Label tree algorithms for extreme classification

Krzysztof Dembczynski

Poznan University of Technology, Poland

UGent Data Science Seminars, Ghent, June 13, 2019



Outline

1 Extreme multi-label classification: applications and challenges

2 Theoretical framework

3 Tree-based algorithms: decision and label trees

4 Take-away message

1/50



Outline

1 Extreme multi-label classification: applications and challenges

2/50



Extreme multi-label classification is a problem of
labeling an item with a small set of tags out of an
extremely large number of potential tags
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stackoverflow

Stack Overflow is a question and answer Here's how it works:
site for professional and enthusiast

programmers. It's 100% free, no
registration required. @
Take the 2-minute tour
Anybody can ask Anybody can Th

Top Questions

0

votes

votes

0

answers
answers

1

views

views

views

1k

views

a question answer

interesting m featured hot  week month

sending and receiving mails from registered user emailaddresses
php email web-applications asked 34s ago Angelo A 489
How to create sprites using ConfigParser in Pygame

python | pygame modified 37s ago Sudoadmin §

Fortran: possible fibonacci logical error
fortran  fibonacel  fortrangs answered 40s ago oropendola 326
Angular - Using one controller for many coherent views across
multiple HTTP requests

New question = Assignment/recommendation of users
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The next word o
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Sequence of words = Recommendation of the next word
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ZURICH™

TR o wsucance | vanosarce T s o nsance_ Busness nsunce Gl _Exising ustomers | Farm Safety

Carnsuranc Beneiis
Roadside Asssance
Gurage Finder
ocument Dowroad
Fayment Optons
Gender Directive
Rewning Emigians

Reasons for an increase i
your premium

Requesta calback.

suance > Electic Ca Insurance Quote

Zurich Ireland's Electric Car Insurance

Call us in

i Wexford
S —— .. A
S 053 915 7775

Possible bid phrases:

® Zurich car insurance
® Car insurance

® Auto insurance

® Vehicle insurance

® Electric car insurance

On-line ad = Recommendation of queries to an advertiser
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Setting

® Multi-class classification:

h
w:(ml,xg,...,xd)E]Rd&ye{l,...,m}
T T2 ... Zq

x 40 25 -15 5
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Setting

® Multi-class classification:

h
x = (x1,22,...,24) E]Rd&ye {1,...,m}
1 T9 T4
x 40 25 -15 5
o Multi-label classification:
da h@) _ m
m:(xhx?v"'vxd)ER —>y—(y1,y2,...,ym)€{0,1}
r1 X2 Zq Y1 Y2 Ym
x 40 25 -15 1 1 0
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Extreme classification

Extreme classification = a large number of labels m (> 10°)
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Extreme classification

Extreme classification = a large number of labels m (> 10°)

Computational and statistical challenges
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» Naive one-vs-all approach (a dense linear model for each label):

g =[Wz > 0]

Problem size: n > 10% d > 10° m > 10°
3

Complexity: training time > 10'7
space > 10*!
test time > 10'?

» time vs. space

P> Hexamples vs. #features vs. #labels
P training vs. validation vs. prediction
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® |t does not have to be so hard:

» High performance computing resources available

» Large data — sparse data (sparse features and labels)

P Fast learning algorithms for standard learning problems exist
® New algorithmic solutions:

» Smart 1-vs-All approaches

» Label filtering/maximum inner product search (MIPS)
» Embeddings

» Tree-based methods
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Extreme classification: Statistical challenges

® Unreliable learning information:

» We cannot expect that all labels will be properly checked and
assigned to training examples
P This leads to learning with weak, missing or only positive labels.

Alan Turing, 1912 births, 1954 deaths,

20th-century mathematicians, 20th-century philosophers

Academics of the University of Manchester Institute of Science and Technology
Alumni of King's College, Cambridge Artificial intelligence researchers
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Category Enigma machine not assigned!
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Extreme classification: Statistical challenges

® | ong-tail label distributions and zero-shot learning:
» Frequency of labels in the WikiLSHTC dataset:!

12

10
|

#labels (log)

T T T T T T T
0 50000 100000 150000 200000 250000 300000

label

» Many labels with only few examples (= one- and zero-shot learning)

! http://manikvarma.org/downloads/XC/XMLRepository .html
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® Input & € X drawn from a distribution P(x)
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» usually a feature vector, X C R?
Outcome y € Y drawn from a distribution P(y | x)
> a vector of labels y = (y1,y2,- -, Ym)
Prediction § = h(x) by means of prediction function h: X — )
» h returns prediction ¢ = h(x) for every input x
Loss of our prediction: ¢(y,y)
> (:Y x )Y — Ry is a task-specific loss function

Goal: find a prediction function with small loss
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® Goal: minimize the expected loss over all examples (risk):

® The optimal prediction function, the so-called Bayes classifier, is:

h*(x) = argmin Ly(h|x)
h

® The regret of a classifier h with respect to £ is defined as:

rego(h) = Le(h) = Le(h") = Ly(h) — L;
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Decision-theoretic recipe for learning algorithms

1 For the loss function of interest derive the form of the Bayes classifier
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Decision-theoretic recipe for learning algorithms

For the loss function of interest derive the form of the Bayes classifier
Identify the quantities needed to compute the Bayes classifier
Design an algorithm for estimating this quantities

For a test example, compute the estimates and plug-in into the Bayes
classifier
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¢ Hamming loss:

m

> lyj # hy(@)]
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n(x) () (@) (@) ds(x) de(x) dr(z)
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Hamming loss

e Proof:
Lu(hlz) = > Py|z)lu(y, h(z))

yey
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= D Pl Zm¢hﬂ
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e Proof:

Lu(h|z)

Hamming loss

S P(y|@)tn(y, h(z))

yey

S Ply|a) ijﬂyﬂéh

yey

S S Plyla)ly # h(@)]

j=1lyey
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e Proof:
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e Proof:
Lu(h|x)

Marginalization

Hamming loss

> Pyl@)lu(y, h(z))

yey
> Pyl®) ) [y # hi(@)]
yey Jj=1

> > P(yla)ly; # hi(®)] | Swapping sums

j=1lyey

DD Plyla) (yi(1 = hyi(@)) + (1 - y))h;(@))

j=1lyey

ZP(yj =1]z)(1 - hj(x)) +P(y; = 0| )h;(w)

Z Losi(yj, hy(x))

The result follows from the well-known fact about the risk minimization in binary

classification.
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Precision@Fk

® Precision at position k:

precQk(y, h, x) =2 Z ly; = 1],
JEVk

where Y is a set of k labels predicted by h.
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Precision@Fk

® Precision at position k:
prec@k(y, b, z) = - LSy — 1],
JEVk

where Y is a set of k labels predicted by h.
® The optimal strategy: select top k labels according to n;(x)

i6(x) 2(x) nu(x) Bs(@) dr(x) ds(@) ()
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Normalized Discounted Cumulative Gain

® Normalized Discounted Cumulative Gain at position k:

k
Yr(r)
“— log(1+r)

where 7 is a permutation of labels for x returned by ranker f, and
Ni(y) normalizes NDCGQF to the interval [0, 1]:

max(k, 7 yi) . -1

Ni(y) = Z log(1 1)

r=1
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Normalized Discounted Cumulative Gain

® The optimal strategy: rank labels according to the following
marginal quantities:

Aj(x)= Y Ni(y)P(y|z)

yiy;=1
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Normalized Discounted Cumulative Gain

® The optimal strategy: rank labels according to the following

marginal quantities:
Z Ni(y)P(y | )
y: yj_l

Ag(z) Aa(z) As(m) Ai(z) Ar(m) As(z) Ad(z)
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Macro-averaging of the F-measure

® The macro F-measure (F-score):

1 & 1 & 25" il
Fu(Y,¥) = —S Fly..i.) = — i=1 Yiilij
m J; I m ]; D im Vi + i Ui
True labels Predicted labels

Yi1 | Y12 | Y13 | Y14 Y11 | Y12 | Y13 | Y14

Yo1 | Y22 | Y23 | Y24 P21 | Y22 | Y23 | Y24

Y31 | Y32 | Y33 | Y34 U31 | U32 | U33 | Y34

Y4l | Y42 | Y43 | Yaa Ua1 | Pa2 | a3 | Yaa

Ys1 | Ys2 | Ys3 | Ysa Us1 | Us2 | Us3 | Usa

Y1 | Ye2 | Y63 | You Ue1 | Uo2 | Ue3 | Yos
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Macro-averaging of the F-measure

® Can be solved by reduction to m independent binary problems?

3 0. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In NIPS, 2015
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Can be solved by reduction to m independent binary problems3

Thresholding the conditional probabilities:

2 [y n(x)[n(x) > 7] du(z)

FO) = T o@) dute) + [y In(@) > 7] du@)

® The optimal F-measure is F/(7): no binary classifier can be better

® The optimal solution satisfies the following condition: F(7*) = 27*

in(x) () f3(x) (@) ds(x) qe(x) dr(z)

Te ==
T —
oy !
oy !
Ty — 7

T3 = T =
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Predictive models

® Lesson learned: Train models that estimate marginal probabilities or
other related marginal quantities
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3 Tree-based algorithms: decision and label trees
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Decision trees

® Decision trees:
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® Decision trees:

Decision trees
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Decision trees

® Decision trees:
P Partition of the feature space to small subregions:

X1 <ty
t
Rs
Re ta X2 Jia Xy <t3
“ > 13
= R
¢ R ‘
| Xp <ty
Ry Ry R2 R3
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® Decision trees:
P Partition of the feature space to small subregions:
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» Algorithm: recursive splits of the regions

» Typical splits: parallel to the axes (large number of possible splits)
» Splitting criterion: loss over partitions (can be costly)

» Fast prediction: logarithmic in n

P Decision trees for extreme classification?
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Decision trees

® Decision trees for extreme classification:

4 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015

5 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In
KDD, pages 263-272. ACM, 2014

6 Maryam Majzoubi and Anna Choromanska. LdSM: Logarithm-depth streaming multi-label decision trees, 2019
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® Decision trees for extreme classification:
P Limited number of potential splits = linear splits?
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Decision trees

® Decision trees for extreme classification:
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» Adjusting of linear splits
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P Efficient splitting criterion
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Decision trees

® Decision trees for extreme classification:

P Limited number of potential splits = linear splits?

P Adjusting of linear splits = Assignment of examples to partitions?
P Efficient splitting criterion

» New algorithms: LomTree*, FastXML®, LdSM®

4 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS 29, 2015

5 Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning. In
KDD, pages 263-272. ACM, 2014

6 Maryam Majzoubi and Anna Choromanska. LdSM: Logarithm-depth streaming multi-label decision trees, 2019
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FastXML

Uses an ensemble of decision trees

Sparse linear classifiers trained in internal nodes

Very efficient training procedure

Empirical distributions in leaves

A test example passes one path from the root to a leaf

CEED)
a5 (2)=0.45 3 ()=0.46
(uu ST > (D n2(x)=0.4 n1(x)=0.15
1 ()=0.6 7144()=0.46
e ()=0.45 n3(x)=0.15
M102(x)=0.05

n34(2)=0.8
a5 (@)=0.45
15 (2)=0.15
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Empirical distributions in leaves
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Optimization in FastXML

® |n each internal node FastXML solves:
n
min  [Jw|; + Z Cs, log(1 + exp(—dw ' x))
i=1

—C, Z (1 + 6;)NDCG@Qm/(y;, 7 )

—C, Z (1 — 6;) NDCG@m(y;,7")

wrt.  weE Rd,6 e{-1,1}", 7", 7~ €II(1,m)
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Optimization in FastXML

® |n each internal node FastXML solves:

min  [Jw|; + Z Cs, log(1 + exp(—dw ' x))
i=1

—C’Z (1 + 6;)NDCG@Qm/(y;, 7 )

—C, Z (1 — 6;) NDCG@m(y;,7")

wrt.  weE ]Rd,(s e{-1,1}", 7", 7~ €II(1,m)

linear split
label ranking in positive
partitioning of training examples and negative partition
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Optimization in FastXML

® |n each internal node FastXML solves:

min  ||w| + Z O, log(1 + exp(—d;w ' x))
i=1

—CZ (14 6;)NDCG@m(y;, ")

M:'
N | =

—C, (1 —6;)NDCG@m(y,;,7")
1

45 e{-1,1}" 7", n" eIl(1,m)

-J/

(2
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FastXML’

7 https://uwww.youtube.com/watch?v=1X71fTx1LKA
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Label trees

® Label trees:
» Organize classifiers in a tree structure (one leaf < one label):
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Label trees

® Label trees:
» Organize classifiers in a tree structure (one leaf < one label):

©
o e
©) ® ® ®

n Y2 Y3 Ya

» Tree structure: partitioning of labels (predefined or trained)
» Node classifiers: output variables defined by the label partitioning
» Fast prediction: almost logarithmic in m

35/50



Label trees with probabilistic classifiers

Nested dichotomies,® Conditional probability trees,® Hierarchical
softmax, 10 fastText,!! Probabilistic classifier chains?

4

Probability classifier trees?

I

Hierarchical softmax

3

8 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997
E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In ICML, 2004

9 A Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability tree estimation analysis and
algorithms. In UAI, pages 51-58, 2009

10 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS, pages 246-252,
2005

11 Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text classification. CoRR,
abs/1607.01759, 2016

2k, Dembczyniski, W. Cheng, and E. Hiillermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In
ICML, pages 279-286. Omnipress, 2010

13 Krzysztof Dembczyniski, Wojciech Kottowski, Willem Waegeman, Rébert Busa-Fekete, and Eyke Hiillermeier. Consistency of
probabilistic classifier trees. In ECMLPKDD. Springer, 2016
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Hierarchical softmax (HSM)

® Encode the labels by a prefix code (= tree structure)

0 1
2 =(0) z'=(1)
0 1 0 1
= S vy B e S p
z=1(0,0) z=1(0,1) z=(1,0) z=(1,1)
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Hierarchical softmax (HSM)

® Encode the labels by a prefix code (= tree structure)

Each label y coded by z = (z1,...,%) €C
An internal node identified by a partial code 27 = (21,.. ., 2;)

The code does not have to be binary

Different structures possible: random tree, Huffman tree, trained
structure

37/50



Hierarchical softmax (HSM)

® HSM estimates P(y | x) by following a path from the root to a leaf:

Py|z)=P(z|z) = HPz]\zJ L)

P(z =0|x) =04 P(z =1]z)=0.6

29=0 zp=1 =0 zp=1

P(25=0| 21=0, z)=1.0 } { P(20=1|2=0,x)=0.0 } { P(20=0|z1=1,x)=0.4 } { P(z=1|z1=1,2)=0.6

P(2=(0,0) | x)=0.4 P(z2=(0,1)|2)=0.0 P(z=(1,0)|x)=0.24 P(z=(1,1)|x)=0.36

® Training: separate learning problems in the internal nodes

® Prediction: depth first search/beam search
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Hierarchical softmax (HSM)

® HSM estimates P(y | x) by following a path from the root to a leaf:

P(z1,z) P(22,21,x)
P(x) P(z,x)

P(z1|x)P(22] 21, ) = =P(21, 22| x)

P(z =0|x) =04 P(z =1]z)=0.6

29=0 zp=1 =0 zp=1

P(25=0| 21=0, z)=1.0 } { P(20=1|2=0,x)=0.0 } { P(20=0|z1=1,x)=0.4 } { P(z=1|z1=1,2)=0.6

P(2=(0,0) | 2)=0.4 P(2=(0,1)| 2)=0.0 P(2=(1,0) |z)=0.24 P(z=(1,1)|2)=0.36

® Training: separate learning problems in the internal nodes

® Prediction: depth first search/beam search
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HSM for XMLC
® Pick-one-label heuristic used, for example, in fastText:

( ) P'(yj—llw Z ]Zy|ilf)

yey 1 y]
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HSM for XMLC

® Pick-one-label heuristic used, for example, in fastText:

n;(x)

=Py =1|z) =

yey

Pylz)

Z Y Z]’fl Yy

® Theorem: inconsistent for label-wise logistic loss and precision@Fk

labels y  probability P(y | ) True marg. probs P-o-l marg. probs
{1} 0.15 m(z) =04 nh(z) = 0.3
{2} 0.10 ne(x) = 0 35 7y (z) = 0.275
{1,2} 0.25 7]3(:1)) = na(x) = 0.225
{3} 030 () = n(x) = 0.2
{4} 0.20
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HSM for XMLC

® Pick-one-label heuristic used, for example, in fastText:

/ / P(y|x)
() =P(y; = 1]z) =
J J Z ]Z]/,ﬂ/g

yey

® Theorem: inconsistent for label-wise logistic loss and precision@Fk

labels y  probability P(y | ) True marg. probs P-o-l marg. probs
{1} 0.15 m(z) =04 nh(z) = 0.3
{2} 0.10 ne(x) = 0 35 7y (z) = 0.275
{1,2} 0.25 7]3(:1)) = na(x) = 0.225
{3} 030 () = n(x) = 0.2
{4} 0.20

® Theorem: consistent for precision@k for independent labels
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Probabilistic label trees (PLTs)'*

® Similar tree structure and encoding of y; =1 by z = (1,21,...,2)

P(20=0] 29=1, =0, 2)=1.0 } { P(2=1] 20=1, =0, 2)=0.1 } { P(2=0] 20=1, z1=1,2)=0.5 } { P(20=1| 20=1, z1=1,2)=0.7

P(2=(1,0,0) | )=0.5 P(2=(1,0,1)| )=0.05 P(2=(1,1,0) | 2)=0.3 P(2=(1,1,1) | #)=0.42

14k, Jasinska, K. Dembczyriski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hiillermeier. Extreme F-measure maximization
using sparse probability estimates. In /ICML, pages 1435-1444, 2016
Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Rébert Busa-Fekete, and Krzysztof Dembczyriski. A no-regret general-
ization of hierarchical softmax to extreme multi-label classification. In NeurlPS, pages 6355-6366. 2018
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® Similar tree structure and encoding of y; =1 by z = (1,21,...,2)
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P(2=(1,0,0) | )=0.5 P(2=(1,0,1)| )=0.05 P(2=(1,1,0) | 2)=0.3 P(2=(1,1,1) | #)=0.42

® Marginal probabilities 7;(x) obtained by:

nj(x) =P(z|x) = HP zj|z] L)

e 2J & at least one positive label in the corresponding subtree
. sz P(zj|2771) > 1 = separate classifiers in all nodes of the tree

14k, Jasinska, K. Dembczyriski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hiillermeier. Extreme F-measure maximization
using sparse probability estimates. In /ICML, pages 1435-1444, 2016
Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Rébert Busa-Fekete, and Krzysztof Dembczyriski. A no-regret general-
ization of hierarchical softmax to extreme multi-label classification. In NeurlPS, pages 6355-6366. 2018
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Probabilistic label trees (PLTs) for multi-class distribution

® For multi-class distribution it always holds that:

P(z=1lz)=1 and Y P(zlz/ "z)=1

Zj

o All classifiers can be moved one level up = no classifiers in leaves
® PLTs boil down to HSM
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Probabilistic label trees (PLTs)

® Training:

» independent training of all node classifiers

» reduced complexity by the conditions used in the nodes

» batch or online learning of node classifiers

P sparse representation: small number of active features in lower nodes,
feature hashing
dense representation: hidden representation of features (strong
compression)

v
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® Tree structure:

>

Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical
clustering of labels), online training
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® Training:

>
>
>
>

>

independent training of all node classifiers

reduced complexity by the conditions used in the nodes

batch or online learning of node classifiers

sparse representation: small number of active features in lower nodes,
feature hashing

dense representation: hidden representation of features (strong
compression)

® Tree structure:

>

Random, complete-sorted tree, Huffman tree, trained (e.g., hierarchical
clustering of labels), online training

® Prediction:

4

depth first search/beam search
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Theoretical guarantees

Theorem: For any distribution P and internal node classifiers f,:,
the following holds:

zi=1l x),

l
(=) — ()| <Y P(z"" |$)\/§\/regz(fzi

i=0

where reg,(f,i | 2271, &) is a binary classification regret for a strongly
proper composite loss £ and A is a constant specific for loss £.
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Theoretical guarantees

® Theorem: For any distribution P and classifier h delivering estimates
nj(x) of the marginal probabilities of labels, the following holds:

1 A
regyar(h| ) = - Z ni(x) = 2 Y nj(x) < 2max | (x) — i)
[IShY® JEDk
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Theoretical guarantees

® PLTs are no-regret generalization of HSM to multi-label problems.
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Empirical studies!'®

Dataset Metrics FastXML | PPDSparse | DiSMEC | FT LT XT || Parabel || XML-CNN
pe1 82.03 73.80 85.20 80.78 80.85 85.23 83.77 82.78
P@3 67.47 60.90 74.60 50.46 50.59 73.18 71.96 66.34
st P@5 57.76 50.40 65.90 36.79 37.68 63.39 62.44 56.23
4= 101938 Tirain 16m t + 10m 12m 18m 5m 88mx
m = 30938 Tiest/Niest | 3.00ms | 1 i 1.88ms | 10.09ms | 0.83ms 1.63ms+ 1.39msk
model size 354M t T 513M 513M 259M 109M = *
Delicious-200K Pe1 42.81 45.05 44.71 4222 4271 47.85 43.32 i
Nirain = 196606 P@3 38.76 38.34 38.08 37.90 36.27 42.08 38.49 k3
I P@5 36.34 34.90 34.7 35.05 33.43 39.13 35.83 ks
Tirain 458m 4781m 1080h 271m 563m 502m 105m i
m = 205443 Ties est 4.86ms 275ms 300ms 1.97ms 1.98ms 1.41ms 1.31msx* i
model size 15.4G 9.4G 18.0G 9.0G 9.0G 1.9G 1.8Gx 1
WlleSHTC pe1 49.35 64.08 64.94 41.13 50.15 58.73 61.53 ks
1778351 P@3 32.69 41.26 42.71 24.09 31.95 39.24 40.07 ks
I 587084 P@5 24.03 30.12 31.5 17.44 23.59 29.26 29.25 i
d = 617899 Tirain 724m 236m 750h 207 212m 550m 34m 1
m = 325056 Thest/Niest 2.17ms 37.76ms 2580ms 1.25ms 4.76ms 0.81ms 0.92ms#* 1
model size 9.3G 5.2G 3.8G 6.5G 6.5G 3.3G 1.1G+ ks
Wiki-500K Pe1 54.10 70.16 70.20 32.73 37.18 64.48 66.12 59.85
Nipain = 1813391 P@3 29.45 50.57 50.60 19.02 21.62 45.84 47.02 39.28
Niest = 783743 P@5 2121 39.66 39.70 14.46 16.01 35.46 36.45 29.81
d 81304 Tirain 3214m 1771m 7495h 496m 531m 1253m 168m 7032mx
m = 501070 Trest/Ntes 8.03ms 113.70ms 9300ms 2.05ms 6.43ms 1.07ms 4.68msx 21.06ms*
model size 63G 3.4G 14.7G 11G 11G 5.5G 2.0Gx 3.7Gx
Amazon-670K pe1 34.24 45.32 45.37 25.47 27.67 39.90 41.59 35.39
Nirain = 490449 P@3 29.30 40.37 40.40 21.47 20.96 35.36 37.18 33.74
Niest = 153025 P@5 26.12 36.92 36.96 18.61 17.72 32.04 33.85 32.64
d = 135909 Tirain 422m 102m 373h 162m 182m 241m 8m 3134mx
m = 670091 Thest/Niest 3.39ms 66.09ms 1380ms 7.84ms 5.13ms 1.72ms 0.68msx 16.18ms*
model size 10G 6.0G 3.8G 3.2G 3.2G 1.5G 0.7G+ 1.5Gx

15XMLC benchmarks from http://manikvarma.org/downloads/XC/XMLRepository.html
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Empirical studies

® Selected results for precision@1

Method WIKILSHTC  AMAZONG670K  DELICIOUS200K
HSM-vw 36.90 33.64 41.58
PLT-vw 41.63 36.85 45.27
FastText 41.13 25.47 42.22
ExtremeText 58.73 39.90 47.85
Parabell® 61.53 41.59 43.32
FastXML 49.75 34.24 42.81

16y, Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In WWW. ACM, 2018
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Empirical studies

® The ablation analysis of different variants of XT.
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Outline

4 Take-away message

49 /50



Take-away message

® Extreme classification: #examples, #features, #labels
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