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Alan Turing, 1912 births, 1954 deaths
20th-century mathematicians, 20th-century philosophers
Academics of the University of Manchester Institute of Science and Technology
Alumni of King’s College, Cambridge Artificial intelligence researchers
Atheist philosophers, Bayesian statisticians, British cryptographers, British logicians
British long-distance runners, British male athletes, British people of World War II
Computability theorists, Computer designers, English atheists
English computer scientists, English inventors, English logicians
English long-distance runners, English mathematicians
English people of Scottish descent, English philosophers, Former Protestants
Fellows of the Royal Society, Gay men
Government Communications Headquarters people, History of artificial intelligence
Inventors who committed suicide, LGBT scientists
LGBT scientists from the United Kingdom, Male long-distance runners
Mathematicians who committed suicide, Officers of the Order of the British Empire
People associated with Bletchley Park, People educated at Sherborne School
People from Maida Vale, People from Wilmslow
People prosecuted under anti-homosexuality laws, Philosophers of mind
Philosophers who committed suicide, Princeton University alumni, 1930-39
Programmers who committed suicide, People who have received posthumous pardons
Recipients of British royal pardons, Academics of the University of Manchester
Suicides by cyanide poisoning, Suicides in England, Theoretical computer scientists
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Setting

• Multi-class classification:

x = (x1, x2, . . . , xp) ∈ Rp h(x)−−−−−→ y ∈ {1, . . . ,m}

x1 x2 . . . xp y

x 4.0 2.5 -1.5 5

• Multi-label classification:

x = (x1, x2, . . . , xp) ∈ Rp h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

x1 x2 . . . xp y1 y2 . . . ym

x 4.0 2.5 -1.5 1 1 0
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Extreme classification

Extreme classification ⇒ a large number of labels m (≥ 105)

• Predictive performance:

I Learning theory for large m
I Training and prediction under limited time and space budged
I Learning with missing labels and positive-unlabeled learning
I Performance measures: Hamming loss, prec@k, NDCG@k, F-score
I Long-tail label distributions and zero-shot learning

• Computational complexity:

I time vs. space
I #examples vs. #features vs. #labels
I training vs. validation vs. prediction
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Statistical challenges

• Learning theory for an extremely large number of labels:

I Statistical guarantees for the error rate that do not depend, or
depend very weakly (sublinearly), on the total number of labels.

I The bound on the error rate could be expressed in terms of the
average number of positive labels (which is certainly much less than
the total number of labels).

I Particular performance guarantees depend on the considered loss
function.

I Different theoretical settings: statistical learning theory, learning
reductions, online learning.
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Statistical challenges

• Training and prediction under limited time and space budget:

I Restricted computational resources (time and space) for both
training and prediction.

I A trade-off between computational (time and space) complexity and
the predictive performance.

I By imposing hard constraints on time and space budget, the challenge
is then to optimize the predictive performance of an algorithm under
these constraints.
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Statistical challenges

• Unreliable learning information:

I We cannot expect that all labels will be properly checked and
assigned to training examples.

I Therefore we often deal with a problem of learning with missing labels
or learning from positive and unlabeled examples.
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Statistical challenges

• Performance measures:

I Typical performance measures such as 0/1 or Hamming loss do not
fit well to the extreme setting.

I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.

8 / 47



Statistical challenges

• Performance measures:
I Typical performance measures such as 0/1 or Hamming loss do not

fit well to the extreme setting.

I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.

8 / 47



Statistical challenges

• Performance measures:
I Typical performance measures such as 0/1 or Hamming loss do not

fit well to the extreme setting.
I Other measures are often used such as precision@k or the F-measure.

I However, it remains an open question how to design loss functions
suitable for extreme classification.

8 / 47



Statistical challenges

• Performance measures:
I Typical performance measures such as 0/1 or Hamming loss do not

fit well to the extreme setting.
I Other measures are often used such as precision@k or the F-measure.
I However, it remains an open question how to design loss functions

suitable for extreme classification.

8 / 47



Statistical challenges

• Long-tail label distributions and zero-shot learning:

I A close relation to the problem of estimating distributions over
large alphabets.

I The distribution of label frequencies is often characterized by a
long-tail for which proper smoothing (like add-constant or
Good-Turing estimates) or calibration techniques (like isotonic
regression or domain adaptation) have to be used.

I In practical applications, learning algorithms run in rapidly changing
environments: new labels may appear during testing/prediction
phase (⇒ zero-shot learning)
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Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of labels in the WikiLSHTC dataset:1
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I Many labels with only few examples (⇒ one-shot learning).
1

http://research.microsoft.com/en-us/um/people/manik/downloads/XC/

XMLRepository.html
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Statistical challenges

• Long-tail label distributions and zero-shot learning:
I Frequency of frequencies for the WikiLSHTC dataset:
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I The missing mass obtained by the Good-Turing estimate: 0.014.
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Computational challenges: naive solution

• Size of the problem:

I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):

ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011
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ŷ = W>x

I Train time complexity: > 1017

I Space complexity: > 1011

I Test time complexity: > 1011

12 / 47



Computational challenges: naive solution

• Size of the problem:
I # examples: n > 106

I # features: d > 106

I # labels: m > 105

• Naive solution: A dense linear model for each label (1-vs-All):
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Computational challenges: naive solution

• It does not have to be so hard:

I Large data −→ sparse data (sparse features and labels)
I Fast learning algorithms for standard learning problems exist!
I High performance computing resources available!
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Figure: Vowpal Wabbit2 at a lecture of John Langford3

2 Vowpal Wabbit, http://hunch.net/~vw
3

http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:slides:start
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Fast binary classification

• Data set: RCV1

• Predicted category: CCAT

• # training examples: 781 265

• # features: 60M

• Size: 1.1 GB

• Command line: time vw -sgd rcv1.train.txt -c

• Learning time: 1-3 secs on a laptop.

15 / 47



Computational challenges

• How can we reduce computational (time and space) costs of
the naive solution?

I Linear models
I Nearest neighbors
I Hashing
I Decision trees
I Label trees
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Linear models
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Linear models

• Fast training by least squares:4

W = (XTX)−1XTY

• Works well in low dimensional feature spaces.

• Does not really improve space and test time complexity.

4 T. Hastie, R. Tibshirani, and J.H. Friedman. Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, second edition, 2009
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Linear models

• Training time complexity:

I Stochastic gradient descent5 or coordinate gradient descent6

I Sparse feature vectors (e.g., sparse updates in SGD7)
I Negative sampling.8

• Space complexity:

I Proper regularization: L1 vs L2.
I Feature hashing.9

I Removing small weights.10

5 L. Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lechevallier
and Gilbert Saporta, editors, COMPSTAT, pages 177–187, Paris, France, August 2010. Springer

6 R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008

7 John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. JMLR, 10:2899–2934, 2009

8 Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In ICML, pages 160–167, 2008

9 K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In ICML, pages 1113–1120. ACM, 2009

10 Rohit Babbar and Bernhard Schölkopf. Dismec - distributed sparse machines for extreme multi-
label classification. CoRR, 2016
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Linear models

• Low-dimensional representation of x, W, y:

y = U†Vx

I feature space: PCA on X.
I label space: PCA no Y,11 compressed sensing,12 etc.
I both spaces: CCA on both X and Y,13 etc.
I matrix factorization of W.14

I A kind of lossy compression/embedding methods.

11 F. Tai and H.-T. Lin. Multi-label classification with principal label space transformation. In
Neural Computat., volume 9, pages 2508–2542, 2012

12 D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing.
In NIPS, 2009

13 Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduction for multi-
label classification. In NIPS, pages 1529–1537. Curran Associates, Inc., 2012

14 Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale Multi-label
Learning with Missing Labels. In ICML, 2014
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Computational challenges

• Prediction time is still linear in the number of labels!

• Reduce test time complexity by using appropriate data structures:
I Hashing (−→ clustering).
I Sorting −→ trees
I −→ decision trees.
I −→ label trees.
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Test time complexity for linear models

• Classification of a test example in case of linear models can be
formulated as:

i∗ = argmax
i∈{1,...,m}

w>i x ,

i.e., the problem of maximum inner product search (MIPS).
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Test time complexity for linear models

• Exact solution: the threshold algorithm15

I Requires efficient sorted and random access to the weights.
I Based on a lower and upper bound on the result.
I Sorting of feature weights over different models/labels.
I Storing the sorted lists.
I Optimal in terms of time complexity.

15 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
In PODS ’01, pages 102–113. ACM, New York, NY, USA, 2001
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MIPS vs. nearest neighbors

• MIPS is similar, but not the same, to the nearest neighbor search
under the square or cosine distance:

i∗ = argmin
i∈{1,...,m}

‖wi − x‖22 = argmax
i∈{1,...,m}

w>i x−
‖wi‖22

2

i∗ = argmax
i∈{1,...,m}

w>i x

‖wi‖‖x‖
= argmax

i∈{1,...,m}

w>i x

‖wi‖

• Some tricks are used to treat MIPS as nearest neighbor search.16

16 A. Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (ALSH) for maximum
inner product search (mips). In UAI, 2015
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Test time complexity

• Generalization of MIPS
I k-MIPS (for prec@k)
I Inner products above a given threshold (for Hamming loss)

25 / 47



Nearest neighbors
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Nearest neighbors

• In general, the space and time complexity is linear in n.

• This also implies linear complexity in m.

• For low-dimensional problems, efficient tree-based structures exist.17

• Approximate nearest neighbor search via locality-sensitive hashing.18

17 J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software 3 (3): 209, 3(3):209–
226, 1977

18 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In ACM Symposium on Theory of Computing, STOC ’98, pages 604–613,
New York, NY, USA, 1998. ACM
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Decision trees
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Decision trees

• Fast prediction: logarithmic in n

• Training can be expensive: computation of split criterion

• Two new algorithms: LomTree19 and FastXML20

19 Anna Choromanska and John Langford. Logarithmic time online multiclass prediction. In NIPS
29, 2015

20 Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In KDD, pages 263–272. ACM, 2014
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FastXML

• Uses an ensemble of standard decision trees.

• Sparse linear classifiers trained in internal nodes.

• Very efficient training procedure.

• Empirical distributions in leaves.

• A test example passes one path from the root to a leaf.

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η(x, 1)=0.6
η(x, 12)=0.45
. . .

η(x, 44)=0.46
η(x, 3)=0.15
η(x, 102)=0.05
. . .

η(x, 45)=0.45
η(x, 2)=0.4
. . .

w3 · x ≥ 0

η(x, 3)=0.46
η(x, 1)=0.15
. . .

η(x, 34)=0.8
η(x, 45)=0.45
η5(x)=0.15
. . .

30 / 47



FastXML

• Uses an ensemble of standard decision trees.

• Sparse linear classifiers trained in internal nodes.

• Very efficient training procedure.

• Empirical distributions in leaves.

• A test example passes one path from the root to a leaf.

w1 · x ≥ 0

w2 · x ≥ 0

w4 · x ≥ 0

η(x, 1)=0.6
η(x, 12)=0.45
. . .

η(x, 44)=0.46
η(x, 3)=0.15
η(x, 102)=0.05
. . .

η(x, 45)=0.45
η(x, 2)=0.4
. . .

w3 · x ≥ 0

η(x, 3)=0.46
η(x, 1)=0.15
. . .

η(x, 34)=0.8
η(x, 45)=0.45
η5(x)=0.15
. . .

30 / 47



Hashing
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Hashing

• Hash label indexes to integers in {1, . . . , r}:

zj = Jhash(i) = j ∧ yi = 1K, j = 1, . . . , r

z1

y1 = 1
y4 = 1

z2

y2 = 1
y5 = 1

z3

y3 = 1
y8 = 1

z4

y6 = 1
y7 = 1

• Train r binary models, one for each hash value.

• Decode original labels from hash values.

• Learning and prediction linear in r instead of m.

• Clustering can be used to obtain good hash functions.

• How to resolve conflicts?
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Hashing

• Resolving conflicts → Train a classifier for each original label:

z1

y1 = 1 y4 = 1

z2

y2 = 1 y5 = 1

z3

y3 = 1 y8 = 1

z4

y6 = 1 y7 = 1

• Learning complexity increases, but prediction is sublinear in m.

• More levels → label trees
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Bloom filters

• Resolving conflicts → Use more than one hash function:21

zj = J
∨k
h=1 hashh(i) = j ∧ yi = 1K, j = 1, . . . , r

z1

y1 = 1
y3 = 1
y4 = 1
y6 = 1

z2

y2 = 1
y5 = 1
y6 = 1
y8 = 1

z3

y1 = 1
y2 = 1
y7 = 1
y8 = 1

z4

y3 = 1
y4 = 1
y5 = 1
y7 = 1

• With deterministic data only false positives appear.

• More hash functions → more combinations but also 1s in the filter.

• Proper tuning of r and k.

• Hash functions can be obtained by (non-disjoint) clustering.

21 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, July 1970
Moustapha Cissé, Nicolas Usunier, Thierry Artières, and Patrick Gallinari. Robust bloom filters
for large multilabel classification tasks. In NIPS, pages 1851–1859, 2013
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Label trees

• Organize classifiers in a tree structure (one leaf ⇔ one label).22

0

1

3

y1
4

y2

2

5

y3
6

y4

• Structure of the tree can be given or trained.

• Different training and test procedures for multi-class and multi-label
classification.

22 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In
NIPS, pages 163–171. Curran Associates, Inc., 2010
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Probabilistic label trees (PLT)23

• PLT are based on b-ary label trees.

w0 · x ≥ 0

w1 · x ≥ 0

w3 · x ≥ 0

y1

w4 · x ≥ 0

y2

w2 · x ≥ 0

w5 · x ≥ 0

y3

w6 · x ≥ 0

y4

• Probabilistic classifiers in all nodes of the tree.

• Internal node classifier decides whether to go down the tree.

• A test example may follow many paths from the root to leaves.

23 K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier.
Extreme F-measure maximization using sparse probability estimates. In ICML, 2016
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Probabilistic label trees

• Class probability estimators in nodes for estimating P(yi = 1 |x).

P(y1 ∨ y2 ∨ y3 ∨ y4 |x)

P(

zt︷ ︸︸ ︷
y1 ∨ y2 |

zpa(t)︷ ︸︸ ︷
y1 ∨ y2 ∨ y3 ∨ y4=1,x)

P(y1 | y1 ∨ y2=1,x)

y1

P(y2 | y1 ∨ y2=1,x)

y2

P(y3 ∨ y4 | y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

P(y3 | y3 ∨ y4=1,x)

y3

P(y4 | y3 ∨ y4=1,x)

y4

• Using the chain rule of probability

P(yi = 1 |x) = η(x, i) =
∏

t∈Path(i)

ηT (x, t) ,

where ηT (x, t) =

{
P(zt = 1 |x) if t is root,
P(zt = 1 | zpa(t) = 1,x) otherwise.
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P(y3 | y3 ∨ y4=1,x)

y3

P(y4 | y3 ∨ y4=1,x)

y4

• Training: reduced complexity by the conditions used in the nodes.

• Prediction: priority queue search or branch and bound.

38 / 47



Probabilistic label trees

• Class probability estimators in nodes for estimating P(yi = 1 |x).
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Probabilistic label trees

• The same idea under different names:
I Conditional probability trees24

I Probabilistic classifier chains25

I Hierarchical softmax26

I Homer27

I Nested dichotomies28

I Multi-stage classification29

24 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009

25 K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via
probabilistic classifier chains. In ICML, pages 279–286. Omnipress, 2010

26 Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model.
In AISTATS, pages 246–252, 2005

27 G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification
in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on Mining
Multidimensional Data, 2008

28 J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997
29 Marek Kurzynski. On the multistage bayes classifier. Pattern Recognition, 21(4):355–365, 1988
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FastXML vs. PLT

FastXML PLT

tree structure X X
structure learning X ×
number of trees ≥ 1 1
number of leaves linear in # examples m
internal nodes models linear linear
leaves models empirical distribution linear
visited paths during prediction 1 per tree several
sparse probability estimation X X
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Experimental results

#labels #features #test #train inst./lab. lab./inst.

RCV1 2456 47236 155962 623847 1218.56 4.79
AmazonCat 13330 203882 306782 1186239 448.57 5.04
Wiki10 30938 101938 6616 14146 8.52 18.64
Delicious 205443 782585 100095 196606 72.29 75.54
WikiLSHTC 325056 1617899 587084 1778351 17.46 3.19
Amazon 670091 135909 153025 490449 3.99 5.45

Table: Datasets from the Extreme Classification repository.30

30
http://research.microsoft.com/en-us/um/people/manik/downloads/XC/

XMLRepository.html
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Experimental results

PLT FastXML

P@1 P@3 P@5 P@1 P@3 P@5

RCV1 90.46 72.4 51.86 91.13 73.35 52.67
AmazonCat 91.47 75.84 61.02 92.95 77.5 62.51
Wiki10 84.34 72.34 62.72 81.71 66.67 56.70
Delicious 45.37 38.94 35.88 42.81 38.76 36.34
WikiLSHTC 45.67 29.13 21.95 49.35 32.69 24.03
Amazon 36.65 32.12 28.85 34.24 29.3 26.12
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Experimental results

PLT FastXML

train test b depth #calls train test depth #calls
[min] [ms] [min] [ms]

RCV1 64 0.22 32 2,25 43,46 78 0.96 14.95 747
AmazonCat 96 0.17 16 3,43 54,39 561 1.14 17.44 871
Wiki10 290 2.66 32 2,98 121,98 16 3.00 10.83 541
Delicious 1327 32.97 2 17,69 11779,65 458 4.01 14.79 739
WikiLSHTC 653 3.00 32 3,66 622,27 724 1.17 18.01 900
Amazon 54 0.99 8 6,45 374,30 422 1.39 15.92 796
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Summary and Take-away message
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New challenges

• Reduction of extreme classification to structured output prediction
(log-time and log-space algorithms).

• Extreme zero-shot learning.

• Diverse predictions and performance measures.
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Do we search in the right place?

Figure: 31 A similar comics has been earlier used by Asela Gunawardana.32

31 Source: Florence Morning News, Mutt and Jeff Comic Strip, Page 7, Florence, South Car-
olina,1942

32 Asela Gunawardana, Evaluating Machine Learned User Experiences. Extreme Classification
Workshop. NIPS 2015
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Conclusions

• Take-away message:

I Extreme classification: #examples, #features, #labels
I Complexity: time vs. space, training vs. validation vs. prediction
I Statistical challenges: Is learning possible in the extreme setting?
I Computational challenges: compression, hashing/clustering,

tree-based structures.

• For more check:

I http://www.cs.put.poznan.pl/kdembczynski
I Code: https://github.com/busarobi/XMLC
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