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Multi-target prediction

Many thanks to Willem Waegeman and Eyke Hiillermeier for collaborating
on this topic and working together on this tutorial.
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Multi-target prediction

e Prediction problems in which we consider more than one target
variable.
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Image annotation/retrieval

Target 1:  cloud yes/no
Target 2:  sky yes/no
Target 3: tree  yes/no
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Multi-label classification

e Training data: {(x1,y1), (2,Y2),...,(Tn,y,)}, y; €Y ={0,1}".
e Predict the vector y = (y1,92, ..., ym) for a given x.

X1 Xo Yi Yo ... Y,
x; 50 45 1 1 0
xs 2.0 25 0 1 0
x, 3.0 35 0 1 1
x 40 25 ? ? ?
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Ecology

Food Web Decomposers

e Prediction of the presence
or absence of species, or
even the population size
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Multi-variate regression

b Training data: {(wlayl)a (w27y2)7 SERE) (:c’nayn)}' Yy; € Y=R".
e Predict the vector y = (y1,92, ..., ym) for a given x.

X1 Xo i Y o Yy
1 50 45 14 03 9
ro 2.0 25 15 11 4.5
xz, 3.0 35 19 0.9 2
xr 40 25 ? ? ?
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Multi-variate regression

b Training data: {(wlayl)a (w27y2)7 SERE) (:c’nayn)}' Yy; € Y=R".
e Predict the vector y = (y1,92, ..., ym) for a given x.

X1 Xo Yi Yo ... Y,
x;y 50 45 14 0.3 9
xy 20 25 15 1.1 4.5
x, 3.0 35 19 0.9 2
x 40 2.5 18 0.5 1
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Label ranking

e Training data: {(z1,¥y,), (®2,Y3),...,(Tn, ¥y, )}, where y, is a
ranking (permutation) of a fixed number of labels/alternatives.?

e Predict permutation (Yr(1);Yr(2),- - - > Yr(m)) for a given x.

B —

X1 X2 Y1 Y2

x1 50 45 1 3

xy 2.0 25 2 1

x, 3.0 35 3 1
T 40 2.5 ? ?

SON I SRSV N 5@]

L E. Hiillermeier, J. Fiirnkranz, W. Cheng, and K. Brinker. Label ranking by learning pairwise
preferences. Artificial Intelligence, 172:1897-1916, 2008
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Label ranking

e Training data: {(z1,¥y,), (®2,Y3),...,(Tn, ¥y, )}, where y, is a

ranking (permutation) of a fixed number of labels/alternatives.?

e Predict permutation (Yr(1);Yr(2),- - - > Yr(m)) for a given x.

X1 X2 Yi Y2 Ym
x1 5.0 45 1 3 2
x2 2.0 25 2 1 3
xz, 3.0 35 3 1 2
x 40 25 1 2 3

L E. Hiillermeier, J. Fiirnkranz, W. Cheng, and K. Brinker. Label ranking by learning pairwise
preferences. Artificial Intelligence, 172:1897-1916, 2008
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Multi-task learning

e Training data: {(z1;,915), (T25,Y25),- - (Tnj,Ynj)}, J=1,...,m,
Yij € Y =R.

e Predict y; for a given x;.

X1 Xo Yi Yo ... Y,
x1 50 45 14 9
xy 20 25 1.1
x, 3.0 35 2
T 40 2.5 ?
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Yij € Y =R.

e Predict y; for a given x;.

X1 Xo Yi Yo ... Y,
x1 50 45 14 9
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x, 3.0 35 2
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Collaborative filtering?

e Training data: {(u;,mj,v:;)}, for somei=1,...,n and
j=1...,m, Yij ey =R.
e Predict y;; for a given u; and m;.

mip M2 Mgz - My
w1 . 4
u9 3 1
us 2 5
Up, 2 1

2 p. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering to weave and
information tapestry. Communications of the ACM, 35(12):61-70, 1992
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Dyadic prediction®

4 5 ... 7 8 6
10 14 --- 9 21 12
instances Y1 Y2 YUm | Ym+1l Y42
1 1 x| 0 7 ... 1 ? ?
3 5 x5 01--- 0 ?
7 0 x5 ? ? 1 ?
1 1 - 0
3 1 =, 09.--- 1 ?
2 3 Tn+1 ? ?
3 1 Tn42 ? ? ?

3 A.K. Menon and C. Elkan. Predicting labels for dyadic data. Data Mining and Knowledge

Discovery, 21(2), 2010
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Multi-target prediction

o Multi-Target Prediction: For a feature vector x predict accurately
a vector of responses y using a function h(x):
h(x)
= (x1,22,...,2p) —— Y = (Y1,%2,---,Ym)
¢ Main challenges:
» Appropriate modeling of target dependencies between targets

Y1,92,-- - Ym

» A multitude of multivariate loss functions defined over the output
vector

U(y,h(z))
¢ Main question:
» Can we improve over independent models trained for each target?
e Two views:
» The individual-target view
» The joint-target view
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The individual target view

e How can we improve the predictive accuracy of a single label by using
information about other labels?

e What are the requirements for improvement?
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The joint target view

e What are the specific multivariate loss functions we would like to
minimize?

e How to perform minimization of such losses?

e What are the relations between the losses?
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The individual and joint target view

e The individual target view:

» Goal: predict a value of y; using & and any available information on
other targets y;s.
The problem is usually defined through univariate losses £(y;, ;).
The problem is usually decomposable over the targets.
Domain of y; is either continuous or nominal.
Regularized (shrunken) models vs. independent models.

vV vy VvYyy

e The joint target view:

» Goal: predict a vector y using x.

» Multivariate distribution of y.

» The problem is defined through multivariate losses ¢(y, ).

» The problem is not easily decomposable over the targets.

» Domain of y is usually finite, but contains a large number of elements.
» More expressive models vs. independent models.
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Multi-target prediction

the individual
target view

([Reduce model complexity by model sharing.
Example: RR, FicyReg, Curds&Whey,multi-task learning methods,
kkernel dependency estimation, stacking, compressed sensing, etc.

shrunken
models

-
independent Fit one model for every target (independently).
models Examples: binary relevance in multi-label classification
\

(Introduce additional parameters or models for targets or tar-
get combinations.

Examples: label powerset, structured SVMs, conditional random
fields, probabilistic classifier chains (PCC), Max Margin Markov

| Networks, etc.

more expressive
models

the joint tar-

get view
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Target interdependences

e Marginal and conditional dependence:

PY)#[[Pv)  P(Y o) # ][ P(Yil=)
=1 i=1

marginal (in)dependence ¥ conditional (in)dependence
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Target interdependences

¢ Model similarities:
file) = gi(x) + €, fori=1,....m

Similarities in the structural parts g;(x) of the models.
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Target interdependences

e Structure imposed (domain knowledge) on targets

» Chains,

» Hierarchies,

» General graphs,
»
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Target interdependences

¢ Interdependence vs. hypothesis and feature space:
» Regularization constraints the hypothesis space.
» Modeling dependencies may increase the expressiveness of the model.
» Using a more complex model on individual targets might also help.
» Comparison between independent and multi-target models is difficult in
general, as they differ in many respects (e.g., complexity)!
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Multivariate loss functions

e Decomposable and non-decomposable losses over examples

L=> Uy h(x)) L#Y Uy hz))
=1 =1

e Decomposable and non-decomposable losses over targets

m m

Uy, h(@) =Y Ly hi(®)) Ly, h(@)) # > Lyi hi())

i=1 i=1
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The individual target view

e Loss functions and optimal predictions
» Decomposable losses over targets.
e Learning algorithms
» Pooling.
» Stacking.
» Regularized multi-target learning.
e Problem settings

» Multi-label classification.
» Multivariate regression.
» Multi-task learning.
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A starting example

b Training data: {(wlayl)a (w27y2)7 SERE) (:c’nayn)}' Yy; € Y.
e Predict the vector y = (y1,92, ..., ym) for a given x.

X1 Xo i Y» ... Y,
1 50 45 1 1 0
ro 20 25 0 1 0
z, 3.0 35 0 1 1
xr 40 25 77 ?
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Loss functions and optimal predictions

e We are interested in minimization of the loss for a given target y;:

The loss function can be also written over all targets as:

m

Uy, 9) =D Lyi i)

=1

The expected loss, or risk, of model h is given by:

Exy (Y, h(X)) = IEXyZE Vi, hi(X ZIEXy£ Yi, hi(X)).
i=1 =1

The optimal prediction minimizing the risk could be obtained
independently for each target v;.

¢ Can we gain by considering other labels?
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Multivariate linear regression

e Single output prediction: Learn a mapping h: X — )Y, YV =R:

X Y
T

i1 0 Tip Ty U1
T

Tpnl = Tnp T, Yn

e When h is linear: h(z) = a’x

e Multi-target: Learn a mapping h = (hy,...,hp) 1 X = ),
Y =R™:
Yy

© g

Yyir 0 Yim

y?; Ynl ° Ynm
e When h is linear: h(z) = ATx
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Single output regression vs. multivariate regression

¢ Multivariate least-squares risk:
m
L P)= [ 3 (@) P .y)
X

e Learning algorithm minimizes empirical least squares risk:

AOLS — arg mlnz Z yij — hji(x:))?

=1 j=1

e The solution for multivariate least squares is the same as for
univariate least squares applied for each output independently.
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e Data uniformly distributed in [—1, 1],
e 10% noise added,
e Risk measured in terms of 0/1 loss: £y/1(y;, hj(x)) = [y; # hj(x)]
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Data for Target 2 Data for Target 2 plus Target 1

e A kind of “instance transfer,”

e Estimator will be biased, but have reduced variance.
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o Expected generalization performance as a function of sample size
(logistic regression, a = 1.5):

0.24r

0.22r

0 50 100 150 200
sample size
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e The critical sample size (dashed line) depends on the model similarity,
which is normally not known!

e To pool or not to pool? Or maybe pooling to some degree?
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James-Stein estimator

e Consider a multivariate normal distribution y ~ N (0, 0°T).

Bivariate Normal

m \
il 'm‘\\“

What is the best estimator of the mean vector 67
Evaluation w.r.t. MSE: E[(6 — 6)?]

Single-observation maximum likelihood estimator: 8 =y
James-Stein estimator:*

= (1R ) v

* W. James and C. Stein. Estimation with quadratic loss. In Proc. Fourth Berkeley Symp. Math.
Statist. Prob. 1, pages 361-379, 1961
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James-Stein estimator

James-stein estimator outperforms the maximum likelihood estimator
as soon as m > 3.

Explanation: reducing variance by introducing bias.

Regularization towards the origin 0

Regularization towards other directions is also possible:

GIS+ _ (1 (m —2)o®

- ||y—v||2)(y‘”)+"’
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James-Stein estimator

e Works best when the norm of the mean vector is close to zero.®

10

—ML
Js

20 2% 30

9
8
7
8
5F
4
3
2

1

0

I8l

e Only outperforms the maximum likelihood estimator w.r.t. the sum of
squared errors over all components.

e Does not outperform the squared error when evaluating an individual
component (i.e. one target).

e Forms the basis for explaining the behavior of many multi-target
prediction methods.

5 B. Efron and C. Morris. Stein's estimation rule and its competitors—an empirical bayes approach.
Journal of the American Statistical Association, 68(341):117130, 1973 32/102




Joint target regularization

e Minimization of the empirical univariate regularized least squares risk:
a9™(\) = argmin > (i — hy(x:))® + Mla;]*.

e Minimization of the empirical multivariate regularized least squares
risk:

A° () —argmmzz (yij = hj(xi)* + MA| -

=1 j=1

e Many machine learning techniques for multivariate regression and
multi-task learning depart from this principle, while adopting more
complex regularizers!

e Regularization incorporates bias, but reduces variance.
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Mean-regularized multi-target learning®

Target 1

e Simple assumption:
models for different targets
are related to each other.

e Simple solution: the
parameters of these models Ve 2 Target 4
should have similar values.

e Approach: bias the
parameter vectors towards

their mean vector. T 9

e Disadvantage: the
assumption of all target
models being similar might
be invalid for many . - 1 & 9
applications. . Y =XA[r+A Z Ha"'_ﬁ Z aj

i=1 j=1

6 Evgeniou and Pontil. Regularized multi-task learning. In KDD 2004
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Multi-target prediction methods

e Methods that exploit the similarities between the structural parts of

target models:
y=h(f(z),x), (1)

where f(x) is the prediction vector obtained by univariate methods,
and h(-) are additional shrunken or regularized classifiers.

o Alternatively, a similar model can be given by:
h™!(y,z) = f(z), (2)

i.e., the output space (possibly along with the feature space) is first
transformed, and than univariate (regression) methods are then
trained on the new output variables h=!(y, x).
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Level 1 ' f1 f2 f3 fa

8 w. Cheng and E. Hiillermeier. Combining instance-based learning and logistic regression for
multilabel classification. Machine Learning, 76(2-3):211-225, 2009
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Multivariate regression methods

e Many multivariate regression methods, like C&W,° reduced-rank
regression (RRR),°, and FICYREG,! can be seen as a generalization

of stacking:
y=(T7'GT)Az,

where T is the matrix of the y canonical co-ordinates (the solution of
CCA), and the diagonal matrix G contains the shrinkage factors for
scaling the solutions of ordinary linear regression A.

° L. Breiman and J. Friedman. Predicting multivariate responses in multiple linear regression. J.
R. Stat. Soc., Ser. B, 69:3-54, 1997

10 A Izenman. Reduced-rank regression for the multivariate linear model. J. Multivar. Anal.,
5:248-262, 1975

' A. an der Merwe and J.V. Zidek. Multivariate regression analysis and canonical variates. Cana-

dian Journal of Statistics, 8:27-39, 1980
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Multivariate regression methods

o Alternatively, y can be first transformed to the canonical co-ordinate
system ¢y’ = Ty.

e Then, separate linear regression is performed to obtain estimates
:T/, = (giagé? s 7g7ln)

e These estimates are further shrunk by the factor g;; obtaining
7 =Gy

o Finally, the prediction is transformed back to the original co-ordinate
output space § = T~ 14/

e Similar methods exist for multi-label classification.
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The joint target view

e Loss functions and probabilistic view

» Relations between losses.

» How to minimize complex loss functions.
e Learning algorithms

» Reduction algorithms.

Conditional random fields (CRFs).

Structured support vector machines (SSVMs).
Probabilistic classifier chains (PCCs).

e Problem settings

» Hamming and subset 0/1 loss minimization.
» Multilabel ranking.
» F-measure maximization.

v vyy
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A starting example

e Training data: {(x1,y1), (2,Y2),...,(Tn,y,)}, y; €Y =1{0,1}".
e Predict the vector y = (y1,92, ..., ym) for a given x.

X1 Xo Yi Yo ... Y,
x; 50 45 1 1 0
xs 2.0 25 0 1 0
x, 3.0 35 0 1 1
x 40 25 ? ? ?
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Two basic approaches

e Binary relevance: Decomposes the problem to m binary
classification problems:

(a:7y)_>(m7y:yl)’ /l::l?""m

e Label powerset: Treats each label combination as a new meta-class
in multi-class classification:

(x,y) — (x,y = metaclass(y))

X1 Xo Vi Yo ... Y
z; 50 45 1 1 0
zy 20 25 0 1 0
z, 30 35 0 1 1
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Synthetic data

e Two independent models:

1 1 1 1
fi(z) = 5331 + 53327 fo(x) = 5371 - 51’2
e Logistic model to get labels:
1
Py, =1)

1 + exp(—2f;)

o
—
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Synthetic data

e Two dependent models:

1 1 1 1 2
fil@) =gei+ 522 foly @) =y + gz — gaa — 5
o Logistic model to get labels:
1
Py, =1)

1 + exp(—2f;)

o
—
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Results for two performance measures

e Hamming loss: (g (y, k) = 237 [y # hi],

e Subset 0/1 loss: £y, (y,h) = [y # h].

CONDITIONAL INDEPENDENCE

CLASSIFIER HAMMING LOSS SUBSET 0/1 LOSS
BR LR 0.4232 0.6723
LP LR 0.4232 0.6725

CONDITIONAL DEPENDENCE

CLASSIFIER HAMMING LOSS SUBSET 0/1 LOSS

BR LR 0.3470 0.5499
LP LR 0.3610 0.5146
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Linear + XOR synthetic data

o
| A A 4 o o o
— A # o o o ©
AAA‘ AAA %6 g Oooocoo
A A A Ooo o o°
A‘ ‘ g ©oo° o °
A A ﬁ“ o o0 o)
© ‘MA A Ay o 0°m¢
Y SR
A AA’: W o °
AA o ° o
AL g 0 00 @
o_| A A o ®© ©00°
o A [ °
A A % s . e
A L) L] ..
San 4 & A§ £ H *e
AA AL N . *
AN oo
0 @ JAYaN 5 L] ! 3 ....l ®
o A A& e ® o O
[] A AA& - e © o%
KB A% &A% % S ™ o
AN 4 2 & LY %
@AA AN M
o AAA & Aﬁ N . * 2 L) .. 0y
3 AN NN . oo
I
I l I I I
-1.0 -0.5 0.0 0.5 1.0

Figure : Problem with two targets: shapes (A vs. o) and colors (OJ vs. H).
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Linear + XOR synthetic data

CLASSIFIER HAMMING SUBSET 0/1
LOSS LOSS

BR LR 0.2399(£.0097) 0.4751(£.0196)

LP LR 0.0143(£.0020) 0.0195(£.0011)

BAYES OPTIMAL 0 0

46 /102



Linear + XOR synthetic data

CLASSIFIER HAMMING SUBSET 0/1
LOSS LOSS

BR LR 0.2399(£.0097) 0.4751(£.0196)

LP LR 0.0143(£.0020) 0.0195(£.0011)

BR MLRules 0.0011(+.0002) 0.0020(+.0003)

BAYES OPTIMAL 0 0
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Linear + XOR synthetic data

e BR LR uses two linear classifiers:

| A o
cannot handle the label color (O | &A.4 ,,‘*AA: S 000"
A o 50 o
vs. M) — the XOR problem. 24 a4 % o Fo oo

v

A

e LP LR uses four linear classifiers & i
to solve 4-class problem (A, A, .

AA AAA A 4(3) @
o, ®): extends the hypothesis = TS C % oo
A A . . e
space. 25 2 NN shote v B2
. N ey Sy,
e BR MLRules uses two non-linear W g e
e .. 1 LR A «°°® o0 % -
classifiers (based on decision A4, A&x&&ﬁ% . e
rules): XOR problem is not a S VU SR R N
S| LTns A%A o * fet, 0.
problem. T ‘ ‘ ‘ ‘
. . . -1.0 -0.5 0.0 0.5 1.0
e There is no noise in the data.

e Easy to perform unfair
comparison.
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Multi-target prediction - probabilistic view

e Data are coming from distribution
PY,X).

e Since we predict the value of Y for a given object «, we are
interested in the conditional distribution:
PY =y, X =x)
P(X =)

PY =yl X =x) =
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Multi-target prediction - probabilistic view

e Data are coming from distribution
PY,X).
e Since we predict the value of Y for a given object «, we are

interested in the conditional distribution:

PY =y, X =x)

PY =yl X =x) = PX =)
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» P(Y =y|X = x) is the largest?
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Multi-target prediction - probabilistic view

e Data are coming from distribution
PY,X).
e Since we predict the value of Y for a given object «, we are

interested in the conditional distribution:

PY =y, X =x)

PY =yl X =x) = PX =)

¢ What is the most reasonable response y?
» P(Y =y|X = x) is the largest?
» P(Y; = y;|X = ) are the largest?
L7
L7
L7

vvyy
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Multi-target prediction - loss minimization view

Define your problem via minimization of a loss function ¢(y, h(x)).

Risk (expected loss) of the prediction h for a given « is:

Ly(h, P|x) =By 5 [((Y,h(z)] = > P(Y =y|z){(y, h(z))
yey

The risk minimization model h*(x), the so-called Bayes classifier, is
defined for a given x by

h*(x) = argmin Ly(h, P | x)
h(x)

Different formulations of loss functions possible:

» Set-based losses.
» Ranking-based losses.
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Multi-target prediction - loss minimization view

Subset 0/1 loss: £y,1(y,h) = [y # h]

Hamming loss: ¢y (y, h Z[[yz # hi]

2 221 yih;
Z?il Yi + 221 h;

F-measure-based loss: (p(y,h) =1 —

Rank loss: £k (y, h) = w(y) Z <[[h1 < hj] + %[[hl = hj]])

Yi>Yj
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Loss minimization view - main issues

e Relations between losses.

e The form of the Bayes classifiers for different losses.
e How to optimize?

Assumptions behind learning algorithms.
Statistical consistency and regret bounds.
Generalization bounds.

Computational complexity.

vV vy vYyy
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Relations between losses

e The loss function £(y, h) should fulfill some basic conditions:
» {(y,h) =0if and only if y = h.
» /(y,h) is maximal when y; # h; for every i =1,...,m.
» Should be monotonically non-decreasing with respect to the number of
yi # hi.

e In case of deterministic data (no-noise): the optimal prediction
should have the same form for all loss functions and the risk for this
prediction should be 0.

e In case of non-deterministic data (noise): the optimal prediction
and its risk can be different for different losses.
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Relations between losses

e Hamming loss vs. subset 0/1 loss:'?
» The form of risk minimizers.
» Consistency of risk minimizers.
» Risk bound analysis.
» Regret bound analysis.

2K, Dembczyniski, W. Waegeman, W. Cheng, and E. Hiillermeier. On loss minimization and
label dependence in multi-label classification. Machine Learning, 88:5-45, 2012
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e The risk minimizer for the Hamming loss is the marginal mode:

hi(x) =arg max P(Y;=y;|lx), i=1,...,m,
yie{ovl}

while for the subset 0/1 loss is the joint mode:

h* = Ply|x).
() arg max (y|x)

e Marginal mode vs. joint mode.

y Py
0000 0.30
0111 0.17 Marginal mode: 1111
1011 0.18 Joint mode: 0000
1101 0.17
1110 0.18
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Consistency of risk minimizers and risk bounds

e The risk minimizers for £ and £/, are equivalent,

hi(x) = hop (),

under specific conditions, for example, when:

» Targets Y7,...,Y,, are conditionally independent, i.e,
P(Y]z) = [ P(Vila)
i=1

» The probability of the joint mode satisfies
P(hgi(x)|z) > 0.5.

e The following bounds hold for any P(Y |x) and h:
1
ELo/l(h7P|w) < Ly(h,P|z) < Ly (h, P|x)
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Regret analysis

e The previous results may suggest that one of the loss functions can
be used as a proxy (surrogate) for the other:

» For some situations both risk minimizers coincide.
» One can provide mutual bounds for both loss functions.
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Regret analysis

e The previous results may suggest that one of the loss functions can
be used as a proxy (surrogate) for the other:

» For some situations both risk minimizers coincide.
» One can provide mutual bounds for both loss functions.
e However, the regret analysis of the worst case shows that
minimization of the subset 0/1 loss may result in a large error
for the Hamming loss and vice versa.
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Regret analysis

e The regret of a classifier with respect to ¢ is defined as:
Regg(h,P) = Lf(hv P) - Lf(”’;: P) )

where hj is the Bayes classifier for a given loss /.

e Regret measures how worse is b by comparison with the optimal
classifier for a given loss.

e To simplify the analysis we will consider the conditional regret:
Regy(h, P |x) = Ly(h, P|z) — Li(hj, P | x).

o We will analyze the regret between:

» the Bayes classifier for Hamming loss h;
> the Bayes classifier for subset 0/1 loss hg

with respect to both functions.

e It is a bit an unusual analysis.
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Regret analysis

e The following upper bound holds:

Rego/1(hp, P |x) = Loj1 (R, Pla) — Loji(hgp, Pl@) < 0.5

e Moreover, this bound is tight.

e Example:
y Py
0000 0.02 Marginal mode: 0000
0011 0.49 Joint mode:

00110r1100
1100 0.49
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Regret analysis

o The following upper bound holds m > 3:

m — 2

Regyr(hiyy. P |@) = Lu(hiyy. P @) — Lu(hiy. P ) <

e Moreover, this bound is tight.
e Example:

y P(y)
0000 0.170
0111 0.166
1011 0.166
1101 0.166
1110 0.166
1111 0.166

Marginal mode: 1111
Joint mode: 0000
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Relations between losses

e Summary:
» The risk minimizers of Hamming and subset 0/1 loss are different:
marginal mode vs. joint mode.
» Under specific conditions, these two risk minimizers are equivalent.
» The risks of these loss functions are mutually upper bounded.
» Minimization of the subset 0/1 loss may cause a high regret for the
Hamming loss and vice versa.
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Relations between losses

Science

e Both are commonly used.
e Hamming loss:
» Not too many labels.
» Well-balanced labels.
» Application: Gene function
prediction.

e Subset 0/1 loss:

» Very restrictive.

Small number of labels.
Low noise problems.
Application: Prediction of
diseases of a patient.

v vVvYy




BR vs. LP

¢ What does the above analysis change in interpretation of the
results of the starting examples?
» BR trains for each label an independent classifier:
® Does BR assume label independence?
® |s it consistent for any loss function?
e What is its complexity?

» LP treats each label combination as a new meta-class in multi-class
classification:
e What are the assumptions behind LP?
® |s it consistent for any loss function?
o What is its complexity?

62 /102



BR vs. LP

e Binary relevance (BR)

» BRis consistent for Hamming loss without any additional assumption
on label (in)dependence.

» If this would not be true, then we could not optimally solve binary
classification problems!!!

» For other losses, one should probably take additional assumptions:

o For subset 0/1 loss: label independence, high probability of the joint
mode (> 0.5), ...

» Learning and inference is linear in m (however, faster algorithms exist).
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BR vs. LP

e Label powerset (LP)

» LP is consistent for the subset 0/1 loss.

» In its basic formulation it is not consistent for Hamming loss.

» However, if used with probabilistic multi-class classifier, it estimates the
joint conditional distribution for a given x: inference for any loss
would be then possible.

» Similarly, by reducing to cost-sensitive multi-class classification LP can
be used with almost any loss function.

» LP may gain from the implicit expansion of the feature or hypothesis
space.

» Unfortunately, learning and inference is basically exponential in m

(however, this complexity is constrained by the number of training
examples).
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Algorithmic approaches for multivariate losses

The loss functions, like Hamming loss or subset 0/1 loss, often
referred to as task losses, are usually neither convex nor
differentiable.

Therefore learning is a hard optimization problem.
e Two approaches try to make this task easier

» Reduction.
» Structured loss minimization.

Two phases in solving multi-target prediction problems:

» Learning: Estimate parameters of the scoring function f(x,y).
» Inference: Use the scoring function f(x,y) to classify new instances by
finding the best y for a given x.
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Reduction

{(z.y)}hin

(®,y) = (@)

bidd

min {(y', ', f)

bidd
f&.y)
|
@ —> [Inference] — ¥

Reduce the original problem
into problems of simpler
type, for which efficient
algorithmic solutions are
available.

Reduction to one or a
sequence of problems.

Plug-in rule classifiers.

BR and LP already
discussed.
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Structured loss minimization

{(SL‘, y)}?:l

l

o Replace the task loss by a
surrogate loss that is easier
to cope with.

e Surrogate loss is typically a
differentiable approximation
of the task loss or a convex
upper bound of it.

ming(y,w,f)

T —> |Inference| — ¥
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Statistical consistency

e Analysis of algorithms in terms of their infinite sample performance.!3

o We say that a proxy loss { is consistent with the task loss ¢ when the
following holds:

Reg;(h, P) — 0 = Reg,(h,P) = 0.

e The definition concerns both structured loss minimization and
reduction algorithms

» Structured loss minimization: (= surrogate loss.
» Reduction: ¢ = loss used in the reduced problem.
o We already know: Hamming loss is not a consistent proxy for subset
0/1 loss and vice versa.

13 A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods. JMLR,
8:1007-1025, 2007
D. McAllester and J. Keshet. Generalization bounds and consistency for latent structural probit
and ramp loss. In NIPS, pages 2205-2212, 2011
W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199-200:22—-44, 2013
68 /102



Algorithms

¢ Conditional random fields (CRFs)
e Structured support vector machines (SVMs)
¢ Probabilistic classifier chains (PCC)
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Conditional random fields

e Conditional random fields (CRFs) extend logistic regression.*

o CRFs model the conditional joint distribution of Y by:
1
P(y|z) = %exp(f(a:,y))

e f(x,y) is a scoring function that models the adjustment between y
and x.

e Z(x) is a normalization constant:

Z(x) = Z exp(f(z,y))

yey

% John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001
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Conditional random fields

e The negative log-loss is used as a surrogate:

log(y, @, ) = —log P(ylz) =log | > exp(f(z,y)) | — f(z,y)
yey

e Regularized log-likelihood optimization:
1 n
Infin ﬁ Z elog(ya Z, f) + )“](f)
i=1
e Inference for a new instance x:
h(x) = argmax P(y | x)

yey
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Conditional random fields

e Similar to LP, but with an internal structure of classes and scoring
function f(x,y).

e Convex optimization problem, but depending on the structure of
f(x,y) its solution can be hard.

e Similarly, the inference (also known as decoding problem) is hard in
the general case.

e Tailored for the subset 0/1 loss (estimation of the joint mode).

o Different forms for f(x,y).
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Conditional random fields

o Let f(x,y) be defined as:
fl@,y)=>_ filz,v)
i=1

e In this case, we have:
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Conditional random fields

o Let f(x,y) be defined as:
fl@,y)=>_ filz,v)
i=1

e In this case, we have:

P(y | II}) _ exp(f(a:, y)) _ exp(zz’ll fl(:c? yl))
Yyey exp(f(@,y)  Pyeyexp(Xily filz, vi)
[12 exp(fi(z,y:)  TLi%g exp(fi(z,v:)

Yyey s exp(file,vi)) — TTimy 2oy, exp(fi(z, vi)
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Conditional random fields

o Let f(x,y) be defined as:
fl@,y)=>_ filz,v)
i=1

e In this case, we have:

P(y | II}) _ exp(f(a:, y)) _ exp(zz’ll fl(:c? yl))
Yyey exp(f(@,y)  Pyeyexp(Xily filz, vi)
[12 exp(fi(z,y:)  TLi%g exp(fi(z,v:)

Yyey s exp(file,vi)) — TTimy 2oy, exp(fi(z, vi)

m
= || Plyi|l=)
=1
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Conditional random fields

o Let f(x,y) be defined as:
fl@,y)=>_ filz,v)
i=1

e In this case, we have:

P(y | SI}) _ exp(f(a:, y)) _ exp(zz’il fl($7 yl))
Yyey exp(f(@,y)  Pyeyexp(Xily filz, vi)
[12 exp(fi(z,y:)  TLi%g exp(fi(z,v:)

Yyey s exp(file,vi)) — TTimy 2oy, exp(fi(z, vi)
= [[Pwil=)
=1

¢ Optimal for Hamming loss!!!
e The structure of f(x,vy) is connected to the loss function.

73/102



Conditional random fields

¢ A different form of f(x,y):

fla,y)=> fix,y)+ > fralyew)
=1 Yk Y1

e Models pairwise interactions, ...
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Conditional random fields

¢ A different form of f(x,y):

m

Flay) = filmy) + > fealyrw)
=1 Yk, Yl
e Models pairwise interactions, ... but in the conditional sense:
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Conditional random fields

¢ A different form of f(x,y):

m
Flay) = filmy) + > fealyrw)
=1 Yk, Yl
e Models pairwise interactions, ... but in the conditional sense:

» Assume that x is not given:

exp(_; filyi) + 22y, 0 e (Yrs u1)
> oyey exXP; filyi) + 22, 4 fra(ye, v))

» Models a prior joint distribution over labels!!!
» The prior cannot be easily factorized to marginal probabilities.

P(y) =

e Should work better for subset 0/1 loss than for Hamming loss.
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Structured loss minimization

e CRFs do not directly take the task loss into account.

e We would like to have a method that could be used with any loss ...

By, Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for struc-
tured and interdependent output variables. JMLR, 6:1453-1484, 2005
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Structured loss minimization

e CRFs do not directly take the task loss into account.
e We would like to have a method that could be used with any loss ...

e Structured support vector machines (SSVMs) extends the idea of
large-margin classifiers to structured output prediction problems.1®

By, Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for struc-

tured and interdependent output variables. JMLR, 6:1453-1484, 2005
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Structured support vector machines

e SSVMs use, similarly to CRFs, a scoring function f(x,y).
e They minimize the structured hinge loss:

iy, z, f) = max{l(y,y') + f(2,y)} - f(zy).

Task loss £(y,y’) is used for margin rescaling.

Regularized optimization problem:

m}n % th(y, x, f)+ AJ(f)
i=1

Predict according to:

h(x) = argmax f(x,vy) .
yey

76 /102



Structured support vector machines

Convex optimization problem with linear constraints.

e An exponential number of constraints — Cutting-plane algorithms.

The arg max problem is hard for general structures.

Different forms for f(x,vy).
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Structured support vector machines

o Let f(x,y) be defined as:
f@y) =) filz,y)
i=1

e Let us use it with the Hamming loss:

16p Hariharan, L. Zelnik-Manor, S.V.N. Vishwanathan, and M. Varma. Large scale max-margin
multi-label classification with priors. In /ICML. Omnipress, 2010
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Structured support vector machines

o Let f(x,y) be defined as:
f@y) =) filz,y)
i=1

e Let us use it with the Hamming loss:

Zh(y; xT, f) = g}gi}({gH(y7 y/) + f(a:: yl)} - f(wv y)

— g}gi}( {Z[[Z/z #yi] + Zfz(:c,y;)} — Zfz(%yz)

16p Hariharan, L. Zelnik-Manor, S.V.N. Vishwanathan, and M. Varma. Large scale max-margin
multi-label classification with priors. In /ICML. Omnipress, 2010
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Structured support vector machines

o Let f(x,y) be defined as:
f@y) =) filz,y)
i=1

e Let us use it with the Hamming loss:

lh(y,z, f) = g}g§{ﬁﬂ(y,y’)+f(w,y')}—f(w,y)

— g}gi}( {Z[[Z/z #yi] + Zfz(:c,y;)} — Zfi(%yi)

i

_ ZH?X {Tyi # vil + fi(z, 4;) — filz, vi) }

16p Hariharan, L. Zelnik-Manor, S.V.N. Vishwanathan, and M. Varma. Large scale max-margin
multi-label classification with priors. In /ICML. Omnipress, 2010
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Structured support vector machines

o Let f(x,y) be defined as:
f@y) =) filz,y)
i=1

e Let us use it with the Hamming loss:

lh(y,z, f) = g}g§{ﬁﬂ(y,y’)+f(w,y')}—f(w,y)

— g}gi}( {Z[[Z/z #yi] + Zfz(:c,y;)} — Zfi(%yi)

i

_ ZH?X {Tyi # vil + fi(z, 4;) — filz, vi) }

e Structured hinge loss decomposes to hinge loss for each label.1®

o Consistent for the Hamming loss.

16p Hariharan, L. Zelnik-Manor, S.V.N. Vishwanathan, and M. Varma. Large scale max-margin
multi-label classification with priors. In /ICML. Omnipress, 2010
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Structured support vector machines

The form f(x,y) that models pairwise interactions:

m

fla,y) =" filmy) + D fralyew)

=1 YY1
e How important is the pairwise interaction part for different task
losses?

e For a general form of f(x,y), SSVMs are inconsistent for Hamming
loss.1”

There are more results of this type.®

7' W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199-200:22-44, 2013
18 A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods. JMLR,
8:1007-1025, 2007
D. McAllester. Generalization Bounds and Consistency for Structured Labeling in Predicting
Structured Data. MIT Press, 2007
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Structured support vector machines

Table : SSVMs with pairwise term!® vs. BR with LR?.

DATASET SSVM BEST BR LR

SCENE 0.1014£.003 0.1024.003
YEAST 0.2024.005 0.1994.005
SYNTH1 0.069+.001 0.0674.002
SYNTH2 0.058+.001 0.084+.001

e There is almost no difference between both algorithms.

19 Thomas Finley and Thorsten Joachims. Training structural SVMs when exact inference is
intractable. In ICML. Omnipress, 2008
e Dembczynski, W. Waegeman, W. Cheng, and E. Hillermeier. An analysis of chaining in

multi-label classification. In ECAI, 2012
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SSVMs vs. CRFs

e SSVMs and CRFs are quite similar to each other:

glog(y7 , f) = log Z exp(f(a:, y)) - f((l?, y)

yey
Zh(ya T, f) = H}&X{E(y, y,) + f(mv y,)} - f(:L', y)
y'ey

e The main differences are:

» max vs. soft-max
» margin vs. no-margin

e Many works on incorporating margin in CRFs.?!

2 p Pletscher, C.S. Ong, and J.M. Buhmann. Entropy and margin maximization for structured

output learning. In ECML/PKDD. Springer, 2010
Q. Shi, M. Reid, and T. Caetano. Hybrid model of conditional random field and support vector

machine. In Workshop at NIPS, 2009
K. Gimpel and N. Smith. Softmax-margin crfs: Training log-linear models with cost functions.

In HLT, page 733736, 2010
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Probabilistic classifier chains

Probabilistic classifier chains (PCCs)?? similarly to CRFs estimate the
joint conditional distribution P(Y |x).

e Their idea is to repeatedly apply the product rule of probability:
m
P(Y:y‘:'v) :HP(Y'Z :Z/z|$ay177yz—1)
i=1

They follow a reduction to a sequence of subproblems:

(mvy)_>(w/:(maylv"'ayi—1)7y:yi)a Z':]-a"'vm

Their additional advantage is that one can easily sample from the
estimated distribution.

2, Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification.
Machine Learning Journal, 85:333-359, 2011
K. Dembczyriski, W. Cheng, and E. Hiillermeier. Bayes optimal multilabel classification via
probabilistic classifier chains. In ICML, pages 279-286. Omnipress, 2010
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Probabilistic classifier chains

o Learning of PCCs relies on constructing probabilistic classifiers for
estimating
P(E = yi‘xvyla s 7yi—1) 5
independently for each i =1,...,m.

e One can use scoring functions f;(x’,y;) and use logistic
transformation.
e By using the linear models, the overall scoring function takes the form:

m

Fl@y) = film,y) + > fealye w)

=1 Yk Yl
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Probabilistic classifier chains

o Inference relies on exploiting a probability tree being the result of

PCC:

P(y1 =0|z) =04
y2 =1 y2=10

y2 =0

(P(y2=0 1 11=0, 2)=0.0) (P (y2=1 | 11=0, 2)=1.0) (P (y2=0 | y1=1, 2)=0.4) (P (yo=1 | =1, ©)=0.6)
P(y=(1,0) |x)=0.24 P(y=(1,1)|x)=0.36

P(y=(0,0)|z)=0  P(y=(0,1)|x)=0.4
e For subset 0/1 loss one needs to find h(x) = argmax, ¢y P(y|x).
e Greedy and approximate search techniques with guarantees exist.?3

B K. Dembczynski, W. Waegeman, W. Cheng, and E. Hillermeier. An analysis of chaining in

multi-label classification. In ECAI, 2012
A. Kumar, S. Vembu, A.K. Menon, and C. Elkan. Beam search algorithms for multilabel

learning. In Machine Learning, 2013
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Probabilistic classifier chains

o Inference relies on exploiting a probability tree being the result of

PCC:
@

P(y1 =0]|z) =04

y2 =0 y2 =1 y2 =0 y2 =1

(P(y2=0 1 11=0, 2)=0.0) (P (y2=1 | 11=0, 2)=1.0) (P (y2=0 | y1=1, 2)=0.4) (P (yo=1 | =1, ©)=0.6)
P(y=(0,0) | x)=0 P(y=(0,1)|z)=04  P(y=(1,0)|x)=0.24 P(y=(1,1)|=x)=0.36

e Other losses: compute the prediction on a sample from P(Y | z).?3

e Sampling can be easily performed by using the probability tree.

B K. Dembczynski, W. Waegeman, W. Cheng, and E. Hillermeier. An analysis of chaining in
multi-label classification. In ECAI, 2012
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Probabilistic classifier chains

Table : PCC vs. SSVMs on Hamming loss and PCC vs. BR on subset 0/1 loss.

DATASET pPCC SSVM BEST PCC BR
HAMMING LOSS SUBSET 0/1 LOSS
SCENE 0.1044+.004 0.1014.003 0.3854+.014 0.509+.014
YEAST 0.2034+.005 0.2024.005 0.7614+.014 0.8424.012
SYNTH1 0.067£.001 0.069#£.001 0.2394+.006 0.2404.006
SYNTH2 0.000£.000 0.058%£.001 0.000£.000 0.832£.004
REUTERS 0.060+.002 0.045+£.001 0.598+.009 0.6894.008
MepiaMILL  0.172+.001 0.1824+.001 0.8854.003 0.902+.003
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Muiltilabel ranking

Multi-label classification

Serena romps to fifth Wimbledon title
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Muiltilabel ranking

Serena romps to fifth Wimbledon title
against brave Radwanska

By Paul Gittings, CNN

July 7, 2012 - Updated 2220 GMIT (0620 HKT)

STORY HIGHLIGHTS

- Serena Wiliams wins ffth
‘Wimbledon crown

+ American beas Agnieszka
Radwanska of Poland 6-15-7 6-
2

+ Radwanska battis respiratory

PRIty

) wiliams and Radwanska shake
hands afler the match on Sarday.

Women's singles Wimbledon Championship ™~

7 8 9

10 11 12 13 14 15 16 17 18

(GNN) -- Serena Wiliams fended off a stirring fightback from
Agnieszka Radwanska to win her fiith Wimbledon singles title with a
6-1 57 6-2 victory Saturday.

It was the 30-year-old American's 14th grand slam crown and her
first since winning at the All England GIub in 2010, but Poland's
Radwanska made her fight every inch of the way.
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Multilabel ranking

¢ Ranking loss:

by ) = wly) 3 (Tata) < hy(@)] + 5 @) = sG] )

(4,9): yi>yj

where w(y) < Winqy is @ weight function.

X1 Xo Y1 Yo Y,

x 40 25 1 0 0
hy > hy > ... > hpy
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Multilabel ranking

¢ Ranking loss:

by ) = wly) 3 (Tata) < hy(@)] + 5 @) = sG] )
(4,9)  4i>y;
where w(y) < Winqy is @ weight function.

The weight function w(y) is usually used to normalize the range
of rank loss to [0, 1]:

1
w(y) = o

i.e., it is equal to the inverse of the total number of pairwise
comparisons between labels.
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Pairwise surrogate losses

e The most intuitive approach is to use pairwise convex surrogate
losses of the form

lo(y.h) = > w(y)e(hi —hy),

(4,9): yi>y;

where ¢ is
» an exponential function (BoosTexter)?*: ¢(f) =e~/,
» logistic function (LLLR)?: ¢(f) = log(1+e¢~/),
» or hinge function (RankSVM)?®: ¢(f) = max(0,1 — f).

#RE Schapire and Y. Singer. BoosTexter: A Boosting-based System for Text Categorization.
Machine Learning, 39(2/3):135-168, 2000
% 0. Dekel, Ch. Manning, and Y. Singer. Log-linear models for label ranking. In NIPS. MIT
Press, 2004
26 A Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS, pages
681-687, 2001
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Multilabel ranking

e This approach is, however, inconsistent for the most commonly used
convex surrogates.?”

e The consistent classifier can be, however, obtained by using
univariate loss functions?® ...

27 ). Duchi, L. Mackey, and M. Jordan. On the consistency of ranking algorithms. In ICML, pages
327-334, 2010

W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199-200:22-44, 2013

BK. Dembczynski, W. Kotlowski, and E. Hiillermeier. Consistent multilabel ranking through
univariate losses. In ICML, 2012
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Reduction to weighted binary relevance

e The Bayes ranker can be obtained by sorting labels according to:
Al= Y w(yP(y|=z).
y:yi=1

e For w(y) =1, AY reduces to marginal probabilities P(Y; = u|x).
K3

e The solution can be obtained with BR or its weighted variant in a
general case.
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Reduction to weighted binary relevance

¢ Consider the sum of univariate (weighted) losses:

Zexp (y7 h) = w(y) Z ef(2yi*1)hi ,

m
aog(ya h) = w(y) Z log (1 + e—(Qyi—l)hi) )
i=1
e The risk minimizer of these losses is:
" 1. Al 1 Al
hi(w)zzlogA logW AT

7
which is a strictly increasing transformation of A}, where
W =E[w(Y)|z] =) w(y)Py|=).
y
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Reduction to weighted binary relevance

Vertical reduction: Solving m independent classification problems.

Standard algorithms, like AdaBoost and logistic regression, can be
adapted to this setting.

AdaBoost.MH follows this approach for w = 1.2°

Besides its simplicity and efficiency, this approach is consistent
(regret bounds have also been derived).30

YR E Schapire and Y. Singer. BoosTexter: A Boosting-based System for Text Categorization.
Machine Learning, 39(2/3):135-168, 2000
30K, Dembczynski, W. Kotlowski, and E. Hiillermeier. Consistent multilabel ranking through

univariate losses. In ICML, 2012
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Weighted binary relevance

IES —— WBR-LR 1 R —— WBR-LR
< \ —— LLLR —— LLLR
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Figure : WBR LR vs. LLLR. Left: independent data. Right: dependent data.

e Label independence: the methods perform more or less en par.

o Label dependence: WBR shows small but consistent improvements.
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Benchmark data

Table : WBR-AdaBoost vs. AdaBoost.MR (left) and WBR-LR vs LLLR (right).

DATASET AB.MR WBR-AB LLLR WBR-LR

IMAGE 0.2081 0.2041 0.2047 0.2065
EMOTIONS 0.1703 0.1699 0.1743 0.1657
SCENE 0.0720 0.0792 0.0861 0.0793
YEAST 0.2072 0.1820 0.1728 0.1736

MEDIAMILL  0.0665 0.0609 0.0614 0.0472

o WBR is at least competitive to state-of-the-art algorithms defined on
pairwise surrogates.
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Maximization of the F-measure

o Applications: Information retrieval, document tagging, and NLP.

¢ JRS 2012 Data Mining
Competition: Indexing
documents from
MEDLINE or PubMed bl . ™
Central databases with oxainrs | o e tomm | et e | ot | o

concepts from the MEDLINE®/PubMed® Resources Guide
M ed ica | S u bj ect MEDLINE® contains journal citations and abstracts for biomedical literature from around the world. Publ

possible.

M “The following resources provide detailed information about MEDLINE data and searching PubMed. If you 1
Headings ontology. By

NEWS
O pubMed New and Noteworthy:

List of changes to PubMed by date, with links to the Technical Bulletin.
O NLM Technical Bulletin:
The NLM Technical Bulletin is your main source for detailed information about changes and updates.
O NLM-Announces:

NLM e-mail list for announcing important information and changes to NLM systems including PubMe

O pubMed-Alerts:
An announcements-only e-mail list that notifies subscribers of major system problems with PubM
8:30am to 5:00pm ET).

OVERVIEWS
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Maximization of the F-measure

e The Fjg-measure-based loss function (Fs-loss):

lry(y,h(®)) = 1-Fp(y h(z))

(1+6%) 3 yihi()
/8221 1y1+21 1h(CC)

e Provides a better balance between relevant and irrelevant labels.

1-—

€ [0,1].

e However, it is not easy to optimize.
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SSVMs for F3-based loss

e SSVMs can be used to minimize Fg-based loss
e Rescale the margin by /r(y,vy’).
e Two algorithms:3!

RML SML
No label interactions: Submodular interactions:
fly,@) =" filyi, @) Fly @) =" filyo @)+ frayn,v)
=1 i=1 Yk Yl
Quadratic learning and linear More complex (graph-cut and ap-
prediction proximate algorithms)

e Both are inconsistent.

31 ). Petterson and T. S. Caetano. Reverse multi-label learning. In NIPS, pages 1912-1920, 2010

J. Petterson and T. S. Caetano. Submodular multi-label learning. In NIPS, pages 1512-1520,
2011
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Plug-in rule approach

e Plug estimates of required parameters into the Bayes classifier.

h* = argminE [(g, (Y, h)]

he)y
(B+1) 30 yihi
= argmax P(y) — =1
he)y y;y 32 Zi:l Yi + Zizl h;

¢ No closed form solution for this optimization problem.

e The problem cannot be solved naively by brute-force search:
» This would require to check all possible combinations of labels (2™)
» To sum over 2™ number of elements for computing the expected value.
» The number of parameters to be estimated (P(y)) is 2™.
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Plug-in rule approach

e Approximation needed?

32 N. Ye, K. Chai, W. Lee, and H. Chieu. Optimizing F-measures: a tale of two approaches. In
ICML, 2012

B K. Dembczynski, W. Waegeman, W. Cheng, and E. Hiillermeier. An exact algorithm for F-
measure maximization. In NIPS, volume 25, 2011

K. Dembczynski, A. Jachnik, W. Kotlowski, W. Waegeman, and E. Hiillermeier. Optimizing
the F-measure in multi-label classification: Plug-in rule approach versus structured loss mini-

mization. In ICML, 2013
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Plug-in rule approach

e Approximation needed? Not really. The exact solution is tractable!

32 N. Ye, K. Chai, W. Lee, and H. Chieu. Optimizing F-measures: a tale of two approaches. In
ICML, 2012

B K. Dembczynski, W. Waegeman, W. Cheng, and E. Hiillermeier. An exact algorithm for F-
measure maximization. In NIPS, volume 25, 2011

K. Dembczynski, A. Jachnik, W. Kotlowski, W. Waegeman, and E. Hiillermeier. Optimizing
the F-measure in multi-label classification: Plug-in rule approach versus structured loss mini-

mization. In ICML, 2013
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Plug-in rule approach

e Approximation needed? Not really. The exact solution is tractable!

LFP: EFP:

Assumes label independence. No assumptions.

Linear number of parameters: Quadratic number of parameters:

P(yi =1). Plyi=1,5s =3 9)

Inference based on dynamic pro- Inference based on matrix multipli-

gramming.3? cation and top k selection.33

Reduction to LR for each label. Reduction to multinomial LR for
each label.

e EFP is consistent.3*

32 N. Ye, K. Chai, W. Lee, and H. Chieu. Optimizing F-measures: a tale of two approaches. In
ICML, 2012

B K. Dembczynski, W. Waegeman, W. Cheng, and E. Hiillermeier. An exact algorithm for F-
measure maximization. In NIPS, volume 25, 2011

K. Dembczynski, A. Jachnik, W. Kotlowski, W. Waegeman, and E. Hiillermeier. Optimizing
the F-measure in multi-label classification: Plug-in rule approach versus structured loss mini-

mization. In ICML, 2013
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Challenges

e We did not discuss:

Label ranking problems.

» Hierarchical multi-label classification.
» Structured output prediction problems.
>

v

e Main challenges:

» Learning and inference algorithms for any task losses and output
structures.

» Consistency of the algorithms.

» Large-scale datasets: number of instances, features, and labels.
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Conclusions

e Take-away message:

» Two main challenges: loss minimization and target dependence.
Two views: the individual target and the joint target view.
The individual target view: joint target regularization
The joint target view: structured loss minimization and reduction.
Proper modeling of target dependence for different loss functions.
Be careful with empirical evaluations.
Independent models can perform quite well.

vV vy VY VY VY
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help in preparing the slides.
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