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Review of the Previous Lecture

• Processing of massive datasets.

• Evolution of database systems:
I Operational (OLTP) vs. analytical (OLAP) systems.
I Analytical database systems.
I Design of data warehouses.
I Relational model vs. multidimensional model.
I NoSQL.
I Processing of massive datasets.
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Motivation

• University authorities decided to analyze teaching performance by
using the data collected in databases owned by the university
containing information about students, instructors, lectures, faculties,
etc.

• They would like to get answers for the following queries:

I What is the average score of students over academic years?
I What is the number of students over academic years?
I What is the average score by faculties, instructors, etc.?
I What is the distribution of students over faculties, semesters, etc.?
I . . .
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Example

• An exemplary query could be the following:

SELECT Instructor, Academic_year, AVG(Grade)

FROM Data_Warehouse

GROUP BY Instructor, Academic_year

• And the result:

Academic year Name AVG(Grade)

2010/11 Stefanowski 4.2
2011/12 Stefanowski 4.5
2010/12 S lowiński 4.3
2011/12 S lowiński 4.1
2011/12 Dembczyński :)
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Motivation

• Problem to solve: How to design a database for analytical queries?
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Conceptual schemes of data warehouses

• Three main goals for logical design:
I Simplicity:

• Users should understand the design,
• Data model should match users’ conceptual model,
• Queries should be easy and intuitive to write.

I Expressiveness:
• Include enough information to answer all important queries,
• Include all relevant data (without irrelevant data).

I Performance:
• An efficient physical design should be possible to apply.

9 / 48



Three basic conceptual schemes

• Star schema,

• Snowflake schema,

• Fact constellations.
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Star schema

• A single table in the middle connected to a number of dimension
tables.

Grade

id (PK)
student (FK)
academic year (FK)
instructor (FK)
lecture (FK)
Grade

Student

id (PK)
first name
last name
city
country
secondary school

Academic Year

id (PK)
academic year
semester

Instructor

id (PK)
first name
last name
institute
faculty
degree

Lecture

id (PK)
name
type
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Star schema

• Measures, e.g. grades, price, quantity.

I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc..

• Fact table

I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.
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Fact table

• Each fact table contains measurements about a process of interest.

• Each fact row contains foreign keys to dimension tables and numerical
measure columns.

• Any new fact is added to the fact table.

• The aggregated fact columns are the matter of the analysis.
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Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.
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Fact table vs. Dimension tables

• Fact table:

I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels
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Dimension hierarchies

• For each dimension, one can define several hierarchies of attributes.

Semester

Academic year

Course

Faculty Type

Instructor

Institute

Faculty

Student

City

Country
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Snowflake schema

• Snowflake schema is a refinement of star schema where the
dimensional hierarchy is represented explicitly by normalizing the
dimension tables.

Instructor

id (PK)
first name
last name
degree
institute id (FK)

Institute

id (PK)
name
address
degree
faculty id (FK)

Faculty

id (PK)
name
address
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Normalization

• Normal forms provide criteria for determining a table’s degree of
vulnerability to inconsistencies, redundancy and update anomalies.

I First normal form (1NF),
I Second normal form (2NF),
I Third normal from (3NF),
I Boyce-Codd normal form (BCNF),
I Fourth normal form (4NF),
I . . .
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Denormalization

• Denormalization is the process of attempting to optimize the
performance of a database by adding redundant data or by grouping
data.

• Denormalization helps cover up the inefficiencies inherent in relational
database software.

• Normalize until it hurts, denormalize until it works :)
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Fact constellation schema

• Fact constellation schema consists of multiple fact tables which share
dimension tables.

• Such schema appears in a design of a data warehouse for a huge and
complex problem.

• One should start with a simple model, and then try to define a more
complex one (project success).
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Dimensional modeling

• Four Steps in Dimensional Modeling:

I Select the business process to model (e.g. sales).
I Determine the grain of the business process (e.g. single transaction in

a market identified by bar-code scanners at cash register).
I Choose the dimensions describing the business process (e.g.

localization, product, data, promotion, etc.).
I Identify the numeric measures for the facts (e.g. price, quantity).

22 / 48



Dimensional modeling

• Four Steps in Dimensional Modeling:
I Select the business process to model (e.g. sales).

I Determine the grain of the business process (e.g. single transaction in
a market identified by bar-code scanners at cash register).

I Choose the dimensions describing the business process (e.g.
localization, product, data, promotion, etc.).

I Identify the numeric measures for the facts (e.g. price, quantity).

22 / 48



Dimensional modeling

• Four Steps in Dimensional Modeling:
I Select the business process to model (e.g. sales).
I Determine the grain of the business process (e.g. single transaction in

a market identified by bar-code scanners at cash register).

I Choose the dimensions describing the business process (e.g.
localization, product, data, promotion, etc.).

I Identify the numeric measures for the facts (e.g. price, quantity).

22 / 48



Dimensional modeling

• Four Steps in Dimensional Modeling:
I Select the business process to model (e.g. sales).
I Determine the grain of the business process (e.g. single transaction in

a market identified by bar-code scanners at cash register).
I Choose the dimensions describing the business process (e.g.

localization, product, data, promotion, etc.).

I Identify the numeric measures for the facts (e.g. price, quantity).

22 / 48



Dimensional modeling

• Four Steps in Dimensional Modeling:
I Select the business process to model (e.g. sales).
I Determine the grain of the business process (e.g. single transaction in

a market identified by bar-code scanners at cash register).
I Choose the dimensions describing the business process (e.g.

localization, product, data, promotion, etc.).
I Identify the numeric measures for the facts (e.g. price, quantity).

22 / 48



Business process

• Business process has to be a natural activity performed in the given
organization that is supported by an operational database system.

• Examples: sales, orders, teaching.

• Business process should not be referred to an organizational business
department or function.

• Selection of the business process should be dependent on its
complexity, and also on time and budget of the project.
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Grain of the business process

• Define what an individual fact table row represents.

• Determine the maximum level of detail of the warehouse.

• Examples: line item from a cash register receipt, daily snapshot of
inventory level for a product in a warehouse, monthly snapshot for
each bank account.

• Finer-grained fact tables are more expressive, but have more rows and
grow faster.
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Dimensions describing the business process

• Decorate fact table with a set of dimensions that determine a
candidate key based on the grain and all other dimensions functionally
determined by the candidate key.

• In other words: detailed description of the grain defined in the
previous step.

• Grain of the fact table defines the grain of the dimensions.

• Examples: localization, product, date, promotion, etc.
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Numeric measures

• Numeric measures allow to measure the performance of the process.

• All the measures correspond to the same grain defined previously.

• Measures should be numeric and additive:

I fully additive: can be summed across any of the dimensions associated
with the fact table

I semi-additive: can be summed across, but not all, for example balance
amounts are additive across all dimensions except time.

I non-additive: are completely non-additive, such as ratios (store the
fully additive components of the non-additive measure and sum these
components into the final answer before calculating the final
non-additive fact)
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Dimensional modeling techniques

• Derived measures vs. calculated measures,

• Describing dimensions,

• Date and time dimension,

• Surrogate keys,

• Degenerate dimensions,

• Role-playing dimensions,

• Junk dimension,

• Slowly changing dimensions,

• Mini dimension,

• Factless fact tables,

• Data warehouse bus architecture.
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Derived measures vs. Calculated measures

• If possible materialize (calculate and store) all measures needed for
analytical queries.

• Data warehouse is huge from the definition, so storing additional
values does not change a lot.

• Computing additional measures (like profit from incomes and
outcomes) decreases performance of data warehouse.
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Describing dimension

• Always use informative names for tables, attributes, and values,

• Use as many as possible, but useful, dimension attributes
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Date dimension

• Date dimension is a specific and inseparable dimension of the data
warehouse design.

• Data warehouse should be treated as a temporal database.

• Date dimension allows analysis of time trends.

• Should we treat date as a separate dimension or use timestamps to
compute all needed information?

I A separate dimension is more reasonable . . .
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Date dimension

• Typical attributes in date dimension:

I date and time (candidate key),
I day (number) of year,
I day (number) of month,
I day (number) of week,
I day number in epoch,
I weekday,
I weekend,
I 24-hour work day
I holiday

I week of year,
I month,
I name of month,
I quarter,
I year,
I fiscal year,
I selling season,
I back-to-school
I Christmas
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Date dimension

• Advantages of using date dimension:

I Capturing interesting date properties (holiday/non-holiday),
I Avoiding relying on special date-handling SQL functions,
I Making use of indexes.

• For finer-grained time measurements, use separate date and
time-of-day
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Surrogate keys

• A surrogate key is a meaningless integer key that is assigned by the
data warehouse.

• Surrogate keys should be used instead of natural keys (like PESEL
number in Poland):

I Surrogate keys can be shorter.
I Better handling of exceptional cases (e.g. for missing values – try to

use a specific row in the dimension table that represents missing value).
I Surrogate keys avoid to assume implicit semantic.
I Resistant to change of natural key meaning.
I Resistant to reuse of old value of natural key.
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Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,
I Typical transaction can be described by (id transaction, product, . . . ),
I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:

I Discard the dimension,
I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,

I Typical transaction can be described by (id transaction, product, . . . ),
I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:

I Discard the dimension,
I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,
I Typical transaction can be described by (id transaction, product, . . . ),

I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:

I Discard the dimension,
I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,
I Typical transaction can be described by (id transaction, product, . . . ),
I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:

I Discard the dimension,
I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,
I Typical transaction can be described by (id transaction, product, . . . ),
I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:

I Discard the dimension,
I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,
I Typical transaction can be described by (id transaction, product, . . . ),
I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:
I Discard the dimension,

I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Dimension can be merely an identifier, without any interesting
attributes:

I Consider a data warehouses for a retail market,
I Typical transaction can be described by (id transaction, product, . . . ),
I id transaction is just a unique identifier.

• There are two options for dealing with such dimensions:
I Discard the dimension,
I Use a degenerate dimension . . .

34 / 48



Degenerate dimensions

• Store the dimension identifier directly in the fact table.

• Do not create a separate dimension table.

• Such a dimension serves to group together products that were bought
in the same market basket (market basket analysis).
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Role-playing dimensions

• A single physical dimension can be referenced multiple times in a fact
table, with each reference linking to a logically distinct role for the
dimension.

• Example: a fact is associated with several dates (e.g. order, payment,
or delivery date), each of which is represented by a foreign key.
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Junk dimension

• Some columns may not fit to any of the dimensions, but creating a
separate dimension for each of them would increase significantly the
size of fact table (a foreign key would be required for each such
column).

I Example: consider such attributes as payment method (cash and
credit card) and packing type (box, paper, or none).

• A possible solution is to create a single junk dimension combining
these columns together.

• This dimension does not need to be the Cartesian product of all the
attributes’ possible values, but should only contain the combination of
values that actually occur in the source data.
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Slowly changing dimensions

• Compared to fact tables, dimension tables are relatively stable:

I New sales transactions occur constantly,
I New products are introduced rarely,
I New stores are opened very rarely.

• Attribute values for existing dimension rows do occasionally change
over time:

I Customer moves to a new address,
I Administrative reform in Poland,
I Change of product categorization.
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Slowly changing dimensions

• Type I (the simplest solution): update the dimension table:

I Simple to implement,
I Does not report history,
I Can affect analysis.

• Examples

I Wrong name of the street (correct approach),
I Change of customer address:

Nowak moves from Poznań to Warsaw → all products purchased in
Poznań move to Warsaw too!!!
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Slowly changing dimensions

• Type II: create a new dimension row:

I Accurate historical reporting,
I Pre-computed aggregates unaffected,
I Dimension table grows over time,
I Type II requires surrogate keys.

• Examples:

I Nowak moves to Warsaw:

id local id name city row effec-
tive date

row expira-
tion date

current row
indicator

23401 234 Nowak Poznań 2012-01-01 2014-01-05 Expired
23402 234 Nowak Warsaw 2014-01-06 9999-12-31 Current

I Old fact table rows point to the old row, and new fact table rows point
to the new row,

I To report on Nowak’s activity over time one can use:

WHERE local id = "234"
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23401 234 Nowak Poznań 2012-01-01 2014-01-05 Expired
23402 234 Nowak Warsaw 2014-01-06 9999-12-31 Current

I Old fact table rows point to the old row, and new fact table rows point
to the new row,

I To report on Nowak’s activity over time one can use:

WHERE local id = "234"

40 / 48



Slowly changing dimensions

• Type II: create a new dimension row:
I Accurate historical reporting,
I Pre-computed aggregates unaffected,
I Dimension table grows over time,

I Type II requires surrogate keys.

• Examples:

I Nowak moves to Warsaw:

id local id name city row effec-
tive date

row expira-
tion date

current row
indicator
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Slowly changing dimensions

• Type III: create a new dimension column:

I Allows reporting using either the old or the new values,
I Mostly useful for different reorganizations.

• Examples:

I Administrative reform in Poland:

id previous name current name

23401 poznańskie wielkopolskie
23402 pilskie wielkopolskie

I All the fact table rows point to both values.
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Mini dimension

• Some attributes change or are queried frequently.

• For such attributes it may be reasonable to create a separate
dimension table called mini dimension.

• It relies on removing of frequently-changing or frequently-queried
attributes from an original dimension and adding them to a new
mini-dimension table.

• The link between the original dimension and the mini dimension is
through the fact table, but additional foreign key can be added to the
original dimension.
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Factless fact tables

• Fact tables take the advantage of sparsity (much less data to store, if
events are rare).

• Fact tables do not contain rows for non-events: no rows for products
that did not sell.

• Factless Fact Tables:

I Fact table without numeric measure columns.
I Dummy measure is included that always has value 1.
I Describe relationships between dimensions.
I Example: Which products were on promotion in which stores for which

days?
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Data warehouse bus architecture

• In order to create an data warehouse for entire organization, which
takes into account several processes, one can use a data warehouse
bus matrix.
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Retail sales * * * *

Retail inventory * * *

Retail deliveries * * *

Warehouse inventory * * * *

Warehouse deliveries * * * *

Purchase orders * * * * * *

. . .
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Some other problems

• Querying fact tables or dimensions?
It is generally reckoned that some 80 percent of data

warehouse queries are dimension-browsing queries.
This means that they do not access any fact table.

Ch. Todman (2001)

• Example:
I How many customers do we have?
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Summary

• Three goals of the logical design of data warehouse: simplicity,
expressiveness and performance.

• The most popular conceptual schema: star schema.

• Designing data warehouses is not an easy task . . .
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