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: Online advertising, content management and
personalization, fraud detection.
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e nodes: devices (e.g., a, b, ¢, d, e, ...)

e cliques: users with their devices (e.g., (a,b,c))
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Deterministic cross-device graphs
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e Unique factors to identify a person, e.g., email address or login name

e Quality far beyond from being perfect!

e Used for training and evaluating probabilistic solutions
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e Based on deep analysis of logs (behavior of devices in the Internet)

e Hand-made rule vs. Data-driven approach (= Machine learning)
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Standard machine learning approach for probabilistic graphs
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Standard machine learning approach for probabilistic graphs

Candidate

selection

o Candidate selection: reducing the number of possible pairs by filtering
them by some initial premises
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Standard machine learning approach for probabilistic graphs

Candidate Prediction/scoring

selection of candidates

¢ Prediction/scoring: estimating the score for each candidate pair of
devices
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Standard machine learning approach for probabilistic graphs

Candidate Prediction/scoring

; ! h clusteri
selection of candidates Graph clustering

o Graph clustering: construction of the probabilistic graph
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e Precision and recall:

A Py:lezl TP

Recall = P(g=1ly=1) = (pyzl ):TP+FN’
Ply=119=1 TP

Precision = P(y=1jg=1) = (yP A’—l ):TP+FP’

where

» y = 1 = there exists a true connection between two devices,
» y = 1 = a connection has been predicted in the graph.
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o Recall relatively stable with the size of deterministic graph

o Precision decreases with the size of deterministic graph
(overestimation)!
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Why precision decreases?

Deterministic graph Induction of Performance
probabilistic graph
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Towards new standards

o Induction of probabilistic graph:

Deterministic graph | Lower induction of | Upper induction of

probabilistic graph | probabilistic graph
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These two types of induction give the lower and upper bound of
the value of precision.
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o Device-based measures:
» For each device v € V' construct two lists:
® L(v): list of devices connected with v in deterministic graph,
e [L(v): list of devices connected with v in probabilistic graph.

Deterministic graph | Upper induction of
probabilistic graph
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e Device-based measures:
» The performance is then averaged over single devices:

My = % > M, (L(v), L(v)).
veV
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e Device-based measures:
» The performance is then averaged over single devices:

My = % > M, (L(v), L(v)).
veV

» M, can be defined, for example, as a device-based recall and precision:

Recl(L(v), L(v)) = |L(72?vi(v)|’
Prec(L(v)j,(v)) — |L(U}/2}i(”)|
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o Cross-device identification — actual and challenging problem.
e Machine learning approach to cross-device identification.

e Measuring performance of cross-device identification solutions.
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