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Extreme multi-label classification is a problem of
labeling an item with a small set of tags out of an

extremely large number of potential tags
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Alan Turing, 1912 births, 1954 deaths
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
English computer scientists, English inventors, English logicians
English long-distance runners, English mathematicians
English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men
Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists
LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow
People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists
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New question ⇒ Assignment/recommendation of users
6 / 50



Sequence of words ⇒ Recommendation of the next word
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Possible bid phrases:

• Zurich car insurance

• Car insurance

• Auto insurance

• Vehicle insurance

• Electric car insurance

On-line ad ⇒ Recommendation of queries to an advertiser
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Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0
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Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

⇓

Computational and statistical challenges
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Extreme classification: Computational challenges

• Computational complexity:

I Naive one-vs-all approach (a dense linear model for each label):

ŷ = JWx > 0K

Problem size: n > 106, d > 106, m > 105

⇓
Complexity: training time > 1017

space > 1011

test time > 1011

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction
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Extreme classification: Computational challenges

• It does not have to be so hard:

I High performance computing resources available
I Large data −→ sparse data (sparse features and labels)
I Fast learning algorithms for standard learning problems exist

• New algorithmic solutions:

I Smart 1-vs-All approaches
I Label filtering/maximum inner product search (MIPS)
I Embeddings
I Tree-based methods
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Extreme classification: Statistical challenges

• Predictive performance:

I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F?
I Learning theory for large m
I Training and prediction under limited time and space budged
I Unreliable learning information: weak, missing, or only positive labels
I Long-tail label distributions and zero-shot learning
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Extreme classification: Statistical challenges

• Unreliable learning information:

I We cannot expect that all labels will be properly checked and
assigned to training examples

I This leads to learning with weak, missing or only positive labels.

14 / 50



Extreme classification: Statistical challenges

• Unreliable learning information:
I We cannot expect that all labels will be properly checked and

assigned to training examples

I This leads to learning with weak, missing or only positive labels.

Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists

14 / 50



Extreme classification: Statistical challenges

• Unreliable learning information:
I We cannot expect that all labels will be properly checked and

assigned to training examples
I This leads to learning with weak, missing or only positive labels.

Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists

14 / 50



Extreme classification: Statistical challenges

• Unreliable learning information:
I We cannot expect that all labels will be properly checked and

assigned to training examples
I This leads to learning with weak, missing or only positive labels.

Alan Turing, 1912 births, 1954 deaths,
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
. . .

14 / 50



Extreme classification: Statistical challenges

• Unreliable learning information:
I We cannot expect that all labels will be properly checked and

assigned to training examples
I This leads to learning with weak, missing or only positive labels.

Alan Turing, 1912 births, 1954 deaths,
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
. . .

Category Enigma machine not assigned!

14 / 50



Extreme classification: Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of labels in the WikiLSHTC dataset:1
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I Many labels with only few examples (⇒ one- and zero-shot learning)

1 http://manikvarma.org/downloads/XC/XMLRepository.html
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Formal setting

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)
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Formal setting

• Input x ∈ X drawn from a distribution P(x)

I usually a feature vector, X ⊆ Rd

• Outcome y ∈ Y drawn from a distribution P(y |x)

I a vector of labels y = (y1, y2, . . . , ym)

• Prediction ŷ = h(x) by means of prediction function h : X → Y
I h returns prediction ŷ = h(x) for every input x

• Loss of our prediction: `(y, ŷ)

I ` : Y × Y → R+ is a task-specific loss function

• Goal: find a prediction function with small loss
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I h returns prediction ŷ = h(x) for every input x

• Loss of our prediction: `(y, ŷ)

I ` : Y × Y → R+ is a task-specific loss function

• Goal: find a prediction function with small loss

18 / 50



Formal setting

• Goal: minimize the expected loss over all examples (risk):

L`(h) = E(x,y)∼P [`(y,h(x))] = ExEy|x [`(y,h(x))]

• The optimal prediction function, the so-called Bayes classifier, is:

h∗(x) = arg min
h

L`(h|x)

• The regret of a classifier h with respect to ` is defined as:

reg`(h) = L`(h)− L`(h∗) = L`(h)− L∗`
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Decision-theoretic recipe for learning algorithms

1 For the loss function of interest derive the form of the Bayes classifier

2 Identify the quantities needed to compute the Bayes classifier

3 Design an algorithm for estimating this quantities

4 For a test example, compute the estimates and plug-in into the Bayes
classifier
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Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0
• The optimal strategy:2

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x)

2 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and label dependence in multi-label
classification. Machine Learning, 88:5–45, 2012 21 / 50
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Hamming loss

• Hamming loss:
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m

m∑
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Jyj 6= hj(x)K

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0
• The optimal strategy:2

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x)

η̂1(x) η̂2(x) η̂3(x) η̂4(x) η̂5(x) η̂6(x) η̂7(x)

τ = 0.5
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Hamming loss

• Proof:

LH(h |x) =
∑
y∈Y

P(y |x)`H(y,h(x))

=
∑
y∈Y

P(y |x)
m∑
j=1

Jyj 6= hj(x)K

=

m∑
j=1

∑
y∈Y

P(y |x)Jyj 6= hj(x)K

=

m∑
j=1

∑
y∈Y

P(y |x) (yj(1− hj(x)) + (1− yj)hj(x))

=

m∑
j=1

P(yj = 1 |x)(1− hj(x)) +P(yj = 0 |x)hj(x)

=

m∑
j=1

L0/1(yj , hj(x))

The result follows from the well-known fact about the risk minimization in binary

classification.

Swapping sums

Marginalization

22 / 50
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Hamming loss

• Proof:

LH(h |x) =
∑
y∈Y

P(y |x)`H(y,h(x))
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∑
y∈Y

P(y |x)
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Precision@k

• Precision at position k:

prec@k(y,h,x) =
1

k

∑
j∈Ŷk

Jyj = 1K ,

where Ŷk is a set of k labels predicted by h.

• The optimal strategy: select top k labels according to ηj(x)
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k

∑
j∈Ŷk

Jyj = 1K ,

where Ŷk is a set of k labels predicted by h.
• The optimal strategy: select top k labels according to ηj(x)

η̂6(x) η̂2(x) η̂1(x) η̂5(x) η̂7(x) η̂3(x) η̂4(x)
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Normalized Discounted Cumulative Gain

• Normalized Discounted Cumulative Gain at position k:

NDCG@k(y, f,x) = Nk(y)

k∑
r=1

yπ(r)

log(1 + r)
,

where π is a permutation of labels for x returned by ranker f , and
Nk(y) normalizes NDCG@k to the interval [0, 1]:

Nk(y) =

max(k,
∑m
i=1 yi)∑

r=1

1

log(1 + r)

−1

24 / 50



Normalized Discounted Cumulative Gain

• The optimal strategy: rank labels according to the following
marginal quantities:

∆j(x) =
∑
y:yj=1

Nk(y)P(y |x)
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• The optimal strategy: rank labels according to the following
marginal quantities:

∆j(x) =
∑
y:yj=1

Nk(y)P(y |x)
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Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64
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ŷ51 ŷ52 ŷ53 ŷ54
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Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems3

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

• The optimal F-measure is F (τ∗): no binary classifier can be better

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗

3 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
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• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

• The optimal F-measure is F (τ∗): no binary classifier can be better

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗

η̂1(x) η̂2(x) η̂3(x) η̂4(x) η̂5(x) η̂6(x) η̂7(x)

τ6

τ2

τ1

τ5
τ7τ3

τ4

3 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
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Predictive models

• Lesson learned: Train models that estimate marginal probabilities or
other related marginal quantities

28 / 50



Outline

1 Extreme multi-label classification: applications and challenges

2 Theoretical framework

3 Tree-based algorithms: decision and label trees

4 Take-away message

29 / 50



Decision trees

• Decision trees:

I Partition of the feature space to small subregions:

I Algorithm: recursive splits of the regions
I Typical splits: parallel to the axes (large number of possible splits)
I Splitting criterion: loss over partitions (can be costly)
I Fast prediction: logarithmic in n
I Decision trees for extreme classification?
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Decision trees

• Decision trees for extreme classification:

I Limited number of potential splits ⇒ linear splits?
I Adjusting of linear splits ⇒ Assignment of examples to partitions?
I Efficient splitting criterion
I New algorithms: LomTree4, FastXML5, LdSM6

4 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015
5 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In

KDD, pages 263–272. ACM, 2014
6 Maryam Majzoubi and Anna Choromanska. LdSM: Logarithm-depth streaming multi-label decision trees, 2019
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FastXML

• Uses an ensemble of decision trees

• Sparse linear classifiers trained in internal nodes

• Very efficient training procedure

• Empirical distributions in leaves

• A test example passes one path from the root to a leaf

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η1(x)=0.6
η12(x)=0.45
. . .

η44(x)=0.46
η3(x)=0.15
η102(x)=0.05
. . .

η45(x)=0.45
η2(x)=0.4
. . .

w3 · x ≥ 0

η3(x)=0.46
η1(x)=0.15
. . .

η34(x)=0.8
η45(x)=0.45
η5(x)=0.15
. . .
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Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδi log(1 + exp(−δiw>x))

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(yi, π

+)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(yi, π

−)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}n, π+, π− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimization of π±

3. Optimization of δ
4. Optimization of w
5. Repeat 2-4

33 / 50



Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδi log(1 + exp(−δiw>x))

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(yi, π

+)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(yi, π

−)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}n, π+, π− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimization of π±

3. Optimization of δ
4. Optimization of w
5. Repeat 2-4

33 / 50



Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδi log(1 + exp(−δiw>x))

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(yi, π

+)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(yi, π

−)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}n, π+, π− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimization of π±

3. Optimization of δ
4. Optimization of w
5. Repeat 2-4

33 / 50



FastXML7

7 https://www.youtube.com/watch?v=1X71fTx1LKA
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FastXML7

Bernoulli sampling of δ
(with parameter p = 0.5)

7 https://www.youtube.com/watch?v=1X71fTx1LKA
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FastXML7

Optimization of π±

(rank labels according to

∆̂±j =
∑
i:δi=±1Nm(yi)yi,j)

7 https://www.youtube.com/watch?v=1X71fTx1LKA
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FastXML7

Optimization of δ
(δ∗i = sign(v−i − v

+
i ) with

v±i = Cδ± log(1+e∓δiw
>x)+

CrNDCG@m(yi, π
±))

7 https://www.youtube.com/watch?v=1X71fTx1LKA
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FastXML7
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FastXML7

Optimization of w
(w∗ = arg minw ‖w‖1 +∑n
i=1 Cδi log(1 + e−δiw

>x))

7 https://www.youtube.com/watch?v=1X71fTx1LKA
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Label trees

• Label trees:
I Organize classifiers in a tree structure (one leaf ⇔ one label):

0

1

3

y1

4

y2

2

5

y3

6

y4

I Tree structure: partitioning of labels (predefined or trained)
I Node classifiers: output variables defined by the label partitioning
I Fast prediction: almost logarithmic in m
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Label trees with probabilistic classifiers

Nested dichotomies,8 Conditional probability trees,9 Hierarchical
softmax,10 fastText,11 Probabilistic classifier chains12

⇓

Probability classifier trees13

⇓

Hierarchical softmax

8 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997

E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In ICML, 2004
9 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and

algorithms. In UAI, pages 51–58, 2009
10 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246–252,

2005
11 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,

abs/1607.01759, 2016
12 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In

ICML, pages 279–286. Omnipress, 2010
13 Krzysztof Dembczyński, Wojciech Kot lowski, Willem Waegeman, Róbert Busa-Fekete, and Eyke Hüllermeier. Consistency of

probabilistic classifier trees. In ECMLPKDD. Springer, 2016
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Hierarchical softmax (HSM)

• Encode the labels by a prefix code (⇒ tree structure)

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

• Each label y coded by z = (z1, . . . , zl) ∈ C
• An internal node identified by a partial code zj = (z1, . . . , zj)

• The code does not have to be binary

• Different structures possible: random tree, Huffman tree, trained
structure
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Hierarchical softmax (HSM)

• HSM estimates P(y |x) by following a path from the root to a leaf:

P(y |x) = P(z |x) =

l∏
j=1

P(zj |zj−1,x)

x

P(z1 = 0 |x) = 0.4

P(z2=0 | z1=0,x)=1.0

P(z=(0, 0) |x)=0.4

z2 = 0

P(z2=1 | z1=0,x)=0.0

P(z=(0, 1) |x)=0.0

z2 = 1

z1 = 0

P(z1 = 1 |x) = 0.6

P(z2=0 | z1=1,x)=0.4

P(z=(1, 0) |x)=0.24

z2 = 0

P(z2=1 | z1=1,x)=0.6

P(z=(1, 1) |x)=0.36

z2 = 1

z1 = 1

• Training: separate learning problems in the internal nodes

• Prediction: depth first search/beam search
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HSM for XMLC

• Pick-one-label heuristic used, for example, in fastText:

η′j(x) = P′(yj = 1 |x) =
∑
y∈Y

yj
P(y |x)∑m
j′=1 yj′

• Theorem: inconsistent for label-wise logistic loss and precision@k

labels y probability P(y |x)

{1} 0.15
{2} 0.10
{1, 2} 0.25
{3} 0.30
{4} 0.20

True marg. probs P-o-l marg. probs

η1(x) = 0.4 η′3(x) = 0.3
η2(x) = 0.35 η′1(x) = 0.275
η3(x) = 0.3 η′2(x) = 0.225
η4(x) = 0.2 η′4(x) = 0.2

• Theorem: consistent for precision@k for independent labels
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Probabilistic label trees (PLTs)14

• Similar tree structure and encoding of yj = 1 by z = (1, z1, . . . , zl)

P(z0 = 1 |x) = 1

P(z1 = 0 | z0 = 1,x) = 0.5

P(z2=0 | z0=1, z1=0,x)=1.0

P(z=(1, 0, 0) |x)=0.5

z2 = 0

P(z2=1 | z0=1, z1=0,x)=0.1

P(z=(1, 0, 1) |x)=0.05

z2 = 1

z1 = 0

P(z1 = 1 | z0 = 1,x) = 0.6

P(z2=0 | z0=1, z1=1,x)=0.5

P(z=(1, 1, 0) |x)=0.3

z2 = 0

P(z2=1 | z0=1, z1=1,x)=0.7

P(z=(1, 1, 1) |x)=0.42

z2 = 1

z1 = 1

• Marginal probabilities ηj(x) obtained by:

ηj(x) = P(z |x) =
l∏

i=0

P(zj |zj−1,x)

• zj ⇔ at least one positive label in the corresponding subtree
• ∑

zj
P(zj | zj−1) ≥ 1 ⇒ separate classifiers in all nodes of the tree

14 K. Jasinska, K. Dembczyński, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier. Extreme F-measure maximization
using sparse probability estimates. In ICML, pages 1435–1444, 2016

Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and Krzysztof Dembczyński. A no-regret general-
ization of hierarchical softmax to extreme multi-label classification. In NeurIPS, pages 6355–6366. 2018
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Probabilistic label trees (PLTs) for multi-class distribution

• For multi-class distribution it always holds that:

P(z0 = 1 |x) = 1 and
∑
zj

P (zj |zj−1,x) = 1

• All classifiers can be moved one level up ⇒ no classifiers in leaves

• PLTs boil down to HSM

41 / 50



Probabilistic label trees (PLTs)

• Training:
I independent training of all node classifiers
I reduced complexity by the conditions used in the nodes
I batch or online learning of node classifiers
I sparse representation: small number of active features in lower nodes,

feature hashing
I dense representation: hidden representation of features (strong

compression)

• Tree structure:
I Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical

clustering of labels), online training

• Prediction:
I depth first search/beam search
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Theoretical guarantees

• Theorem: For any distribution P and internal node classifiers fzi ,
the following holds:

|ηj(x)− η̂j(x)| ≤
l∑

i=0

P(zi−1 |x)

√
2

λ

√
reg`(fzi | zi−1,x) ,

where reg`(fzi | zi−1,x) is a binary classification regret for a strongly
proper composite loss ` and λ is a constant specific for loss `.
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Theoretical guarantees

• Theorem: For any distribution P and classifier h delivering estimates
η̂j(x) of the marginal probabilities of labels, the following holds:

regp@k(h |x) =
1

k

∑
i∈Yk

ηi(x)− 1

k

∑
j∈Ŷk

ηj(x) ≤ 2 max
l
|ηl(x)− η̂l(x)|
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Theoretical guarantees

• PLTs are no-regret generalization of HSM to multi-label problems.
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Empirical studies15

Dataset Metrics FastXML PPDSparse DiSMEC FT LT XT Parabel XML-CNN

Wiki-30K
Ntrain = 14146
Ntest = 6616
d = 101938
m = 30938

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

82.03
67.47
57.76
16m
3.00ms
354M

73.80
60.90
50.40
†
†
†

85.20
74.60
65.90
†
†
†

80.78
50.46
36.79
10m
1.88ms
513M

80.85
50.59
37.68
12m
10.09ms
513M

85.23
73.18
63.39
18m
0.83ms
259M

83.77
71.96
62.44
5m
1.63ms∗
109M∗

82.78
66.34
56.23
88m?
1.39ms?
?

Delicious-200K
Ntrain = 196606
Ntest = 100095
d = 782585
m = 205443

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

42.81
38.76
36.34
458m
4.86ms
15.4G

45.05
38.34
34.90
4781m
275ms
9.4G

44.71
38.08
34.7
1080h
300ms
18.0G

42.22
37.90
35.05
271m
1.97ms
9.0G

42.71
36.27
33.43
563m
1.98ms
9.0G

47.85
42.08
39.13
502m
1.41ms
1.9G

43.32
38.49
35.83
105m
1.31ms∗
1.8G∗

‡
‡
‡
‡
‡
‡

WikiLSHTC
Ntrain = 1778351
Ntest = 587084
d = 617899
m = 325056

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

49.35
32.69
24.03
724m
2.17ms
9.3G

64.08
41.26
30.12
236m
37.76ms
5.2G

64.94
42.71
31.5
750h
2580ms
3.8G

41.13
24.09
17.44
207
1.25ms
6.5G

50.15
31.95
23.59
212m
4.76ms
6.5G

58.73
39.24
29.26
550m
0.81ms
3.3G

61.53
40.07
29.25
34m
0.92ms∗
1.1G∗

‡
‡
‡
‡
‡
‡

Wiki-500K
Ntrain = 1813391
Ntest = 783743
d = 2381304
m = 501070

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

54.10
29.45
21.21
3214m
8.03ms
63G

70.16
50.57
39.66
1771m
113.70ms
3.4G

70.20
50.60
39.70
7495h
9300ms
14.7G

32.73
19.02
14.46
496m
2.05ms
11G

37.18
21.62
16.01
531m
6.43ms
11G

64.48
45.84
35.46
1253m
1.07ms
5.5G

66.12
47.02
36.45
168m
4.68ms∗
2.0G∗

59.85
39.28
29.81
7032m?
21.06ms?
3.7G?

Amazon-670K
Ntrain = 490449
Ntest = 153025
d = 135909
m = 670091

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

34.24
29.30
26.12
422m
3.39ms
10G

45.32
40.37
36.92
102m
66.09ms
6.0G

45.37
40.40
36.96
373h
1380ms
3.8G

25.47
21.47
18.61
162m
7.84ms
3.2G

27.67
20.96
17.72
182m
5.13ms
3.2G

39.90
35.36
32.04
241m
1.72ms
1.5G

41.59
37.18
33.85
8m
0.68ms∗
0.7G∗

35.39
33.74
32.64
3134m?
16.18ms?
1.5G?

15 XMLC benchmarks from http://manikvarma.org/downloads/XC/XMLRepository.html
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Empirical studies

• Selected results for precision@1

Method WikiLSHTC Amazon670K Delicious200K

HSM-vw 36.90 33.64 41.58
PLT-vw 41.63 36.85 45.27

FastText 41.13 25.47 42.22
ExtremeText 58.73 39.90 47.85
Parabel16 61.53 41.59 43.32

FastXML 49.75 34.24 42.81

16 Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018
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Empirical studies

• The ablation analysis of different variants of XT.

Huffman
tree

Huffman
+L2

Huffman
+TF-IDF

Huffman
+TF-IDF+L2

top-down
clustering

top-down
+L2

top-down
+TF-IDF

top-down
+TF-IDF+L2
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20

40
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Outline

1 Extreme multi-label classification: applications and challenges

2 Theoretical framework

3 Tree-based algorithms: decision and label trees

4 Take-away message
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Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational and statistical challenges
• Tree-based algorithms:

I Decision trees
I Label trees ⇒ Probabilistic label trees

https://www.cs.put.poznan.pl/kdembczynski
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