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Multi-label classification:
the example of document categorization
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Multivariate regression:
the example of protein-ligand interaction prediction
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Multi-task learning:
the example of predicting student marks
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There are a lot of multi-target prediction problems
around...
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Upcoming article

https://arxiv.org/abs/1809.02352
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Overview of this talk
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General framework

Definition (Multi-target prediction)

A multi-target prediction setting is characterized by instances x ∈ X and
targets t ∈ T with the following properties:

P1. A training dataset D consists of triplets (xi, tj , yij), where yij ∈ Y
denotes a score that characterizes the relationship between the
instance xi and the target tj .

P2. In total, n different instances and m different targets are observed
during training, with n and m finite numbers. Thus, the scores yij of
the training data can be arranged in an n×m matrix Y , which is in
general incomplete, i.e., Y has missing values.

P3. The score set Y is one-dimensional. It consists of nominal, ordinal or
real values.

P4. The goal consists of predicting scores for any instance-target couple
(x, t) ∈ X × T .
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Conventional MTP settings

Side information for targets is normally not available.

Multivariate regression (e.g., predicting whether a protein will bind
to a set of experimentally developed small molecules).

Multi-label classification (e.g., assigning appropriate category tags
to documents).

Multi-task learning (e.g., predicting student marks in the final exam
for a typical high-school course).
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Conventional MTP settings

Definition (Multivariate regression)

A multivariate regression problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m. This implies that all targets are observed
during training.

P6. No side information is available for targets. Without loss of generality,
we can hence assign the numbers 1 to m as identifiers to targets,
such that the target space is T = {1, ...,m}.

P7. The score matrix Y has no missing values.

P8. The score set is Y = R.
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Multivariate regression
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Conventional MTP settings

Definition (Multi-task learning)

A multi-task learning problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m; this implies that all targets are observed
during training.

P6. No side information is available for targets. Again, the target space
can hence be taken as T = {1, ...,m}.

P8a. The score set is homogenous across columns of Y , e.g., Y = {0, 1} or
Y = R.
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Multi-task learning
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Conventional MTP settings

Definition (Multi-label classification)

A multi-label classification problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m; this implies that all targets are observed
during training.

P6. No side information is available for targets. Again, without loss of
generality, we can hence identify targets with natural numbers, such
that the target space is T = {1, ...,m}.

P7. The score matrix Y has no missing values.

P8b. The score set is Y = {0, 1}.
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Multi-label classification
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Conventional MTP settings

Definition (Label ranking)

A multi-label classification problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m; this implies that all targets are observed
during training.

P6. No side information is available for targets. Again, without loss of
generality, we can hence identify targets with natural numbers, such
that the target space is T = {1, ...,m}.

P7. The score matrix Y has no missing values.

P8c. The score set is Y = {1, . . . ,m}, and the scores (interpreted as
ranks) are such that yij 6= yik for all 1 ≤ j, k 6= m.
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Conventional MTP settings

In label ranking1, each instance is associated with a ranking (total
order) of the targets.

1 E.H., J. Fürnkranz, W. Cheng, K. Brinker. Label Ranking by Learning Pairwise Preferences, Artificial Intelligence, 172, 2008.
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Let’s assume a document hierarchy:
How would you call this machine learning problem?
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Let’s assume a target representation:
How would you call this machine learning problem?

22 / 126



Let’s assume a target representation:
How would you call this machine learning problem?
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Learning with side information on targets

Additional side information about the target space is available.

Examples:
I Representation for the target molecules in drug design application

(structured representation).
I Taxonomie on document categories (hierarchy).
I Information about schools and courses (geographical location,

qualifications of the teachers, reputation of the school, etc.) in student
mark forecasting application (feature representation).

Such problems are often referred to as dyadic prediction, link
prediction, or network inference settings.
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Learning with side information on targets

Generally speaking, such settings cover problems that obey the four
properties listed in the MTP definition.

Labels yij can be arranged in a matrix Y , which is often sparse.

Thus, one may argue that dyadic prediction is nothing else than
multi-task learning with task features.

However, MTP terminology is rarely used in the dyadic prediction
literature.
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Inductive versus transductive learning problems

In the previous problems,
I predictions need be be generated for novel instances,
I whereas the set of targets is known beforehand and observed during

the training phase.

These problems are inductive w.r.t. instances and transductive
w.r.t. targets.

Side information is of crucial importance for generalizing to novel
targets that are unobserved during the training phase.
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Inductive versus transductive learning problems

g(., .) : target similarity
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Important subdivision of different learning settings
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Inductive versus transductive learning problems

Definition (Zero-shot learning)

A zero-shot learning problem is a specific instantiation of the general
framework with the following additional property:

P5*. m < m∗ = |T |. Some targets are hence not observed during training,
but may nevertheless appear at prediction time.

By substituting P5 with P5*, one now tackles problems that are
inductive instead of transductive w.r.t. targets.

The same subdivision can be made for instances.

In total, the four different settings referred to as A, B, C, D can be
distinguished (in the presence of side information).

Theoretically, settings B and C are identical/symmetric, though there
are practical differences/asymmetries.
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Inductive versus transductive learning problems

Definition (Matrix completion)

A matrix completion problem is a specific instantiation of the general
framework with the following additional properties:

P5. The cardinality of T is m. This implies that all targets are observed
during training.

P6. No side information is available for targets. Without loss of generality,
we can hence assign identifiers to targets from the set {1, ...,m} such
that the target space is T = {1, ...,m}.

P9. The cardinality of X is n. This implies that all instances are observed
during training.

P10. No side information is available for instances. Without loss of
generality, we can hence assign identifiers to instances from the set
{1, ..., n}, such that the instance space is X = {1, ..., n}.
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What we don’t cover under MTP

Our formal framework is rather generic.

In principle, every prediction problem with (original) output space Y
could be seen as a special case by taking T = Y and {0, 1} as a score
set (or through any other binary reduction).

Each candidate output is treated as a target, the task is to predict
whether or not the sought output corresponds to that candidate.

Consequently, a consistent prediction has to obey strong
(deterministic) dependencies between the targets (a single 1, rest 0).

Includes multi-class classification and structured output prediction
(SOP) as special cases.
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What we don’t cover under MTP

Multi-class classification as a special case of MTP (?)
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What we don’t cover under MTP

Conceptually, viewing each candidate prediction as a separate target
appears artificial. Actually, one is still interested in a single prediction,
not multiple ones.

The multi-target problem was only produced through decomposition
of a singe-target problem into multiple binary tasks/decisions.

To comply with the corresponding consistency constraints, a kind
of post-processing (like the decoding step in ECOC) is normally
required (separation over tasks is not even possible in principal).
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What we don’t cover under MTP

Algorithmically, the multi-target perspective is not typical of SOP.
Instead, such methods are specifically tailored for output spaces that
are often huge but equipped with a strong structure.

Also excluded are prediction problems where the ground truth cannot
be represented in a matrix format with optional side information, such
as problems involving multi-instance learning representations or dyadic
feature representations.
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Overview of this talk

1 Introduction

2 A unifying view on MTP problems

3 MTP loss functions

4 A unifying view on MTP methods

5 Conclusions
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Multi-target prediction

For a feature vector x, predict a vector of responses
y = (y1, y2, . . . , ym) using a function/hypothesis h:

x = (x1, x2, . . . , xp)
h(x)−−−−−→ ŷ = (ŷ1, ŷ2, . . . , ŷm)

Compared to single-target prediction, a multitude of multivariate
loss functions

` : Ym × Ym → R

are conceivable.

Problem: Given a target loss `, find a (Bayes) predictor h that
minimizes expected loss with regard to `.

Key question: Can we achieve this goal through simple reduction,
i.e., by training one model for each target independently? Or can we
do better with more sophisticated methods?
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The individual target view

How can we improve the predictive accuracy of a single label by
exploiting information about other labels?

Goal: predict a value of yi using x and any available information on
other targets yj .

The problem is usually defined through univariate losses `i(yi, ŷi).

Domain of yi is either continuous or nominal.

Independent models vs. regularized (shrunken) models.

James-Stein paradox (to be discussed later).
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The joint target view

The problem is defined through multivariate losses `(y, ŷ).

Is reduction to single-target prediction (decomposition over targets)
still possible, and even if so, can we improve over such strategies by
using more expressive models?

Important: Structure of loss `(·), possible dependencies between
targets, multivariate distribution of y.
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Multivariate loss functions

Decomposable over examples: A loss L is decomposable over
examples if it can be written in the form

L =

n∑
i=1

`(yi,h(xi)) ,

i.e., as a sum of losses over all (test) examples.

Decomposable over targets: A multivariate loss ` is decomposable
over targets if it can be written as

`(y,h(x)) =
m∑
i=1

`i(yi, hi(x))

with suitable single-target losses `i.
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Macro- and micro-averaging

Macro-averaging

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

L =
1

4
(L1 + L2 + L3 + L4)
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Macro- and micro-averaging

Micro-averaging

True labels
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L =
∑
i,j

`(yij , ŷij)
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Macro- and micro-averaging

Micro-averaging

True labels

y11 y12 y14

y21 y23 y24

y31 y32 y33 y34

y41 y43 y44

y51 y52 y53 y54

y62 y63

Predicted labels

ŷ11 ŷ12 ŷ14

ŷ21 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ62 ŷ63

L =
∑
i,j

`(yij , ŷij)

Same weight of every prediction vs. same weight of every target.
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Instance-wise losses

Averaging over instances

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels

ŷ11 ŷ12 ŷ13 ŷ14

ŷ21 ŷ22 ŷ23 ŷ24

ŷ31 ŷ32 ŷ33 ŷ34

ŷ41 ŷ42 ŷ43 ŷ44

ŷ51 ŷ52 ŷ53 ŷ54

ŷ61 ŷ62 ŷ63 ŷ64

L =
1

6

(
`(y1, ŷ1) + `(y2, ŷ2) + `(y3, ŷ3)+

`(y4, ŷ4) + `(y5, ŷ5) + `(y6, ŷ6)
)

43 / 126



Instance-wise losses

Averaging over instances

True labels

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

y51 y52 y53 y54

y61 y62 y63 y64

Predicted labels
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ŷ21 ŷ22 ŷ23 ŷ24
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`(y4, ŷ4) + `(y5, ŷ5) + `(y6, ŷ6)
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Examples of MTP loss functions

F-measure:

F (Y, Ŷ) =
2
∑K

i=1 yiŷi∑K
i=1 yi +

∑K
i=1 ŷi

,

where Y = (y1, . . . , yK) ∈ {0, 1}K and Ŷ = (ŷ1, . . . , ŷK) ∈ {0, 1}K .
Can be used in macro- and micro-averaging, but also instance-wise.
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The Hamming loss averages over mistakes on individual labels:

`H(y, ŷ) =
1

m

m∑
i=1

Jyi 6= yiK

The subset 0/1 loss simply checks for entire correctness:

`0/1(y, ŷ) = Jy 6= ŷK = max
i

Jyi 6= yiK
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Examples of MTP loss functions

The rank loss compares binary targets with a predicted ranking:

`r(y, σ) =
∑

(i,j):yi>yj

(
Jσ(i) > σ(j)K +

1

2
Jσ(i) = σ(j)K

)
,

where σ is a permutation/ranking of the targets typically induced by
a scoring function f : X → Rm s.t. σ(i) ≤ σ(j)⇔ fi(x) ≥ fj(x).

Precision at position k compares a binary targets with predicted
top-ranking:

prec@k(y, Ŷk) =
1

k

∑
j∈Ŷk

Jyj = 1K ,

where Ŷk is a set of k labels predicted by the learner (perhaps by
thresholding a ranking/scoring function).
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Examples of MTP loss functions

Normalized Discounted Cumulative Gain at position k:

NDCG@k(y, σ) = Nk(y)

k∑
r=1

yσ(r)

log(1 + r)
,

where σ is a permutation of labels for x returned by a ranker, and
Nk(y) normalizes NDCG@k to the interval [0, 1]:

Nk(y) =

min(k,
∑m

i=1 yi)∑
r=1

1

log(1 + r)

−1
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Examples of MTP loss functions

Squared error loss (typically used in multivariate regression):

`(y, ŷ) =

m∑
i=1

(yi − ŷi)2 ,

where y, ŷ ∈ Rm.
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Two simple yet extreme multi-label losses

The Hamming loss averages over mistakes on individual labels:

`H(y, ŷ) =
1

m

m∑
i=1

Jyi 6= yiK

The subset 0/1 loss simply checks for entire correctness:

`0/1(y, ŷ) = Jy 6= ŷK = max
i

Jyi 6= yiK
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Hamming vs. subset 0/1 loss

What is the risk-minimizing (Bayes) prediction for the Hamming loss
1/m

∑m
i=1Jyi 6= yiK and the subset 0/1 loss Jy 6= ŷK, respectively,

given the following conditional distribution P (Y1, Y2 |x)?

y1 y2 P (y1, y2 |x)

0 0 0.3
0 1 0.3
1 0 0.0
1 1 0.4

EY`0/1(y, ŷ) = 0.3 `0/1((0, 0), ŷ) + 0.3 `0/1((0, 1), ŷ)+

0.0 `0/1((1, 0), ŷ) + 0.4 `0/1((1, 1), ŷ)

= 1− P (ŷ |x)
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EY`H(y, ŷ) = 0.3 `H((0, 0), ŷ) + 0.3 `H((0, 1), ŷ) + 0.4 `H((1, 1), ŷ)

=
1

2

(
0.3(J0 6= y1K + J0 6= y2K) + 0.3(J0 6= y1K + J1 6= y2K)+

0.4(J1 6= y1K + J1 6= y2K)
)

=
1

2

(
0.6J0 6= y1K + 0.4J1 6= y1K + 0.3J0 6= y2K + 0.7J0 6= y2K

)
= 1/2EY1`H(y1, ŷ1) + 1/2EY2`H(y2, ŷ2)
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Hamming vs. subset 0/1 loss

The risk minimizer for the Hamming loss is the marginal mode:

h∗i (x) = arg max
yi∈{0,1}

P (yi |x) , i = 1, . . . ,m,

while for the subset 0/1 loss it is the joint mode:

h∗(x) = arg max
y∈Y

P (y |x) .

Marginal mode vs. joint mode.

y P (y)

0 0 0 0 0.30
0 1 1 1 0.17
1 0 1 1 0.18
1 1 0 1 0.17
1 1 1 0 0.18

Marginal mode: 1 1 1 1
Joint mode: 0 0 0 0

52 / 126



Hamming vs. subset 0/1 loss

Proposition2: The following upper bound holds for m > 3:

EY `H(Y,h∗0/1(x))− EY `H(Y,h∗H(x)) <
m− 2

m+ 2

Moreover, this bound is tight, i.e.

sup
P

(EY `H(Y,h∗0/1(x))− EY `H(Y,h∗H(x))) =
m− 2

m+ 2
,

where the supremum is taken over all probability distributions on Y.

2 K.D., W.W., W. Cheng, E.H. On Label Dependence and Loss Minimization in Multi-Label Classification. Machine Learning,
88, 2012.
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Hamming vs. subset 0/1 loss

Under specific conditions, the risk minimizers for `H and `0/1 are provably
equivalent, i.e.,

h∗H(x) = h∗0/1(x) ,

for example, when

the probability of the joint mode satisfies

P
(
h∗0/1(x) |x

)
> 0.5 ,

or the targets Y1, . . . , Ym are conditionally independent.
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Target dependence

We distinguish between conditional and unconditional (in)dependence of
targets3.

Unconditional/marginal dependence:

P (Y ) 6=
m∏
i=1

P (Yi)

Often due to model similarities, i.e., fi(x) = gi(x) + εi for
i = 1, . . . ,m, with similarities in the structural parts gi(·), which
implies correlation between targets.

Conditional dependence:

P (Y |x) 6=
m∏
i=1

P (Yi |x)

3 K.D., W.W., W. Cheng, E.H. On Label Dependence and Loss Minimization in Multi-Label Classification. Machine Learning,
88, 2012.
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Target dependence

marginal (in)dependence 6� conditional (in)dependence

Example:

x1 y1 y2 P x1 y1 y2 P

0 0 0 0.25 1 0 0 0
0 0 1 0 1 0 1 0.25
0 1 0 0 1 1 0 0.25
0 1 1 0.25 1 1 1 0

Strong conditional dependence, for example
P (Y1 = 0|x1 = 1)P (Y2 = 0|x1 = 1) = 0.5× 0.5 = 0.25 6= 0.

Yet, labels are marginally independent: Joint probability is the
product of the marginals P (y1) = P (y2) = 0.5.
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Synthetic data
Two conditionally independent models:

f1(x) =
1

2
x1 +

1

2
x2, f2(x) =

1

2
x1 −

1

2
x2

Logistic model to assign labels:

P (yi = 1) =
1

1 + exp(−2fi)
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Synthetic data
Two conditionally dependent models:

f1(x) =
1

2
x1 +

1

2
x2 f2(y1,x) = y1 +

1

2
x1 −

1

2
x2 −

2

3
Logistic model to assign labels:

P (yi = 1) =
1

1 + exp(−2fi)
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Hamming vs. subset 0/1 loss

Binary relevance (BR): Train two binary classifiers for targets y1 and
y2 independently.

Label powerset (LP): Train a 4-class classifier on meta-classes
c1 = (0, 0), c2 = (0, 1), c3 = (1, 0), c4 = (1, 1).

Conditional independence

classifier Hamming loss subset 0/1 loss

BR LR 0.4232 0.6723
LP LR 0.4232 0.6725

Conditional dependence

classifier Hamming loss subset 0/1 loss

BR LR 0.3470 0.5499
LP LR 0.3610 0.5146
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Rank loss

The rank loss compares binary targets with a predicted ranking:

`r(y,f(x)) =
∑

(i,j):yi>yj

(
Jfi(x) < fj(x)K +

1

2
Jfi(x) = fj(x)K

)

To minimize this loss, it is enough to sort the targets by their
probability of relevance.

Theorem4: A ranking function that sorts the labels according to their
probability of relevance, i.e., using the scoring function f(·) with

fi(x) = P (Yi = 1 |x) ,

minimizes the expected rank loss.

4 K.D., W.W., W. Cheng, E.H. On Label Dependence and Loss Minimization in Multi-Label Classification. Machine Learning,
88, 2012.
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Loss functions and target dependence

Optimal (pointwise) prediction requires information about P (y |x).

Independence simplifies learning a lot, since learning marginals is
much easier than learning a joint distribution (→ graphical models).

Structure of the loss function has an important influence, too, due
to the “interaction” between ` and P :

EY `(Y, ŷ) =
∑
y

`(y, ŷ)P (y |x) .

In some cases, such as F-measure optimization, knowledge of
properties of P instead of complete distribution is therefore enough.

Conditional independence of P and decomposability of ` are
sufficient conditions for Bayes-optimality of target-wise Bayes
predictor.
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1 Introduction

2 A unifying view on MTP problems

3 MTP loss functions

4 A unifying view on MTP methods

5 Conclusions
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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A baseline method:
learning a model for each target independently

64 / 126



A baseline method:
learning a model for each target independently
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A baseline: Independent Models
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A baseline: Independent Models

Linear basis function model for i-th target:

fi(x) = aᵀi φ(x) ,

Solving as a joint optimization problem:

min
A
||Y −XA||2F +

m∑
i=1

λi ||ai||2 ,

Y : (n×m) X : (n× p) A : (p×m)

With the following notations:

X =

φ(x1)T

...
φ(xn)T

 A = [a1 · · · am] .
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The results section of a typical MTP paper...

Independent models a.k.a. binary relevance, models that do not exploit
target dependencies, one-versus-all, etc.
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Learning a model for each target independently is still state-of-the-art in
extreme multi-label classification5:

5 Babbar and Schölkopf, DISMEC: Distributed Sparse Machines for Extreme Multi-label classification, WSDM 2017
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
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Representation-exploiting methods B and D
Representation-constructing methods A and B
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Mean-regularized multi-task learning6

Simple assumption:
models for different targets
are related to each other.

Simple solution: the
parameters of these models
should have similar values.

Approach: bias the
parameter vectors towards
their mean vector.

Mean

Target 1

Target 2

Target 3

Target 4

min
A
||Y −XA||2F + λ

m∑
i=1

||ai −
1

m

m∑
j=1

aj ||2 ,

6 Evgeniou and Pontil, Regularized multi–task learning, KDD 2004.
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Joint feature selection

Enforce that the same features are selected for different targets7:

min
A
||Y −XA||2F + λ

p∑
j=1

||aj ||2

The vectors aj now represent the columns of matrix AT :

7 Obozinski et al. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and
Computing 2010
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7 Obozinski et al. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and
Computing 2010
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Stacking (Stacked generalization)

Originally introduced as a general ensemble learning or blending
technique.8

Level 1 classifiers: apply a series of ML methods on the same dataset
(or, one ML method on bootstrap samples of the dataset)

Level 2 classifier: apply an ML method to a new dataset consisting of
the predictions obtaining at Level 1

f1 f2 f3 f4

h1

x

Level 2

Level 1

8 Wolpert, Stacked generalization. Neural Networks 1992
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Stacking applied to multi-target prediction9

Level 1 classifiers: learn a
model for every target
independently

Level 2 classifier: learn
again a model for every
target independently,
using the predictions of
the first step as features

f1 f2 f3 f4

h1 h2 h3 h4

x

Level 2

Level 1

9 Cheng and Hüllermeier, Combining Instance-based learning and Logistic Regreession for Multi-Label classification, Machine
Learning, 2009
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Enforcing similarity in (Deep) Neural Networks

Commonly-used architecture: weight sharing among targets10

10 Caruana, Multitask learning: A knowledge-based source of inductive bias. Machine Learning 1997
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Re-using Pretrained Models in (Deep) Neural Networks

Commonly-used training method: first train on targets that have a lot of
observations, only train some parameters for targets that have few

observations 11

11 Keras Tutorial: Transfer Learning using pre-trained models
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Question

In which situations are similarity-enforcing models capable of
outperforming independent models w.r.t. predictive performance?

Always

When p is sufficiently large

When m is sufficiently large

When the targets are sufficiently correlated
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An intuitive explanation: James-Stein estimation

Consider a sample of a multivariate normal distribution
y ∼ N(θ, σ2I).

What is the best estimator of the mean vector θ?

Evaluation w.r.t. MSE: E[(θ − θ̂)2]

Single-observation maximum likelihood estimator: θ̂
ML

= y

James-Stein estimator12:

θ̂JS =

(
1− (m− 2)σ2

‖y‖2

)
y

12 W. James and C. Stein. Estimation with quadratic loss. In Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1, pages
361-379, 1961
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Works best when the norm of the mean vector is close to zero:

Regularization towards other directions is also possible:

θ̂JS+ =

(
1− (m− 2)σ2

‖y − v‖2

)
(y − v) + v

Only outperforms the maximum likelihood estimator w.r.t. the sum of
squared errors over all components, and only when m ≥ 3
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Different learning settings revisited
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An example from the introduction revisited
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Exploiting relations in regularization terms

Graph-based regularization is an approach that can be applied to the three
types of relations13:

min
A
||Y −XA||2F + λ

m∑
i=1

∑
j∈N (i)

||ai − aj ||2

13 Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013
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Hierarchical multi-label classfication

In addition to performance gains in general, hierarchies can also be used to
define specific loss functions, such as the H-loss14:

`Hier(y, ŷ) =
∑

j:yj 6=ŷj

cj Janc(yj) = anc(ŷj)K

ci depends on the depth of node i

14 Bi and Kwok, Bayes-optimal hierarchical multi-label classification, IEEE Transactions on Knowledge and Data Engineering,
2014
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Exploiting similarity measures among targets

Can be done within the framework of vector-valued kernel functions15:

f(x, t) = wTΨ(x, t) =
∑

(x̄,t̄)∈D

α(x̄,t̄)Γ((x, t), (x̄, t̄))

Model the joint kernel as a product of an instance kernel k(·, ·) and a
target kernel g(·, ·):

Γ((x, t), (x̄, t̄)) = k(x, x̄) · g(t, t̄)

15 Alvarez et al., Kernels for vector-valued functions: a review, Foundation and Trends in Machine Learning, 2012
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Converting graphs to similarities or target representations

Similarities: use graph structure to express target similarities

e.g. the shortest-path kernel between two nodes

Representations: often characteristics of a specific vertex or edge

e.g. the number of positive labels that are siblings of a vertex16

16 Rousu et al., Kernel-based learning of hierarchical multilabel classification models, JMLR 2006
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Constructing target hierarchies

It might be difficult for a human expert to define a hierarchy17

Perhaps one can try to learn the hierarchy from data?

Algorithms: level flattening, node removal, hierarchy modification,
hierarchy generation, etc.

17 Rangwala and Naik, Tutorial on Large-Scale Hierarchical Classification, KDD 2017.
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Label trees (6= decision trees)

0

1

3

y1

4

y2

2

5

y3

6

y4

Organize classifiers in a tree structure (one leaf ⇔ one label)

Mainly used in multi-class and multi-label classification

Goal is fast prediction: almost logarithmic in the number of labels

Algorithms: Label embedding trees18, Nested dichotomies19,
Conditional probability trees20, Hierarchical softmax21, FastText22,
Probabilistic classifier chains23

18 Bengio et al., Label embedding trees for large multi-class tasks, NIPS 2010
19 Frank and Kramer, Ensembles of nested dichotomies for multi-class problems, ICML 2004
20 Beygelzimer et al., Conditional probability tree estimation analysis and algorithms. UAI 2009
21 Morin and Bengio, Hierarchical probabilistic neural network language model, AISTATS 2005
22 Joulin et al., Bag of tricks for efficient text classifcation. CoRR, abs/1607.01759, 2016
23 Dembczynski et al., Bayes optimal multilabel classification via probabilistic classifier chains, ICML 2010
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Hierarchical softmax / Probabilistic classifier trees

z0

z1 = (0)

y = 1

z = (0, 0)

0

y = 2

z = (0, 1)

1

0

z1 = (1)

y = 3

z = (1, 0)

0

y = 4

z = (1, 1)

1

1

Encode the targets by a prefix code (⇒ tree structure)24

Multi-class classification: each label y coded by z = (z1, . . . , zl) ∈ C
Multi-label classification: a label vector y = (y1, . . . , ym) is a prefix
code.

24 Dembczynski et al., Consistency of probabilistic classifier trees. ECMLPKDD 2016
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Probabilistic classifier chains

Estimate the joint conditional distribution P (Y |x).

For optimizing the subset 0/1 loss:

`0/1(y, ŷ) = Jy 6= ŷK

Repeatedly apply the product rule of probability:

P (Y = y |x) =

m∏
i=1

P (Yi = yi |x, y1, . . . , yi−1) .

Learning relies on constructing probabilistic classifiers for estimating

P (Yi = yi|x, y1, . . . , yi−1) ,

independently for each i = 1, . . . ,m.
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Inference relies on exploiting a probability tree:

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=0.0

P (y=(0, 0) |x)=0

y2 = 0

P (y2=1 | y1=0,x)=1.0

P (y=(0, 1) |x)=0.4

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

For subset 0/1 loss one needs to find h(x) = arg maxy∈Y P (y |x).

Greedy and approximate search techniques with guarantees exist.25

Other losses: compute the prediction on a sample from P (Y |x).26

25 Kumar et al., Beam search algorithms for multilabel learning, Machine Learning 2013
26 23 Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012
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Constructing hierarchies to obtain additional insight

Application in climate science

Result of learning 20000 tasks simultaneously with a multi-task
learning method

Followed by hierarchical clustering of the learned weight vectors27:

27 Papagiannopoulou et al. Globral hydro-climatic biomes identified with multi-task learning, Geoscientific Model Development
Discussions 2018
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Constructing target similarities by output kernel learning
Consider models f : X → Rm

Training dataset {xi,yi}ni=1

Learnable gram matrix G for output kernel g(t, t′)
Learn output kernel and model parameters jointly28:

min
G∈Rm×m

[
min
f∈F

n∑
i=1

||f(xi, ·)− yi||22
2λ

+
||f ||2F

2
+
||G||2F

2

]

28 Dinuzzo et al., Learning Output Kernels with Block Coordinate Descent, ICML 2011
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Constructing decision rules among targets

Potential inferred rule29: TEA → NOT LEMONADE

29 Loza-Mencia and Janssen, Learning rules for multi-label classification: a stacking and separate-and-conquer approach
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Different learning settings revisited
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An example revisited
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A target representation in computer vision

Target representations are the key element of zero-shot learning methods30

30 Examples taken from the CVPR 2016 Tutorial on Zero-shot learning for Computer Vision
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Target representations can take many forms
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Learning target embeddings from text: Word2Vec

Predict the probability of the next word wt given the previous words h31:

P (wt |h) =
exp(f(wt, h))∑

allwords exp(f(wt, h))

31 Mikolov et al., Efficient Estimation of Word Representations in Vector Space, Arxiv 2013
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Different learning settings revisited
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Kronecker kernel ridge regression

Pairwise model representation in the primal:

f(x, t) = wT (φ(x)⊗ ψ(t))

Kronecker product pairwise kernel in the dual32:

f(x, t) =
∑

(x̄,t̄)∈D

α(x̄,t̄)k(x, x̄) · g(t, t̄) =
∑

(x̄,t̄)∈D

α(x̄,t̄)Γ((x, t), (x̄, t̄))

Least-squares minimization with z = vec(Y ):

min
α
||Γα− z||22 + λαᵀΓα

32 Stock et al., A comparative study of pairwise learning methods based on kernel ridge regression, Neural Computation 2018
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Two-step zero-shot learning33 34

33 Pahikkala et al. A two-step approach for solving full and almost full cold-start problems in dyadic prediction, ECML/PKDD
2014.
34 Romero-Paredes and Torr, An embarrassingly simple approach to zero-shot learning, ICML 2015.
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35 Pahikkala et al. A two-step approach for solving full and almost full cold-start problems in dyadic prediction, ECML/PKDD
2014.
36 Romero-Paredes and Torr, An embarrassingly simple approach to zero-shot learning, ICML 2015.
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Two-step zero-shot learning37 38

37 Pahikkala et al. A two-step approach for solving full and almost full cold-start problems in dyadic prediction, ECML/PKDD
2014.
38 Romero-Paredes and Torr, An embarrassingly simple approach to zero-shot learning, ICML 2015.
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Two-step kernel ridge regression

Kernel evaluations for new test instance:

k(x) = (k(x,x1), . . . , k(x,xn))ᵀ

g(t) = (g(t, t1), . . . , g(t, tm))ᵀ

Step 1: prediction for x on all the training targets

fT (x) = k(x)ᵀAIT = k(x)ᵀ (K + λ1I)−1 Y

Step 2: generalizing to new targets

fTS(x, t) = g(t)ᵀ (G + λ2I)−1 fT (x)ᵀ

= k(x)ᵀ (K + λ1I)−1 Y (G + λ2I)−1 g(t)

= k(x)ᵀATSg(t)

= wT (φ(x)⊗ ψ(t))
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Zero-shot learning in computer vision
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Zero-shot learning in computer vision

Pairwise model representation as before:

f(x, t) = wT (φ(x)⊗ ψ(t))

Inference in a structured prediction fashion:

ĉ(x) = arg max
t∈T

f(x, t)

Different optimization problems:

Multi-class objective39

Ranking objective40

Regression objective41

Canonical correlation analysis

Different model formulations:

Linear embeddings
Nonlinear embeddings

39 Akata et al., Evaluation of Output Embeddings for Fine-Grained Image Classification, CVPR2015
40 Frome et al., Devise: A deep visual-semantic embedding model, NIPS 2013
41 Socher et al., g. Zero-shot learning through cross-modal transfer, NIPS 2013
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Question

In which situation(s) is it useful to exploit target relations and
representations?

In Setting B, when n is sufficiently large

In Setting B, when n is sufficiently small

In Setting D, when n is sufficiently large

In Setting D, when n is sufficiently small
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A case study on the Wikipedia dataset
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The answer

12, 000 labels: from 5, 000 to 350, 000 instances42

42 M. Stock, Exact and efficient algorithms for pairwise learning, PhD thesis, 2017
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Different learning settings revisited
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Low-rank approximation in Settings B and C

Typically perform a low-rank approximation of the parameter matrix43:

min
A
||Y −XA||2F + λ rank(A)

43 Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009.
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Low-rank approximation in Settings B and C

A: parameter matrix of dimensionality p×m
p: the number of features

m: the number of targets

Assume a low-rank structure of A:

U × V = A

We can write A = V U and Ax = V Ux

V is a p× m̂ matrix

U i an m̂×m matrix

m̂ is the rank of A
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Low-rank approximation in Settings B and C
Overview of methods

Popular for multi-output regression, multi-task learning and
multi-label classification

Linear as well as nonlinear methods
Algorithms:

I Principal component analysis44, Canonical correlation analysis45, Partial
least squares

I Singular value decomposition46, Alternating structure optimization47

I Compressed sensing48, Output codes49, Landmark labels50, Bloom
filters51, Auto-encoders52

44 Weston et al., Kernel dependency estimation, NIPS 2002
45 Multi-label prediction via sparse infinite CCA, NIPS 2009
46 Tai and Lin, Multilabel classification with principal label space transformation, Neural Computation 2012
47 Zhou et al., Clustered Multi-Task Learning Via Alternating Structure Optimization, NIPS 2011
48 Hsu et al., Multi-label prediction via compressed sensing. NIPS 2009
49 Zhang and Schneider, Multi-label Output Codes using Canonical Correlation Analysis, UAI 2011
50 Balasubramanian and Lebanon, The landmark selection method for multiple output prediction, ICML 2012
51 Cissé et al., Robust bloom filters for large multilabel classification tasks, NIPS 2013
52 Wicker et al., A nonlinear label compression and transformation method for multi-label classification using autoencoders,
PAKDD 2016
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Target embeddings in neural networks

...

...
...

x(1)

x(2)

x(3)

x(100 000)

y1

y2

y3

y4

y670,000

Input
layer

Embedding
layer

Output
layer

Mapping input to output via embedding layer

Nonlinear alternative to Ax = V Ux
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Low-rank approximation in Setting A

Factorize the matrix Y instead of the parameter matrix A:

Y = U × V
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Low-rank approximation in Setting A
Overview of algorithms

Nuclear norm minimizationan53

Gaussian processes54

Probabilistic methods55

Spectral regularization56

Non-negative matrix factorization57

Alternating least-squares minimization58

53 Candes and Recht, Exact low-rank matrix completion via convex optimization. Foundations of Computational Mathematics
2008
54 Lawrence and Urtasun, Non-linear matrix factorization with Gaussian processes, ICML 2009
55 Shan and Banerjee, Generalized probabilistic matrix factorizations for collaborative filtering, ICDM 2010
56 Mazumder et al., Spectral regularization algorithms for learning large incomplete matrices., JMLR 2010
57 Gaujoux and Seoighe, A flexible R package for nonnegative matrix factorization. BMC bioinformatics 2010
58 Jain et al., Low-rank matrix completion using alternating minimization, ACM Symposium on Theory of Computing 2013
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Matrix factorization with side information for Setting A

Construct implicit features (xI , tI) for users and items with matrix
factorization methods
Exploit explicit features (xE , tE) (a.k.a. side information)
Concatenate:

xC = (xI ,xE), tC = (tI , tE)

Apply methods that we have seen before5960:

f(xC , tC) = wT
(
φ(xC)⊗ ψ(tC)

)
59 Menon and Elkan, A log-linear model with latent features for dyadic prediction, ICDM 2010
60 Volkovs and Zemel, Collaborative filtering with 17 parameters, NIPS 2012 121 / 126



When is it useful to construct target representations?

Does not work well in extreme multi-label classification61:

61 Babbar and Schölkopf, DISMEC: Distributed Sparse Machines for Extreme Multi-label classification, WSDM 2017
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When is it useful to construct target representations?
SVD interpretation

Representation of instance (or feature) Representation of target

p×m p× p p×m m×m

σ1, σ2, ...: singular values of A

Rank of A = number of non-zero singular values

High rank when a lot of singular values differ from zero

Low rank when a lot of singular values are zero

Singular values give insight in what can be gained
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Conclusions

Multi-target prediction is an active field of research that connects
different types of machine learning problems

In the corresponding subfields of machine learning, problems have
typically been solved in isolation, without establishing connections
between methods

When analyzing MTP methods, it is important to understand several
concepts, such as the influence of loss functions, and the availability
and absence of side knowledge

Upcoming paper:
Waegeman et al.

Multi-Target Prediction:
A Unifying View on Problems and Methods

(available in a few days on Arxiv)
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Multi-target prediction papers at ECML/PKDD 2018
Djerrab et al., Output Fisher embedding regression, Tuesday, 15h20

Pikalos et al., Global multi-output decision trees for interaction
prediction, Thursday 11h20
Masera and Blanzieri, AWX: An integrated approach to hierarchical
multi-label classification, Tuesday 14h40
Decubber et al., Deep F-measure maximization in multi-label
classification: a comparative study, Tuesday 14h20
Park and Read, A blended metric for multi-label optimization and
evaluation, Thursday 11h40
Rafailidis and Crestani, Deep collaborative filtering with
multifaceted contextual information in location-based social networks,
Thursday 14h20
Du et al., POLAR: Attention-based CNN for one-shot personalized
article recommendation, Thursday 14h40
Lan et al., Personalized thread recommendation of MOOC discussion
forums, Thursday 14h20
Marecek et al., Matrix completion under interval uncertainty,
Thursday 16h30
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