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Alan Turing, 1912 births, 1954 deaths
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
English computer scientists, English inventors, English logicians
English long-distance runners, English mathematicians
English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men
Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists
LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow
People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists
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Setting

• Multi-class classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xd y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xd y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0
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Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Performance measures: Hamming loss, prec@k, NDCG@k, Macro F

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction
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Supervised learning

Training data
{xi,yi}n1

Learning algorithm

Model f(x,y)

Prediction
by using h(x)

Test example x
Predicted outcome

ŷ = h(x)

True outcome y

Evaluation

Risk

Evaluation Estimated risk

≈

Loss `(y, ŷ)
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Statistical learning framework

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).

• Prediction ŷ = h(x) by means of prediction function h : X → Y.

I h returns prediction ŷ = h(x) for every input x.

• Loss of our prediction: `(y, ŷ).

I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.
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• Prediction ŷ = h(x) by means of prediction function h : X → Y.
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I ` : Y × Y → R+ is a task-specific loss function.

• Goal: find a prediction function with small loss.

6 / 54



Statistical learning framework

• Input x ∈ X drawn from a distribution P(x).

I usually a feature vector, X ⊆ Rd.

• Outcome y ∈ Y drawn from a distribution P(y |x).

I a vector of labels y = (y1, y2, . . . , ym).
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Risk

• Goal: minimize the expected loss over all examples (risk):

L`(h) = E(x,y)∼P [`(y,h(x))] .

• The optimal prediction function over all possible functions expressed
conditionally for a given x:

h∗(x) = arg min
h

L`(h|x),

(so called Bayes prediction function).
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Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K ,

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0.
• The optimal strategy:1

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x).

1 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and
label dependence in multi-label classification. Machine Learning, 88:5–45, 2012 8 / 54
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Hamming loss

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K ,

• Sparse labels ⇒ Hamming loss of an all-zero classifier close to 0.
• The optimal strategy:1

h∗j (x) = Jηj(x) > 0.5K ,

where ηj(x) = P(yj = 1 |x).

η̂1(x) η̂2(x) η̂3(x) η̂4(x) η̂5(x) η̂6(x) η̂7(x)

τ = 0.5

1 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and
label dependence in multi-label classification. Machine Learning, 88:5–45, 2012 8 / 54



Precision

• Precision at position k:

prec@k(y, f,x) =
1

k

k∑
r=1

Jyσ(r) = 1K ,

where σ is a permutation of labels for x returned by ranker f .

• The optimal strategy: select top k labels according to ηj(x).
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where σ is a permutation of labels for x returned by ranker f .
• The optimal strategy: select top k labels according to ηj(x).

η̂6(x) η̂2(x) η̂1(x) η̂5(x) η̂7(x) η̂3(x) η̂4(x)
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Normalized Discounted Cumulative Gain

• Normalized Discounted Cumulative Gain at position k:

NDCG@k(y, f,x) = Nk(y)

k∑
r=1

yσ(r)

log(1 + r)
,

where σ is a permutation of labels for x returned by ranker f , and
Nk(y) normalizes NDCG@k to the interval [0, 1]:

Nk(y) =

max(k,
∑m

i=1 yi)∑
r=1

1

log(1 + r)

−1

10 / 54



Normalized Discounted Cumulative Gain

• The optimal strategy: rank labels according to the following
marginal quantities:

∆j(x) =
∑
y:yj=1

Nk(y)P(y |x)
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Normalized Discounted Cumulative Gain

• The optimal strategy: rank labels according to the following
marginal quantities:

∆j(x) =
∑
y:yj=1

Nk(y)P(y |x)

∆6(x) ∆2(x) ∆5(x) ∆1(x) ∆7(x) ∆3(x) ∆4(x)
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Macro-averaging of the F-measure

• The macro F-measure (F-score):

FM (Y , Ŷ ) =
1

m

m∑
j=1

F (y·j , ŷ·j) =
1

m

m∑
j=1

2
∑n

i=1 yij ŷij∑n
i=1 yij +

∑n
i=1 ŷij

.

True labels

y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44
y51 y52 y53 y54
y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14
ŷ21 ŷ22 ŷ23 ŷ24
ŷ31 ŷ32 ŷ33 ŷ34
ŷ41 ŷ42 ŷ43 ŷ44
ŷ51 ŷ52 ŷ53 ŷ54
ŷ61 ŷ62 ŷ63 ŷ64
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.

True labels

y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44
y51 y52 y53 y54
y61 y62 y63 y64

Predicted labels
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Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.2

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

2 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In
NIPS, 2015

13 / 54



Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.2

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

2 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In
NIPS, 2015

13 / 54



Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.2

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

2 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In
NIPS, 2015

13 / 54



Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.2

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

.

• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

2 O. Koyejo, N. Natarajan, P. Ravikumar, and I. Dhillon. Consistent multilabel classification. In
NIPS, 2015

13 / 54



Macro-averaging of the F-measure

• Can be solved by reduction to m independent binary problems.2

• Thresholding the conditional probabilities:

F (τ) =
2
∫
X η(x)Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)
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• The optimal F-measure is F (τ∗): no binary classifier can be better.

• The optimal solution satisfies the following condition: F (τ∗) = 2τ∗ .

η̂1(x) η̂2(x) η̂3(x) η̂4(x) η̂5(x) η̂6(x) η̂7(x)

τ6

τ2
τ1

τ5
τ7τ3

τ4
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NIPS, 2015
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Predictive model

• From the above analysis we can conclude:

We need to train models that accurately estimate marginal
probabilities or other related marginal quantities

• We could use to this end the well-known 1-vs-All approach.
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Computational challenges: naive solution

• Size of the problem:

I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011
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ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

15 / 54



Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):
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Computational challenges: naive solution

• It does not have to be so hard:

I High performance computing resources available.
I Large data −→ sparse data (sparse features and labels).
I Fast learning algorithms for standard learning problems exist.
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Figure: Vowpal Wabbit3 at a lecture of John Langford4

3 Vowpal Wabbit, http://hunch.net/~vw
4

http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start
17 / 54
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Fast binary classification

• Data set: RCV1

• Predicted category: CCAT

• # training examples: 781 265

• # features: 60M

• Size: 1.1 GB

• Command line: time vw -sgd rcv1.train.txt -c

• Learning time: 1-3 secs on a laptop.
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Reducing computational costs of the naive solution

• Linear models

• Decision trees

• Label trees
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Linear models
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Linear models

• Fast training by least squares:5

W = (X>X)−1X>Y

• Works well in low dimensional feature spaces.

• Does not really improve space and test time complexity.

5 T. Hastie, R. Tibshirani, and J.H. Friedman. Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, second edition, 2009
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Linear models

• Training time complexity:

I Stochastic gradient descent6 or coordinate gradient descent7

I Sparse feature vectors (e.g., sparse updates in SGD8)
I Negative sampling.9

• Space complexity:

I Proper regularization: L1 vs L2.
I Removing small weights.10

I Feature hashing.11

6 L. Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lechevallier
and Gilbert Saporta, editors, COMPSTAT, pages 177–187, Paris, France, August 2010. Springer

7 R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008

8 John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. JMLR, 10:2899–2934, 2009

9 Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In ICML, pages 160–167, 2008

10 Rohit Babbar and Bernhard Schölkopf. Dismec - distributed sparse machines for extreme multi-
label classification. CoRR, 2016

11 K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In ICML, pages 1113–1120. ACM, 2009
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Feature hashing in extreme classification

• Standard approach
I A single slot for each weight and model.
I Requires a lot of space.

x 0.1 0.5 1 0.3 -1

w1 w1 w2 w3 w4 w5 w6 w7 w8 w2 w1 w2 w3 w4 w5 w6 w7 w8

y1 y2

y1 y2
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Feature hashing in extreme classification

• Hashing to a common space
I Hash the label and feature index using h(j, v).
I Hash a sign ξ(j, v) to reduce the impact of conflicts.

x 0.1 0.5 1 0.3 -1

w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

y1 y2

y1y2

24 / 54



Feature hashing in extreme classification

• Hashing to a common space
I Hash the label and feature index using h(j, v).
I Hash a sign ξ(j, v) to reduce the impact of conflicts.

x 0.1 0.5 1 0.3 -1

w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

y1 y2

y1y2

24 / 54



Feature hashing in extreme classification

• Hashing to a common space
I Hash the label and feature index using h(j, v).
I Hash a sign ξ(j, v) to reduce the impact of conflicts.

x 0.1 0.5 1 0.3 -1

w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

y1 y2

y1y2

24 / 54



Feature hashing in extreme classification

• Hashing to a common space
I Hash the label and feature index using h(j, v).
I Hash a sign ξ(j, v) to reduce the impact of conflicts.

x 0.1 0.5 1 0.3 -1

w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

y1 y2

y1y2

24 / 54



Feature hashing in extreme classification

• Hashing to a common space
I Hash the label and feature index using h(j, v).
I Hash a sign ξ(j, v) to reduce the impact of conflicts.

x 0.1 0.5 1 0.3 -1

w w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

y1 y2

y1y2

24 / 54



Linear models

• Low-dimensional representation of x, W, y:

y = U†Vx

I feature space: PCA on X.
I label space: PCA no Y,12 compressed sensing,13 etc.
I both spaces: CCA on both X and Y,14 etc.
I matrix factorization of W.15

I A kind of lossy compression/embedding methods.

12 F. Tai and H.-T. Lin. Multi-label classification with principal label space transformation. In
Neural Computat., volume 9, pages 2508–2542, 2012

13 D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing.
In NIPS, 2009

14 Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduction for multi-
label classification. In NIPS, pages 1529–1537. Curran Associates, Inc., 2012

15 Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale Multi-label
Learning with Missing Labels. In ICML, 2014
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Computational challenges

• Prediction time is still linear in the number of labels!

• Reduce the test time complexity by:
I Maximum inner product search over linear models,
I Decision trees,
I Label trees.
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Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

j∗ = arg max
j∈{1,...,m}

w>j x ,

i.e., the problem of maximum inner product search (MIPS).
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MIPS vs. nearest neighbors

• MIPS is similar, but not the same, to the nearest neighbor search
under the square or cosine distance:

j∗ = arg min
j∈{1,...,m}

‖wj − x‖22 = arg max
j∈{1,...,m}

w>j x−
‖wj‖22

2

j∗ = arg max
j∈{1,...,m}

w>j x

‖wj‖‖x‖
= arg max

j∈{1,...,m}

w>j x

‖wj‖

• Some tricks are used to treat MIPS as nearest neighbor search.16

I For low-dimensional problems, efficient tree-based structures exist.17

I Approximate nearest neighbor search via locality-sensitive hashing.18

16 A. Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum
inner product search (mips). In UAI, 2015

17 J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226, 1977

18 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In ACM Symposium on Theory of Computing, STOC ’98, pages 604–613,
New York, NY, USA, 1998. ACM
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Decision trees

• Fast prediction: logarithmic in n

• Training can be expensive: computation of split criterion

• Two new algorithms: LomTree19 and FastXML20

19 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS
29, 2015

20 Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In KDD, pages 263–272. ACM, 2014
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FastXML

• Uses an ensemble of standard decision trees.

• Sparse linear classifiers trained in internal nodes.

• Very efficient training procedure.

• Empirical distributions in leaves.

• A test example passes one path from the root to a leaf.

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η(x, 1)=0.6
η(x, 12)=0.45
. . .

η(x, 44)=0.46
η(x, 3)=0.15
η(x, 102)=0.05
. . .

η(x, 45)=0.45
η(x, 2)=0.4
. . .

w3 · x ≥ 0

η(x, 3)=0.46
η(x, 1)=0.15
. . .

η(x, 34)=0.8
η(x, 45)=0.45
η5(x)=0.15
. . .
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Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδ(δi) log(1 + exp(−δiw>x)

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(r+,yi)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(r−,yi)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}m, r+, r− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimize r±

3. Optimize δ
4. Optimize w
5. Repeat 2-4

32 / 54



Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδ(δi) log(1 + exp(−δiw>x)

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(r+,yi)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(r−,yi)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}m, r+, r− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimize r±

3. Optimize δ
4. Optimize w
5. Repeat 2-4

32 / 54



Optimization in FastXML

• In each internal node FastXML solves:

min ‖w‖1 +

n∑
i=1

Cδ(δi) log(1 + exp(−δiw>x)

−Cr
n∑
i=1

1

2
(1 + δi)NDCG@m(r+,yi)

−Cr
n∑
i=1

1

2
(1− δi)NDCG@m(r−,yi)

w.r.t. w ∈ Rd, δ ∈ {−1, 1}m, r+, r− ∈ Π(1,m)

linear split

partitioning of training examples

label ranking in positive
and negative partition

1. Bernoulli sampling of δ
2. Optimize r±

3. Optimize δ
4. Optimize w
5. Repeat 2-4

32 / 54



Label trees

33 / 54



Label trees

• Organize classifiers in a tree structure (one leaf ⇔ one label).21

0

1

3

y1
4

y2

2

5

y3
6

y4

• Structure of the tree can be given or trained.

• Different training and test procedures for multi-class and multi-label
classification.

21 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In
NIPS, pages 163–171. Curran Associates, Inc., 2010
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Probabilistic label trees (PLT)22

• PLT are based on b-ary label trees.

σ(w0 · x)

σ(w1 · x)

σ(w3 · x)

y1

σ(w4 · x)

y2

σ(w2 · x)

σ(w5 · x)

y3

σ(w6 · x)

y4

• Probabilistic classifiers in all nodes of the tree.

• Internal node classifier decides whether to go down the tree.

• A test example may follow many paths from the root to leaves.

• Batch and online learning possible.

22 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier.
Extreme F-measure maximization using sparse probability estimates. In ICML, 2016
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Probabilistic label trees

• Class probability estimators in nodes for estimating P(yj = 1 |x).

P(y1 ∨ y2 ∨ y3 ∨ y4 |x)

P(

zt︷ ︸︸ ︷
y1 ∨ y2 |

zpa(t)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4=1,x)

P(y1 | y1 ∨ y2=1,x)

y1

P(y2 | y1 ∨ y2=1,x)

y2

P(y3 ∨ y4 | y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

P(y3 | y3 ∨ y4=1,x)

y3

P(y4 | y3 ∨ y4=1,x)

y4

• Using the chain rule of probability

P(yj = 1 |x) = ηj(x) =
∏

t∈Path(j)

η(x, t) ,

where η(x, t) =

{
P(zt = 1 |x) if t is root,
P(zt = 1 | zpa(t) = 1,x) otherwise.
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Probabilistic label trees

• Chain rule of probability:

P(y1∨y2∨y3∨y4 = 1 |x)×P(y1∨y2 = 1 | y1∨y2∨y3∨y4 = 1,x) =

P(y1∨y2∨y3∨y4 = 1,x)

P(x)
× P(y1∨y2 = 1, y1∨y2 ∨y3∨y4 = 1,x)

P(y1∨y2 ∨y3∨y4 = 1,x)
=

P(y1∨y2 = 1,x)

P(x)
= P(y1∨y2 = 1 |x)

P(y1∨y2 = 1 |x)×P(y1 = 1 |y1∨y2 = 1x) =

P(y1∨y2 = 1,x)

P(x)
× P(y1 = 1,y1∨y2 = 1,x)

P(y1∨y2 = 1,x)
=

P(y1 = 1,x)

P(x)
= P(y1 = 1 |x)
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Probabilistic label trees

• Class probability estimators in nodes for estimating P(yi = 1 |x).

P(y1 ∨ y2 ∨ y3 ∨ y4 |x)

P(

zt︷ ︸︸ ︷
y1 ∨ y2 |

zpa(t)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4=1,x)

P(y1 | y1 ∨ y2=1,x)

y1

P(y2 | y1 ∨ y2=1,x)

y2

P(y3 ∨ y4 | y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

P(y3 | y3 ∨ y4=1,x)

y3

P(y4 | y3 ∨ y4=1,x)

y4

• Training: reduced complexity by the conditions used in the nodes.

• Prediction: priority queue search or branch and bound.
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Probabilistic label trees

• The same idea under different names:
I Conditional probability trees23

I Probabilistic classifier chains24

I Hierarchical softmax25

I Homer26

I Nested dichotomies27

I Multi-stage classification28

23 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009

24 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via
probabilistic classifier chains. In ICML, pages 279–286. Omnipress, 2010

25 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model.
In AISTATS, pages 246–252, 2005

26 G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification
in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on Mining
Multidimensional Data, 2008

27 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997
28 Marek Kurzynski. On the multistage bayes classifier. Pattern Recognition, 21(4):355–365, 1988
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FastXML vs. PLT

FastXML PLT

tree structure X X
structure learning X ×
number of trees ≥ 1 1
number of leaves O(n) m
internal nodes models linear linear
leaves models empirical distribution linear
visited paths during prediction 1 per tree several
sparse probability estimation X X
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Experimental results

#labels #features #test #train inst./lab. lab./inst.

RCV1 2456 47236 155962 623847 1218.56 4.79
AmazonCat 13330 203882 306782 1186239 448.57 5.04
Wiki10 30938 101938 6616 14146 8.52 18.64
Delicious 205443 782585 100095 196606 72.29 75.54
WikiLSHTC 325056 1617899 587084 1778351 17.46 3.19
Amazon 670091 135909 153025 490449 3.99 5.45

Table: Datasets from the Extreme Classification repository.29

29
http://manikvarma.org/downloads/XC/XMLRepository.html
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Experimental results

PLT FastXML

P@1 P@3 P@5 P@1 P@3 P@5

RCV1 90.46 72.4 51.86 91.13 73.35 52.67
AmazonCat 91.47 75.84 61.02 92.95 77.5 62.51
Wiki10 84.34 72.34 62.72 81.71 66.67 56.70
Delicious 45.37 38.94 35.88 42.81 38.76 36.34
WikiLSHTC 45.67 29.13 21.95 49.35 32.69 24.03
Amazon 36.65 32.12 28.85 34.24 29.3 26.12
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Experimental results

PLT FastXML

train test b depth #calls train test depth #calls
[min] [ms] [min] [ms]

RCV1 64 0.22 32 2,25 43,46 78 0.96 14.95 747
AmazonCat 96 0.17 16 3,43 54,39 561 1.14 17.44 871
Wiki10 290 2.66 32 2,98 121,98 16 3.00 10.83 541
Delicious 1327 32.97 2 17,69 11779,65 458 4.01 14.79 739
WikiLSHTC 653 3.00 32 3,66 622,27 724 1.17 18.01 900
Amazon 54 0.99 8 6,45 374,30 422 1.39 15.92 796
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Challenges

• Learning theory for an extremely large number of labels:

I Statistical guarantees for the error rate that do not depend, or
depend very weakly (sublinearly), on the total number of labels.

I The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.
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Challenges

• Training and prediction under limited time and space budget:

I Restricted computational resources (time and space) for both
training and prediction.

I A trade-off between computational (time and space) complexity and
the predictive performance.

I By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.
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Challenges

• Unreliable learning information:

I We cannot expect that all labels will be properly checked and
assigned to training examples.

I Therefore we often deal with a problem of learning with missing labels
or learning from positive and unlabeled examples.
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Challenges

• Performance measures:

I Typical performance measures such as 0/1 or Hamming loss do not
fit well to the extreme setting.

I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.
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Do we search in the right place?

Figure: 30 A similar comics has been earlier used by Asela Gunawardana.31

30 Source: Florence Morning News, Mutt and Jeff Comic Strip, Page 7, Florence, South Car-
olina,1942

31 Asela Gunawardana, Evaluating Machine Learned User Experiences. Extreme Classification
Workshop. NIPS 2015
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Challenges

• Long-tail label distributions and zero-shot learning:

I A close relation to the problem of estimating distributions over
large alphabets.

I The distribution of label frequencies is often characterized by a
long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)
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Challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of labels in the WikiLSHTC dataset:32
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I Many labels with only few examples (⇒ one-shot learning).

32
http://manikvarma.org/downloads/XC/XMLRepository.html

51 / 54

http://manikvarma.org/downloads/XC/XMLRepository.html


Challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of frequencies for the WikiLSHTC dataset:
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I The missing mass obtained by the Good-Turing estimate: 0.014.
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Take-away message
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Take-away message

• Extreme classification: #examples, #features, #labels

• Complexity: time vs. space, training vs. validation vs. prediction

• Computational challenges: fast learning of linear models,
compression, MIPS, decision trees, label trees.

• Statistical challenges: Is learning possible in the extreme setting?

• For more check:

I http://www.cs.put.poznan.pl/kdembczynski
I Code: https://github.com/busarobi/XMLC
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