic in n
I Training can be expensive: computation of split criterion
I Two new algorithms: LomTree15 and FastXML16

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015
16 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263–272. ACM, 2014

71 / 94

Decision trees

• Decision trees:
I Partition of the feature space to small subregions:

I Fast prediction: logarithmic in n
I Training can be expensive: computation of split criterion
I Two new algorithms: LomTree15 and FastXML16

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015
16 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263–272. ACM, 2014

71 / 94

Decision trees

• Decision trees:
I Partition of the feature space to small subregions:

I Fast prediction: logarithmic in n

I Training can be expensive: computation of split criterion
I Two new algorithms: LomTree15 and FastXML16

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015
16 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263–272. ACM, 2014

71 / 94

Decision trees

• Decision trees:
I Partition of the feature space to small subregions:

I Fast prediction: logarithmic in n
I Training can be expensive: computation of split criterion

I Two new algorithms: LomTree15 and FastXML16

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015
16 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263–272. ACM, 2014

71 / 94

Decision trees

• Decision trees:
I Partition of the feature space to small subregions:

I Fast prediction: logarithmic in n
I Training can be expensive: computation of split criterion
I Two new algorithms: LomTree15 and FastXML16

15 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015
16 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263–272. ACM, 2014

71 / 94

FastXML

• Uses an ensemble of standard decision trees

• Sparse linear classifiers trained in internal nodes

• Very efficient training procedure

• Empirical distributions in leaves

• A test example passes one path from the root to a leaf

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η(x, 1)=0.6
η(x, 12)=0.45
. . .

η(x, 44)=0.46
η(x, 3)=0.15
η(x, 102)=0.05
. . .

η(x, 45)=0.45
η(x, 2)=0.4
. . .

w3 · x ≥ 0

η(x, 3)=0.46
η(x, 1)=0.15
. . .

η(x, 34)=0.8
η(x, 45)=0.45
η5(x)=0.15
. . .

72 / 94

FastXML

• Uses an ensemble of standard decision trees

• Sparse linear classifiers trained in internal nodes

• Very efficient training procedure

• Empirical distributions in leaves

• A test example passes one path from the root to a leaf

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η(x, 1)=0.6
η(x, 12)=0.45
. . .

η(x, 44)=0.46
η(x, 3)=0.15
η(x, 102)=0.05
. . .

η(x, 45)=0.45
η(x, 2)=0.4
. . .

w3 · x ≥ 0

η(x, 3)=0.46
η(x, 1)=0.15
. . .

η(x, 34)=0.8
η(x, 45)=0.45
η5(x)=0.15
. . .

72 / 94

Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδ(δi) log(1 + exp(−δiw>x)

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(r+,yi)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(r−,yi)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}n, r+, r− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimization of r±

3. Optimization of δ
4. Optimization of w
5. Repeat 2-4

73 / 94

Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδ(δi) log(1 + exp(−δiw>x)

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(r+,yi)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(r−,yi)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}n, r+, r− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimization of r±

3. Optimization of δ
4. Optimization of w
5. Repeat 2-4

73 / 94

Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδ(δi) log(1 + exp(−δiw>x)

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(r+,yi)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(r−,yi)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}n, r+, r− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimization of r±

3. Optimization of δ
4. Optimization of w
5. Repeat 2-4

73 / 94

FastXML17

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Sampling of δ

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Optimization of r±

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Optimization of δ

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Optimization of r±

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Optimization of δ

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Optimization of r±

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

FastXML17

Optimization of w

17 https://www.youtube.com/watch?v=1X71fTx1LKA

74 / 94

https://www.youtube.com/watch?v=1X71fTx1LKA

Label trees

75 / 94

Label trees

• Label trees:
I Organize classifiers in a tree structure (one leaf ⇔ one label):

0

1

3

y1

4

y2

2

5

y3

6

y4

I Fast prediction: almost logarithmic in m
I Algorithms: Label embedding trees,18 Nested dichotomies,19

Conditional probability trees,20 Hierarchical softmax,21 FastText,22

Probabilistic classifier chains23

18 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163–171. Curran
Associates, Inc., 2010

19 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997

E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In ICML, 2004
20 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and

algorithms. In UAI, pages 51–58, 2009
21 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246–252,

2005
22 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,

abs/1607.01759, 2016
23 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In

ICML, pages 279–286. Omnipress, 2010
76 / 94

Label trees

• Label trees:
I Organize classifiers in a tree structure (one leaf ⇔ one label):

0

1

3

y1

4

y2

2

5

y3

6

y4

I Fast prediction: almost logarithmic in m

I Algorithms: Label embedding trees,18 Nested dichotomies,19

Conditional probability trees,20 Hierarchical softmax,21 FastText,22

Probabilistic classifier chains23

18 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163–171. Curran
Associates, Inc., 2010

19 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997

E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In ICML, 2004
20 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and

algorithms. In UAI, pages 51–58, 2009
21 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246–252,

2005
22 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,

abs/1607.01759, 2016
23 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In

ICML, pages 279–286. Omnipress, 2010
76 / 94

Label trees

• Label trees:
I Organize classifiers in a tree structure (one leaf ⇔ one label):

0

1

3

y1

4

y2

2

5

y3

6

y4

I Fast prediction: almost logarithmic in m
I Algorithms: Label embedding trees,18 Nested dichotomies,19

Conditional probability trees,20 Hierarchical softmax,21 FastText,22

Probabilistic classifier chains23

18 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163–171. Curran
Associates, Inc., 2010

19 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997

E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In ICML, 2004
20 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and

algorithms. In UAI, pages 51–58, 2009
21 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246–252,

2005
22 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,

abs/1607.01759, 2016
23 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In

ICML, pages 279–286. Omnipress, 2010
76 / 94

Probabilistic classifier trees = Hierarchical softmax

Nested dichotomies, Hierarchical softmax, Conditional probability trees,
Probabilistic classifier chains

⇓

Probability classifier trees24

⇓

Hierarchical softmax

24 Krzysztof Dembczyński, Wojciech Kot lowski, Willem Waegeman, Róbert Busa-Fekete, and Eyke Hüllermeier. Consistency of
probabilistic classifier trees. In ECMLPKDD. Springer, 2016

77 / 94

Hierarchical softmax (HSM)

• Encode the labels by a prefix code (⇒ tree structure)

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

• Each label y coded by z = (z1, . . . , zl) ∈ C
• An internal node identified by a partial code zi = (z1, . . . , zi)

• The code does not have to be binary ⇒ b-ary trees

• Different structures possible: random tree, Huffman tree, trained
structure

78 / 94

Hierarchical softmax (HSM)

• Encode the labels by a prefix code (⇒ tree structure)

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

• Each label y coded by z = (z1, . . . , zl) ∈ C

• An internal node identified by a partial code zi = (z1, . . . , zi)

• The code does not have to be binary ⇒ b-ary trees

• Different structures possible: random tree, Huffman tree, trained
structure

78 / 94

Hierarchical softmax (HSM)

• Encode the labels by a prefix code (⇒ tree structure)

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

• Each label y coded by z = (z1, . . . , zl) ∈ C
• An internal node identified by a partial code zi = (z1, . . . , zi)

• The code does not have to be binary ⇒ b-ary trees

• Different structures possible: random tree, Huffman tree, trained
structure

78 / 94

Hierarchical softmax (HSM)

• Encode the labels by a prefix code (⇒ tree structure)

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

• Each label y coded by z = (z1, . . . , zl) ∈ C
• An internal node identified by a partial code zi = (z1, . . . , zi)

• The code does not have to be binary ⇒ b-ary trees

• Different structures possible: random tree, Huffman tree, trained
structure

78 / 94

Hierarchical softmax (HSM)

• Encode the labels by a prefix code (⇒ tree structure)

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

• Each label y coded by z = (z1, . . . , zl) ∈ C
• An internal node identified by a partial code zi = (z1, . . . , zi)

• The code does not have to be binary ⇒ b-ary trees

• Different structures possible: random tree, Huffman tree, trained
structure

78 / 94

Hierarchical softmax (HSM)

• HSM estimates P(y |x) by following a path from the root to a leaf:

P(y |x) = P(z |x) =

l∏
i=1

P(zi|zi−1,x)

x

P(z1 = 0 |x) = 0.4

P(z2=0 | z1=0,x)=1.0

P(z=(0, 0) |x)=0.4

z2 = 0

P(z2=1 | z1=0,x)=0.0

P(z=(0, 1) |x)=0.0

z2 = 1

z1 = 0

P(z1 = 1 |x) = 0.6

P(z2=0 | z1=1,x)=0.4

P(z=(1, 0) |x)=0.24

z2 = 0

P(z2=1 | z1=1,x)=0.6

P(z=(1, 1) |x)=0.36

z2 = 1

z1 = 1

• Training: separate learning problems in the internal nodes

• Prediction: depth first search/beam search

79 / 94

Hierarchical softmax (HSM)

• HSM estimates P(y |x) by following a path from the root to a leaf:

P(z1 |x)P(z2 | z1,x) =
P(z1,x)

P(x)

P(z2, z1,x)

P(z1,x)
= P(z1, z2 |x)

x

P(z1 = 0 |x) = 0.4

P(z2=0 | z1=0,x)=1.0

P(z=(0, 0) |x)=0.4

z2 = 0

P(z2=1 | z1=0,x)=0.0

P(z=(0, 1) |x)=0.0

z2 = 1

z1 = 0

P(z1 = 1 |x) = 0.6

P(z2=0 | z1=1,x)=0.4

P(z=(1, 0) |x)=0.24

z2 = 0

P(z2=1 | z1=1,x)=0.6

P(z=(1, 1) |x)=0.36

z2 = 1

z1 = 1

• Training: separate learning problems in the internal nodes

• Prediction: depth first search/beam search

79 / 94

HSM for MLC

• Pick-one-label heuristic used, for example, in FastText:

η′j(x) = P′(yj = 1 |x) =
∑
y∈Y

yj
P(y |x)∑m
j′=1 yj′

• Theorem: inconsistent for label-wise logistic loss and precision@k

labels y probability P(y |x)

{1} 0.15
{2} 0.10
{1, 2} 0.25
{3} 0.30
{4} 0.20

True marg. probs P-o-l marg. probs

η1(x) = 0.4 η′3(x) = 0.3
η2(x) = 0.35 η′1(x) = 0.275
η3(x) = 0.3 η′2(x) = 0.225
η4(x) = 0.2 η′4(x) = 0.2

• Theorem: consistent for precision@k for independent labels

80 / 94

HSM for MLC

• Pick-one-label heuristic used, for example, in FastText:

η′j(x) = P′(yj = 1 |x) =
∑
y∈Y

yj
P(y |x)∑m
j′=1 yj′

• Theorem: inconsistent for label-wise logistic loss and precision@k

labels y probability P(y |x)

{1} 0.15
{2} 0.10
{1, 2} 0.25
{3} 0.30
{4} 0.20

True marg. probs P-o-l marg. probs

η1(x) = 0.4 η′3(x) = 0.3
η2(x) = 0.35 η′1(x) = 0.275
η3(x) = 0.3 η′2(x) = 0.225
η4(x) = 0.2 η′4(x) = 0.2

• Theorem: consistent for precision@k for independent labels

80 / 94

HSM for MLC

• Pick-one-label heuristic used, for example, in FastText:

η′j(x) = P′(yj = 1 |x) =
∑
y∈Y

yj
P(y |x)∑m
j′=1 yj′

• Theorem: inconsistent for label-wise logistic loss and precision@k

labels y probability P(y |x)

{1} 0.15
{2} 0.10
{1, 2} 0.25
{3} 0.30
{4} 0.20

True marg. probs P-o-l marg. probs

η1(x) = 0.4 η′3(x) = 0.3
η2(x) = 0.35 η′1(x) = 0.275
η3(x) = 0.3 η′2(x) = 0.225
η4(x) = 0.2 η′4(x) = 0.2

• Theorem: consistent for precision@k for independent labels

80 / 94

Probabilistic label trees (PLT)25

• Similar tree structure and encoding of yj = 1 by z = (1, z1, . . . , zl)

P(z0 = 1 |x) = 1

P(z1 = 0 | z0 = 1,x) = 0.5

P(z2=0 | z0=1, z1=0,x)=1.0

P(z=(1, 0, 0) |x)=0.5

z2 = 0

P(z2=1 | z0=1, z1=0,x)=0.1

P(z=(1, 0, 1) |x)=0.2

z2 = 1

z1 = 0

P(z1 = 1 | z0 = 1,x) = 0.6

P(z2=0 | z0=1, z1=1,x)=0.5

P(z=(1, 1, 0) |x)=0.3

z2 = 0

P(z2=1 | z0=1, z1=1,x)=0.7

P(z=(1, 1, 1) |x)=0.42

z2 = 1

z1 = 1

• Marginal probabilities ηj(x) obtained by:

ηj(x) = P(z |x) =
l∏

i=0

P(zi|zi−1,x)

• zi ⇔ at least one positive label in the corresponding subtree

•
∑

zt
P(zt | zt−1) ≥ 1 ⇒ separate classifiers in all nodes of the tree

25 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier. Extreme F-measure maximization
using sparse probability estimates. In ICML, 2016

81 / 94

Probabilistic label trees (PLT)25

• Similar tree structure and encoding of yj = 1 by z = (1, z1, . . . , zl)

P(z0 = 1 |x) = 1

P(z1 = 0 | z0 = 1,x) = 0.5

P(z2=0 | z0=1, z1=0,x)=1.0

P(z=(1, 0, 0) |x)=0.5

z2 = 0

P(z2=1 | z0=1, z1=0,x)=0.1

P(z=(1, 0, 1) |x)=0.2

z2 = 1

z1 = 0

P(z1 = 1 | z0 = 1,x) = 0.6

P(z2=0 | z0=1, z1=1,x)=0.5

P(z=(1, 1, 0) |x)=0.3

z2 = 0

P(z2=1 | z0=1, z1=1,x)=0.7

P(z=(1, 1, 1) |x)=0.42

z2 = 1

z1 = 1

• Marginal probabilities ηj(x) obtained by:

ηj(x) = P(z |x) =

l∏
i=0

P(zi|zi−1,x)

• zi ⇔ at least one positive label in the corresponding subtree

•
∑

zt
P(zt | zt−1) ≥ 1 ⇒ separate classifiers in all nodes of the tree

25 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier. Extreme F-measure maximization
using sparse probability estimates. In ICML, 2016

81 / 94

Probabilistic label trees (PLT)25

• Similar tree structure and encoding of yj = 1 by z = (1, z1, . . . , zl)

P(z0 = 1 |x) = 1

P(z1 = 0 | z0 = 1,x) = 0.5

P(z2=0 | z0=1, z1=0,x)=1.0

P(z=(1, 0, 0) |x)=0.5

z2 = 0

P(z2=1 | z0=1, z1=0,x)=0.1

P(z=(1, 0, 1) |x)=0.2

z2 = 1

z1 = 0

P(z1 = 1 | z0 = 1,x) = 0.6

P(z2=0 | z0=1, z1=1,x)=0.5

P(z=(1, 1, 0) |x)=0.3

z2 = 0

P(z2=1 | z0=1, z1=1,x)=0.7

P(z=(1, 1, 1) |x)=0.42

z2 = 1

z1 = 1

• Marginal probabilities ηj(x) obtained by:

ηj(x) = P(z |x) =

l∏
i=0

P(zi|zi−1,x)

• zi ⇔ at least one positive label in the corresponding subtree

•
∑

zt
P(zt | zt−1) ≥ 1 ⇒ separate classifiers in all nodes of the tree

25 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier. Extreme F-measure maximization
using sparse probability estimates. In ICML, 2016

81 / 94

Probabilistic label trees (PLT)25

• Similar tree structure and encoding of yj = 1 by z = (1, z1, . . . , zl)

P(z0 = 1 |x) = 1

P(z1 = 0 | z0 = 1,x) = 0.5

P(z2=0 | z0=1, z1=0,x)=1.0

P(z=(1, 0, 0) |x)=0.5

z2 = 0

P(z2=1 | z0=1, z1=0,x)=0.1

P(z=(1, 0, 1) |x)=0.2

z2 = 1

z1 = 0

P(z1 = 1 | z0 = 1,x) = 0.6

P(z2=0 | z0=1, z1=1,x)=0.5

P(z=(1, 1, 0) |x)=0.3

z2 = 0

P(z2=1 | z0=1, z1=1,x)=0.7

P(z=(1, 1, 1) |x)=0.42

z2 = 1

z1 = 1

• Marginal probabilities ηj(x) obtained by:

ηj(x) = P(z |x) =

l∏
i=0

P(zi|zi−1,x)

• zi ⇔ at least one positive label in the corresponding subtree

•
∑

zt
P(zt | zt−1) ≥ 1 ⇒ separate classifiers in all nodes of the tree

25 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier. Extreme F-measure maximization
using sparse probability estimates. In ICML, 2016

81 / 94

Probabilistic label trees (PLT)

• Training:
I independent training of all node classifiers
I reduced complexity by the conditions used in the nodes
I batch or online learning of node classifiers
I sparse representation: small number of active features in lower nodes,

feature hashing
I dense representation: hidden representation of features (strong

compression)

• Theoretical guarantees
I Regret bounds for the absolute error of marginal probability estimates

and precision@k

• Tree structure:
I Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical

clustering of labels), online training

• Prediction:
I depth first search/beam search

82 / 94

Probabilistic label trees (PLT)

• Training:
I independent training of all node classifiers
I reduced complexity by the conditions used in the nodes
I batch or online learning of node classifiers
I sparse representation: small number of active features in lower nodes,

feature hashing
I dense representation: hidden representation of features (strong

compression)

• Theoretical guarantees
I Regret bounds for the absolute error of marginal probability estimates

and precision@k

• Tree structure:
I Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical

clustering of labels), online training

• Prediction:
I depth first search/beam search

82 / 94

Probabilistic label trees (PLT)

• Training:
I independent training of all node classifiers
I reduced complexity by the conditions used in the nodes
I batch or online learning of node classifiers
I sparse representation: small number of active features in lower nodes,

feature hashing
I dense representation: hidden representation of features (strong

compression)

• Theoretical guarantees
I Regret bounds for the absolute error of marginal probability estimates

and precision@k

• Tree structure:
I Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical

clustering of labels), online training

• Prediction:
I depth first search/beam search

82 / 94

Probabilistic label trees (PLT)

• Training:
I independent training of all node classifiers
I reduced complexity by the conditions used in the nodes
I batch or online learning of node classifiers
I sparse representation: small number of active features in lower nodes,

feature hashing
I dense representation: hidden representation of features (strong

compression)

• Theoretical guarantees
I Regret bounds for the absolute error of marginal probability estimates

and precision@k

• Tree structure:
I Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical

clustering of labels), online training

• Prediction:
I depth first search/beam search

82 / 94

Empirical studies

• HSM with pick-one-label
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• PLT
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• Parabel26

I PLT-like algorithm
I Batch learning with squared hinge loss
I Binary tree with higher arity of the last tree level
I Tree structure obtained via 2-means++ algorithm

26 Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018

83 / 94

Empirical studies

• HSM with pick-one-label
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• PLT
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• Parabel26

I PLT-like algorithm
I Batch learning with squared hinge loss
I Binary tree with higher arity of the last tree level
I Tree structure obtained via 2-means++ algorithm

26 Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018

83 / 94

Empirical studies

• HSM with pick-one-label
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• PLT
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• Parabel26

I PLT-like algorithm
I Batch learning with squared hinge loss
I Binary tree with higher arity of the last tree level
I Tree structure obtained via 2-means++ algorithm

26 Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018

83 / 94

Empirical studies

• HSM with pick-one-label
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• PLT
I online training
I b-ary trees
I Vowpal Wabbit: complete-sorted tree and feature hashing
I FastText: Huffman tree and hidden representation of features

• Parabel26

I PLT-like algorithm
I Batch learning with squared hinge loss
I Binary tree with higher arity of the last tree level
I Tree structure obtained via 2-means++ algorithm

26 Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018

83 / 94

Empirical studies

• Results on the WikiLSHTC dataset
I Stats: m = 325056, d = 1617899, ntest = 587084, ntrain = 1778351
I Results for precision@k:

Method P@1

HSM-vw 36.90
PLT-vw 41.63

FastText 41.28
PLT-FastText 41.58

Parabel 59.23

84 / 94

Decision trees vs. Label trees

Decision trees Label trees

tree structure X X
structure learning X X
batch learning X X
online learning X X
number of trees ≥ 1 ≥ 1
number of leaves O(n) m
internal node models cuts/linear linear/any model
prediction empirical distribution score along a path
visited paths during prediction 1 several
sparse probability estimation X X

85 / 94

Label filtering

86 / 94

Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

j∗ = arg max
j∈{1,...,m}

w>j x ,

i.e., as the problem of maximum inner product search (MIPS)

• Naive solution is O(m)

• Optimal exact algorithm: the threshold algorithm 27

I Does not perform well with a large number of features and labels

• There is a need for approximate solution . . .

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS ’01, pages 102–113.
ACM, New York, NY, USA, 2001

87 / 94

Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

j∗ = arg max
j∈{1,...,m}

w>j x ,

i.e., as the problem of maximum inner product search (MIPS)

• Naive solution is O(m)

• Optimal exact algorithm: the threshold algorithm 27

I Does not perform well with a large number of features and labels

• There is a need for approximate solution . . .

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS ’01, pages 102–113.
ACM, New York, NY, USA, 2001

87 / 94

Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

j∗ = arg max
j∈{1,...,m}

w>j x ,

i.e., as the problem of maximum inner product search (MIPS)

• Naive solution is O(m)

• Optimal exact algorithm: the threshold algorithm 27

I Does not perform well with a large number of features and labels

• There is a need for approximate solution . . .

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS ’01, pages 102–113.
ACM, New York, NY, USA, 2001

87 / 94

Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

j∗ = arg max
j∈{1,...,m}

w>j x ,

i.e., as the problem of maximum inner product search (MIPS)

• Naive solution is O(m)

• Optimal exact algorithm: the threshold algorithm 27

I Does not perform well with a large number of features and labels

• There is a need for approximate solution . . .

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS ’01, pages 102–113.
ACM, New York, NY, USA, 2001

87 / 94

Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

j∗ = arg max
j∈{1,...,m}

w>j x ,

i.e., as the problem of maximum inner product search (MIPS)

• Naive solution is O(m)

• Optimal exact algorithm: the threshold algorithm 27

I Does not perform well with a large number of features and labels

• There is a need for approximate solution . . .

27 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In PODS ’01, pages 102–113.
ACM, New York, NY, USA, 2001

87 / 94

MIPS vs. nearest neighbors

• MIPS is similar to the nearest neighbor search under the square or
cosine distance:

j∗ = arg min
j∈{1,...,m}

‖wj − x‖22 = arg max
j∈{1,...,m}

w>j x−
‖wj‖22

2

j∗ = arg max
j∈{1,...,m}

w>j x

‖wj‖‖x‖
= arg max

j∈{1,...,m}

w>j x

‖wj‖

• Some tricks needs to be used to treat MIPS as nearest neighbor
search28

28 A. Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum inner product search (mips). In
UAI, 2015

88 / 94

MIPS vs. nearest neighbors

• MIPS is similar to the nearest neighbor search under the square or
cosine distance:

j∗ = arg min
j∈{1,...,m}

‖wj − x‖22 = arg max
j∈{1,...,m}

w>j x−
‖wj‖22

2

j∗ = arg max
j∈{1,...,m}

w>j x

‖wj‖‖x‖
= arg max

j∈{1,...,m}

w>j x

‖wj‖

• Some tricks needs to be used to treat MIPS as nearest neighbor
search28

28 A. Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum inner product search (mips). In
UAI, 2015

88 / 94

Nearest neighbors

• A well-studied problem with many existing algorithms:

I For low-dimensional problems efficient tree-based structures exist29

I Approximate nearest neighbor search via locality-sensitive hashing30

I Fast search via k-means31 or hierarchical k-means32

29 J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209–226, 1977

30 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In ACM
Symposium on Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM

31 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017
32 Alex Auvolat, Hugo Larochelle, Sarath Chandar, Pascal Vincent, and Yoshua Bengio. Clustering is efficient for approximate

maximum inner product search. CoRR, abs/1507.05910, 2015

89 / 94

Nearest neighbors

• A well-studied problem with many existing algorithms:
I For low-dimensional problems efficient tree-based structures exist29

I Approximate nearest neighbor search via locality-sensitive hashing30

I Fast search via k-means31 or hierarchical k-means32

29 J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209–226, 1977

30 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In ACM
Symposium on Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM

31 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017
32 Alex Auvolat, Hugo Larochelle, Sarath Chandar, Pascal Vincent, and Yoshua Bengio. Clustering is efficient for approximate

maximum inner product search. CoRR, abs/1507.05910, 2015

89 / 94

Nearest neighbors

• A well-studied problem with many existing algorithms:
I For low-dimensional problems efficient tree-based structures exist29

I Approximate nearest neighbor search via locality-sensitive hashing30

I Fast search via k-means31 or hierarchical k-means32

29 J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209–226, 1977

30 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In ACM
Symposium on Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM

31 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017
32 Alex Auvolat, Hugo Larochelle, Sarath Chandar, Pascal Vincent, and Yoshua Bengio. Clustering is efficient for approximate

maximum inner product search. CoRR, abs/1507.05910, 2015

89 / 94

Nearest neighbors

• A well-studied problem with many existing algorithms:
I For low-dimensional problems efficient tree-based structures exist29

I Approximate nearest neighbor search via locality-sensitive hashing30

I Fast search via k-means31 or hierarchical k-means32

29 J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209–226, 1977

30 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In ACM
Symposium on Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM

31 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017
32 Alex Auvolat, Hugo Larochelle, Sarath Chandar, Pascal Vincent, and Yoshua Bengio. Clustering is efficient for approximate

maximum inner product search. CoRR, abs/1507.05910, 2015

89 / 94

Agenda

1 Extreme classification: applications and challenges

2 Algorithms

3 Live demonstration

90 / 94

Live demonstration

91 / 94

Useful Links

Extreme Classification Repository 33

• DataSets
I Around a dozen datasets from Wikipedia, Amazon, Delicious
I Datasets in raw and tf-idf format

• Code
I Around a dozen open source codes
I State-of-the-art embedding, tree and linear methods

• Comparisons
I Comparison among state-of-the-art methods on various datasets
I On Precision@k and nDCG@k and their propensity scored variants

• Papers
I Links to most of the recent papers in extreme classification

33 http://manikvarma.org/downloads/XC/XMLRepository.html

92 / 94

Useful Links

Extreme Classification Repository 33

• DataSets
I Around a dozen datasets from Wikipedia, Amazon, Delicious
I Datasets in raw and tf-idf format

• Code
I Around a dozen open source codes
I State-of-the-art embedding, tree and linear methods

• Comparisons
I Comparison among state-of-the-art methods on various datasets
I On Precision@k and nDCG@k and their propensity scored variants

• Papers
I Links to most of the recent papers in extreme classification

33 http://manikvarma.org/downloads/XC/XMLRepository.html

92 / 94

Useful Links

Extreme Classification Repository 33

• DataSets
I Around a dozen datasets from Wikipedia, Amazon, Delicious
I Datasets in raw and tf-idf format

• Code
I Around a dozen open source codes
I State-of-the-art embedding, tree and linear methods

• Comparisons
I Comparison among state-of-the-art methods on various datasets
I On Precision@k and nDCG@k and their propensity scored variants

• Papers
I Links to most of the recent papers in extreme classification

33 http://manikvarma.org/downloads/XC/XMLRepository.html

92 / 94

Useful Links

Extreme Classification Repository 33

• DataSets
I Around a dozen datasets from Wikipedia, Amazon, Delicious
I Datasets in raw and tf-idf format

• Code
I Around a dozen open source codes
I State-of-the-art embedding, tree and linear methods

• Comparisons
I Comparison among state-of-the-art methods on various datasets
I On Precision@k and nDCG@k and their propensity scored variants

• Papers
I Links to most of the recent papers in extreme classification

33 http://manikvarma.org/downloads/XC/XMLRepository.html

92 / 94

Take-away message

93 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:

I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:

I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:

I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:

I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:
I label embeddings,

I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:
I label embeddings,
I smart 1-vs-All approaches,

I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:
I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,

I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:
I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

94 / 94

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:
I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

http://www.cs.put.poznan.pl/kdembczynski/

xmlc-tutorial-ecir-2018/

94 / 94

http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/
http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/

Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and stastistical challenges

• Different learning paradigms:
I label embeddings,
I smart 1-vs-All approaches,
I tree-based methods,
I label filtering/maximum inner product search.

http://www.cs.put.poznan.pl/kdembczynski/

xmlc-tutorial-ecir-2018/

Acknowledgments: Kalina Jasinska, Marek Wydmuch, Robert Busa-
Fekete, Eyke Hüllermeier, Bernhard Schölkopf

94 / 94

http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/
http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/

