
Decision-theoretic machine learning

List of questions

In order to pass and get 4.0 grade, you need to correctly solve one of the
questions from the list below. To get 5.0 grade, you need to solve two
questions. The solution(s) should be sent (in PDF format, do not send
Word documents!) to wkotlowski@cs.put.poznan.pl with a term ‘[DTML]’
in the title. The deadline is 30th June, 2018.

List of questions

1. Consider the absolute value loss function defined as:

`(y, ŷ) = |y − ŷ|.

Show that if y is generated from some distribution P (y), then the
Bayes optimal decision y∗, i.e., the one minimizing the expected loss:

y∗ = arg min
ŷ

Ey∼P (y) [`(y, ŷ)] ,

is the median of distribution P , i.e. y∗ = median(y).

2. In binary classification with the zero-one loss function, the Bayes (op-
timal) classifier is given by:

h∗(x) = sgn(η(x)− 1/2), where η(x) = P (y = 1|x).

Derive the Bayes classifier for a loss function with classification costs
(cost-sensitive loss function):

`(y, ŷ) =


0 if y = ŷ,
1 if y = 1, ŷ = −1,
β if y = −1, ŷ = 1.

Note: if β = 1, we get a standard zero-one loss; in this case the derived
Bayes classifier should agree with the Bayes classifier for the zero-one
loss.
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3. Naive Bayes classifier is based on the assumption that features are
independent in a given class, i.e. for any class index k and any x =
(x1, . . . , xm),

P (x|y = k) =
m∏
j=1

P (xj |y = k) .

Does this assumption imply (or is implied by) the assumption that
features are unconditionally independent, i.e.:

P (x) =

m∏
j=1

P (xj) .

Justify your answer by either giving a counter-example (if the answer
is no) or providing a proof (if the answer is yes). Note: you need to
answer two questions here: whether the first assumption implies the
second, and whether the second assumption implied the first.

4. Is the Naive Bayes classifier is a linear classifier, i.e., whether it cor-
responds to a classification function:

h(x) = sgn(f(x)), where f(x) = w0 +
m∑
j=1

wjxj?

Justify your answer by providing explicit calculations. For simplicity,
restrict the answer to the case of binary features, i.e. when x ∈ {0, 1}.

5. The optimal solution to the linear regression problem is given by:

ŵ =

(
n∑
i=1

xix
>
i

)−1( n∑
i=1

yixi

)
.

What happens if the number of features m is larger than the number
of training examples n? Justify your answer. Furthermore, propose a
way to cope with this problem.

6. Show that minimization of the zero-one loss within the class of linear
classifiers is NP-hard (propose a polynomial reduction to another NP-
hard problem).

7. Show that the loss functions below:

• squared loss: `(f) = (1− f)2,

• logistic loss: `(f) = log
(
1 + e−f

)
,

• hinge loss: `(f) = max{0, 1− f},
• exponential loss: `(f) = e−f .
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are convex as functions of the margin f .

8. Show that if training examples (x, y) are generated by first drawing
a label y ∈ {−1, 1} from some distribution P (y) and then drawing
x|y ∼ N(µy,Σ) (i.e., each class has its own mean vector, but the

covariance matrix is shared between classes), then log η(x)
1−η(x) is a linear

function of x, where η(x) = P (y = 1|x). For simplicity, you can
assume that Σ is an identity matrix.

9. Prove that all loss functions below are classification calibrated. Fur-
thermore, derive the Bayes classifier for each loss:

• square loss: `(f) = (1− f)2,

• logistic loss: `(f) = log
(
1 + e−f

)
,

• hinge loss: `(f) = max{0, 1− f},
• exponential loss: `(f) = e−f .

10. Prove that the class of rectangles on a plane has Vapnik-Chervonenkis
dimension exactly equal to 4.

11. Prove that structured support vector machines with Hamming loss as
the task loss and the scoring function of the following form:

f(x,y) =
m∑
i=1

fi(x, yi)

boil down to binary relevance with binary support vector machines.

12. Prove that conditional random fields with the scoring function of the
following form:

f(x,y) =
m∑
i=1

fi(x, yi)

boil down to binary relevance with logistic regression.
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