MapReduce in Spark

Krzysztof Dembczyriski

Intelligent Decision Support Systems Laboratory (IDSS)
Poznan University of Technology, Poland

Bachelor studies, seventh semester
Academic year 2018/19 (winter semester)

/48

Review of the previous lectures

Mining of massive datasets.
Evolution of database systems.
Dimensional modeling.

ETL and OLAP systems.
Processing of massive datasets |

» Physical storage and data access

» Materialization, denormalization and summarization
Processing of massive datasets Il

» Data partitioning
» MapReduce:

® The overall idea of the MapReduce paradigm.
o WordCount and matrix-vector multiplication.

» Spark: MapReduce in practice.

)

48

Motivation

Relational-algebra operations

Matrix Multiplication

Programming in Spark

Summary

Outline

48

1 Motivation

Outline

48

Algorithms in MapReduce

e How to implement fundamental algorithms in MapReduce?

» Relational-Algebra Operations.
» Matrix multiplication.

48

Outline

2 Relational-algebra operations

6 /48

Relational-algebra operations

Example (Relation Links)

From

urli

urlil
url?2
url?2

To

url?2

url3
url3
urléd

48

Relational-algebra operations

e We assume that input and output are real relations (no duplicated
rows)

48

Relational-algebra operations

e We assume that input and output are real relations (no duplicated
rows)

e Operations:

Selection

Projection

Union, intersection, and difference

Natural join

Grouping and aggregation

vV vy vy VvYyy

48

Relational-algebra operations

e We assume that input and output are real relations (no duplicated
rows)
e Operations:
» Selection
» Projection
» Union, intersection, and difference
» Natural join
» Grouping and aggregation
¢ Notation:
R, S - relation
t, t' - atuple
C - a condition of selection
A, B, C - subset of attributes
a, b, ¢ - attribute values for a given subset of attributes

v

vy VvYyy

e Operation: Select¢(R)

Selection

/48

e Operation: Select¢(R)
e Map:

Selection

/48

Selection

e Operation: Select¢(R)

e Map: For each tuple ¢ in R, test if it satisfies C. If so, produce the
key-value pair (¢,t). That is, both the key and value are t.

e Reduce:

48

Selection

e Operation: Select¢(R)

e Map: For each tuple ¢ in R, test if it satisfies C. If so, produce the
key-value pair (¢,t). That is, both the key and value are ¢.

e Reduce: The Reduce function is the identity. It simply passes each
key-value pair to the output.

48

Selection

e Operation: Select¢(R)

e Map: For each tuple ¢ in R, test if it satisfies C. If so, produce the
key-value pair (¢,t). That is, both the key and value are ¢.

e Reduce: The Reduce function is the identity. It simply passes each
key-value pair to the output.

‘ Input ‘ Output
map <k1l, t> list(<t, t>)
reduce | (<t, list(t)>) | list(<t, t>)

48

Projection

e Operation: Project 4(R)

10/48

Projection

e Operation: Project 4(R)
e Map:

10/48

Projection

¢ Operation: Project 4(R)

e Map: For each tuple ¢ in R, construct a tuple ¢ by eliminating from ¢
those components whose attributes are not in A. Output the
key-value pair (t',t').

¢ Reduce:

10/48

Projection

¢ Operation: Project 4(R)

e Map: For each tuple ¢ in R, construct a tuple ¢ by eliminating from ¢
those components whose attributes are not in A. Output the
key-value pair (t',t').

e Reduce: For each key ¢’ produced by any of the Map tasks, there will
be one or more key-value pairs (¢/,¢"). The Reduce function turns
(', [¢,t,...,t']) into (¢,t'), so it produces exactly one pair (¢',¢") for
this key t'.

10/48

Projection

Operation: Project 4(R)

Map: For each tuple ¢ in R, construct a tuple ¢’ by eliminating from ¢
those components whose attributes are not in A. Output the
key-value pair (t',t').

Reduce: For each key t' produced by any of the Map tasks, there will
be one or more key-value pairs (¢/,¢"). The Reduce function turns

(', [¢,t,...,t']) into (¢,t'), so it produces exactly one pair (¢',¢") for
this key t'.

‘ Input ‘ Output
map <k1l, t> list(<t?, t’>)
reduce | (<t’, list(t’,...,t’)>) | list(<t’, t’>)

10/48

Union

e Operation: Union(R,S)

11/48

Union

e Operation: Union(R,S)
e Map:

11/48

Union

e Operation: Union(R,S)

o Map: Turn each input tuple ¢ either from relation R or S into a
key-value pair (¢,t).

¢ Reduce:

11/48

Union

e Operation: Union(R,S)

o Map: Turn each input tuple ¢ either from relation R or S into a
key-value pair (¢,t).

¢ Reduce: Associated with each key t there will be either one or two
values. Produce output (¢,t) in either case.

11/48

Union

e Operation: Union(R,S)

o Map: Turn each input tuple ¢ either from relation R or S into a
key-value pair (¢,t).

¢ Reduce: Associated with each key t there will be either one or two
values. Produce output (¢,t) in either case.

‘ Input ‘ Output
map <k1, t)> list(<t, t>)
reduce | (<t, list(t)>) or | list(<t, t>)
(<t, list(t,t)>)

11/48

Intersection

e Operation: Intersection(R, S)

12/48

Intersection

e Operation: Intersection(R, S)
e Map:

12/48

Intersection

e Operation: Intersection(R, S)

e Map: Turn each input tuple ¢ either from relation R or S into a
key-value pair (¢,1).

¢ Reduce:

12 /48

Intersection

e Operation: Intersection(R, S)

e Map: Turn each input tuple ¢ either from relation R or S into a
key-value pair (¢,1).

e Reduce: If key ¢ has value list [¢,], then produce (¢,t). Otherwise,
produce nothing.

12/48

Intersection

e Operation: Intersection(R, S)

e Map: Turn each input tuple ¢ either from relation R or S into a
key-value pair (¢,1).

e Reduce: If key ¢ has value list [¢,], then produce (¢,t). Otherwise,
produce nothing.

‘ Input ‘ Output
map <k1l, t)> list(<t, t>)
reduce | (<t, list(t)>) or | list(<t, t>) if
(<t, list(t,t)>) | (<t, list(t,t)>)

12 /48

Minus

e Operation: Minus(R, S)

13/48

Minus

e Operation: Minus(R, S)
e Map:

13/48

Minus

e Operation: Minus(R, S)
e Map: For a tuple ¢ in R, produce key-value pair (¢,name(R)), and for

a tuple ¢t in S, produce key-value pair (¢,name(S)).
¢ Reduce:

13 /48

Minus

e Operation: Minus(R, S)
e Map: For a tuple ¢ in R, produce key-value pair (¢,name(R)), and for
a tuple ¢t in S, produce key-value pair (¢,name(S)).
¢ Reduce: For each key t, do the following.
1 If the associated value list is [name(R)], then produce (¢,1).
2 If the associated value list is anything else, which could only be

[name(R),name(S)], [name(S), name(R)], or [name(S)], produce
nothing.

13 /48

Minus

e Operation: Minus(R, S)
e Map: For a tuple ¢ in R, produce key-value pair (¢,name(R)), and for
a tuple ¢t in S, produce key-value pair (¢,name(S)).
¢ Reduce: For each key t, do the following.
1 If the associated value list is [name(R)], then produce (¢,1).
2 If the associated value list is anything else, which could only be
[name(R),name(S)], [name(S), name(R)], or [name(S)], produce

nothing.
Input Output
map <k1, (t, R)>or list(<t, R>) or
<ki1, (t, S)>or list(<t, S>)
reduce | (<t, list(R)>) or list(<t, t>) if
(<t, 1list(S)>) or (<t, list(R)>)
(<t, list(R,S)>) or
(<t, list(S,R)>)

13 /48

Natural Join

e Operation: Joing(R, S)

14 /48

Natural Join

e Operation: Joing(R, S)

e Assume that we join relation R(A, B) with relation S(B, () that
share the same attribute B.

e Map:

14 /48

Natural Join

Operation: Joing(R, S)

Assume that we join relation R(A, B) with relation S(B,C) that
share the same attribute B.

Map: For each tuple (a,b) of R, produce the key-value pair

(b, (name(R),a)). For each tuple (b,c) of S, produce the key-value
pair (b, (name(S),c)).

Reduce:

14 /48

Natural Join

Operation: Joing(R, S)

Assume that we join relation R(A, B) with relation S(B, C) that
share the same attribute B.

Map: For each tuple (a,b) of R, produce the key-value pair

(b, (name(R),a)). For each tuple (b,c) of S, produce the key-value
pair (b, (name(S),c)).

Reduce: Each key value b will be associated with a list of pairs that
are either of the form (name(R),a) or (name(S), c). Construct all
pairs consisting of one with first component name(R) and the other
with first component S, say (name(R),a) and (name(S),c). The
output for key b is a list (b, (al,b,cl)), (b, (a2,b,c2)),

14 /48

Natural Join

Operation: Joing(R, S)

Assume that we join relation R(A, B) with relation S(B, C) that
share the same attribute B.

Map: For each tuple (a,b) of R, produce the key-value pair

(b, (name(R),a)). For each tuple (b,c) of S, produce the key-value
pair (b, (name(S),c)).

Reduce: Each key value b will be associated with a list of pairs that
are either of the form (name(R),a) or (name(S), c). Construct all
pairs consisting of one with first component name(R) and the other
with first component S, say (name(R),a) and (name(S),c). The
output for key b is a list (b, (al,b,cl)), (b, (a2,b,c2)),

‘ Input ‘ Output
map <k1, (t, R)>or list(<b, (a, R)>) or
<k1, (t, S)>or list(<b, (c, S)>)

reduce | <b, list((al, R), ..., | list(<b, (ai, b, cj)>)
(c1,8), ...)>

14 /48

Grouping and Aggregation

* Operation: Aggregate(4 p)(R?)

15/48

Grouping and Aggregation

* Operation: Aggregate(4 p)(R?)
e Assume that we group a relation R(A, B, () by attributes A and
aggregate values of B by using function 6.

e Map:

15 /48

Grouping and Aggregation

Operation: Aggregate g 4 (1)

Assume that we group a relation R(A, B, C) by attributes A and
aggregate values of B by using function 6.

Map: For each tuple (a, b, c) produce the key-value pair (a,b).
Reduce:

15 /48

Grouping and Aggregation

Operation: Aggregate g 4 (1)

Assume that we group a relation R(A, B, C) by attributes A and
aggregate values of B by using function 6.

Map: For each tuple (a, b, c) produce the key-value pair (a,b).
Reduce: Each key a represents a group. Apply the aggregation
operator 6 to the list [b,bo, ..., b, of B-values associated with key
a. The output is the pair (a,z), where x is the result of applying 6 to

the list. For example, if 8 is SUM, then x = b1 + by + ...+ by, and if 0
is MAX, then x is the largest of b1, bs,. .., by,.

15/48

Grouping and Aggregation

* Operation: Aggregate(4 p)(R?)

e Assume that we group a relation R(A, B, () by attributes A and
aggregate values of B by using function 6.

e Map: For each tuple (a,b,c) produce the key-value pair (a,b).

e Reduce: Each key a represents a group. Apply the aggregation
operator 6 to the list [b,bo, ..., b, of B-values associated with key
a. The output is the pair (a,z), where x is the result of applying 6 to

the list. For example, if 8 is SUM, then x = b1 + by + ...+ by, and if 0
is MAX, then x is the largest of b1, bs,. .., by,.

‘ Input ‘ Output

map <k1l, t> list(<a, b>)
reduce | <a, list((b1l, b2, ...)> | list(<a, f(bl, b2, ...)>)

15/48

Outline

3 Matrix Multiplication

16 /48

Matrix Multiplication

e If M is a matrix with element m;; in row i and column j, and N is a
matrix with element nj; in row j and column £, then the product:

P=MN
is the matrix P with element p;; in row ¢ and column k, where:

pik =

17 /48

Matrix Multiplication

e If M is a matrix with element m;; in row i and column j, and N is a
matrix with element nj; in row j and column £, then the product:

P=MN

is the matrix P with element p;; in row ¢ and column k, where:

pik = Z mijnjk
J

17 /48

Matrix Multiplication

e We can think of a matrix M and N as a relation with three
attributes: the row number, the column number, and the value in
that row and column, i.e.,:

M(I,J,V) and N(J,K,W)
with the following tuples, respectively:
(i, 4,miz) and (4, K, mjp).

o In case of sparsity of M and N, this relational representation is very
efficient in terms of space.

e The product M N is almost a natural join followed by grouping and
aggregation.

18 /48

Matrix Multiplication

19/48

Matrix Multiplication

e Map:

19/48

Matrix Multiplication

e Map: Send each matrix element m;; to the key value pair:
(J, (M3, m45)) -
Analogously, send each matrix element n,j to the key value pair:

(75 (N, ki) -

¢ Reduce:

19/48

Matrix Multiplication

Map: Send each matrix element m;; to the key value pair:
(J, (M, i,mi5)) .

Analogously, send each matrix element n,j to the key value pair:
(4, (NS, njie)) -

Reduce: For each key j, examine its list of associated values. For
each value that comes from M, say (M, i,m;;), and each value that
comes from N, say (N, k,n;i), produce the tuple

(i, k,v = m4jn;g),

The output of the Reduce function is a key j paired with the list of all
the tuples of this form that we get from j:

(ja [(ih klﬂ Ul)? (iQ’ k27v2)7 B (ip7 kp’ Up)]) .

19/48

Matrix Multiplication

20/48

e Map:

Matrix Multiplication

20/48

Matrix Multiplication

e Map: From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((ila kl)’vl) ’ ((in kg),’()g) PR ((ip’ kp)?”p) .

¢ Reduce:

20 /48

Matrix Multiplication

Map: From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((ila kl)’vl) ’ ((in k2)7v2) PR ((ip’ kp)?”p) .

Reduce: For each key (i, k), produce the sum of the list of values
associated with this key. The result is a pair

((2, k), v),

where v is the value of the element in row ¢ and column k of the

matrix
P=DMN.

20 /48

Matrix Multiplication with One Map-Reduce Step

e Map:

21 /48

Matrix Multiplication with One Map-Reduce Step

Map: For each element m;; of M, produce a key-value pair
((17 k)a (Maja ml])))

for k=1,2,..., up to the number of columns of N.
Also, for each element nj; of N, produce a key-value pair

((ia k)a (ijv n]k)))

fori=1,2,..., up to the number of rows of M.

21/48

Matrix Multiplication with One Map-Reduce Step

e Reduce:

22/48

Matrix Multiplication with One Map-Reduce Step

e Reduce: Each key (7, k) will have an associated list with all the values
(M7j7 ml_]) and (N’ja njk)a

for all possible values of j. We connect the two values on the list that
have the same value of j, for each j:
» We sort by j the values that begin with M and sort by j the values
that begin with N, in separate lists,
» The jth values on each list must have their third components, m;; and
n;j, extracted and multiplied,
» Then, these products are summed and the result is paired with (z,k) in
the output of the Reduce function.

Outline

4 Programming in Spark

23 /48

Programming in Spark

e Spark uses in-memory storage for storing immediate results, while
Hadoop stores data on disk.
e A Spark program consists of two parts:

» A driver program: runs on your machine.
» Worker programs: run on cluster nodes or in local threads.

e A Spark program first creates a SparkContext object that tells how

to access a cluster
Driver program
Spark context

’ Local threads ‘

’ Cluster manager

Worker
Spark executor

Worker
Spark executor

’ Amazon S3, HDFS, or other storage ‘

24 /48

Programming in Spark

e Three types of APIs:

» RDD: an immutable collection of elements partitioned across the nodes
of the cluster

» Dataset: a strongly-typed, distributed and immutable collection of data
that can benefit of the optimized execution engine.

» Dataframe: an immutable distributed collection of data organized into
named columns (implemented as Dataset of type Row).

25 /48

Resilient Distributed Datasets

RDDs are immutable, distributed, lazy, and compile-time type-safe
based on Scala collections API

They track lineage information to efficiently recompute lost data
Enable operations on collection of elements in parallel

Construction of RDD:

» Parallelization of an existing collection in the driver program,
» By transforming an existing RDDs,
» From files in HDFS or any other storage system.

The number of partitions is to be set by a programmer.

26

48

Programming in Spark

e Two types of operations:
» Transformations: create a new dataset from an existing one in the lazy
manner (do not run computations on data immediately).
» Actions: return a value to the driver program after running a
computation on the dataset or storing the results to the file system.

27 /48

Transformations

Transformations are recipes for creating a result

Lazy evaluation: results not computed right away — instead Spark
remembers set of transformations applied to base dataset

Spark optimizes the required calculations

Spark recovers from failures and slow workers

Examples:

>

vV vy vy Vvyy

map, flatMap

filter

distinct

union, intersection

join, cartesian

reduceByKey, groupByKey, sortByKey (< MapReduce-style
operations working on pair RDDs)

28 /48

e Actions cause Spark to execute recipe to transform input data.

Actions

e Examples:

>

vV vy vy VvYVvYYy

reduce,

collect

count

first, take(1), take(n)
saveAsTextFile, saveAsSequenceFile
countByKey

foreach(func)

29 /48

e One of the most important capabilities in Spark is persisting (or
caching) a dataset in memory across operations.

Caching of results

e When you persist an RDD, each node stores any partitions of it that

it computes in memory and reuses them in other actions on that
dataset (or datasets derived from it).

e To persist RDD use the persist() or cache() methods on it.

val textFile = sc.textFile(""/data/all—shakespeare.txt”)
.count ()
.count (
.cache(
textFile.
textFile.

textFile
textFile
textFile

30 /48

Lifecycle of Spark Program

Create RDDs from external data or parallelize a collection in your
driver program,

Lazily transform them into new RDDs,
Cache some RDDs for reuse.

Perform actions to execute parallel computation and produce results.

31/48

Closure

e Spark automatically creates closures for:

» Functions that run on RDDs at workers

» Any global variables used by those workers
e One closure per worker

» Sent for every task
» No communication between workers
» Changes to global variables at workers are not sent to driver

32/48

Shared Variables

e Broadcast Variables

» Efficiently send large, read-only value to all workers
» Saved at workers for use in one or more Spark operations
» Like sending a large, read-only lookup table to all the nodes

e Example:

scala> val broadcastVar = sc.broadcast(Array(1l, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]]
= Broadcast (0)

scala> broadcastVar.value
resO: Array[Int] = Array(1, 2, 3)

33 /48

Shared Variables

e Accumulators

» Aggregate values from workers back to driver

» Only driver can access value of accumulator

» For tasks, accumulators are write-only

» Use to count errors seen in RDD across workers

o Example:
scala> val accum = sc.longAccumulator(”"My Accumulator”)
accum: org.apache.spark.util.LongAccumulator = LongAccumulator

(id: 0, name: Some(My Accumulator), value: 0)
scala> sc.parallelize (Array(1, 2, 3, 4)).foreach(x => accum.
add (x))

scala> accum.value
res2: Long = 10

34 /48

Let us check some code

e Word count [:

val

textFile = sc.textFile(”"/data/all—bible.txt")
val

counts = (textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey (- + _))

counts.saveAsTextFile(””/data/all —bible —counts.txt")

35 /48

Let us check some code

e Matrix-vector multiplication:

val x = sc.textFile("”"/data/x.txt").map(line = {val t = line.
split(”,”); (t(0).trim.tolnt, t(1l).trim.toDouble)})

val vectorX = x.map{case (i,v) = v}.collect

val broadcastedX = sc.broadcast(vectorX)

val matrix = sc.textFile(”"/data/M.txt").map(line = {val t =
line.split(”,”); (t(0).trim.tolnt, t(1l).trim.tolnt, t(2).
trim .toDouble)})

val v = matrix.map { case (i,j,a) => (i, a * broadcastedX.
value(j—1))}.reduceByKey (. + _)

v.toDF.orderBy (" -1").show

36 /48

Dataframes and Datasets

Alternative for RDDs

Rather What than How programming style = More optimizations
possible

Datasets are strongly typed, but Dataframes not.
They use the SqlContext.
SQL-like queries: either from Scala or SQL.

37 /48

Dataframes and Datasets

e A sample code:

val df = spark.read.json("examples/src/main/resources/people.json™)

// Displays the content of the DataFrame to stdout

/)

// | null| Michael|
// | 301 Andy

// | 19| Justin|
/)

df.printSchema ()

// root
// |—— age: long (nullable = true)
// |—— name: string (nullable = true)

// Select only the "name” column
df . select (”"name").show ()
/) At

// | name |
/) A—F
// | Michael|
// | Andy|
// | Justin|

/) At

38/48

Dataframes and Datasets

One can also use SQL directly:

df.createOrReplaceTempView (" people™)

val sqlDF = spark.sql("SELECT % FROM people”)
sqIDF .show ()

/) At
// | null| Michael|
// | 30| Andy|
// | 19| Justin|
/) At

39 /48

Dataframes and Datasets

Creating dataframes and datasets:

case class Person(name: String, age: Long)

val path = "examples/src/main/resources/people.json”

val peopleDS = spark.read.json(path).as[Person]

val primitiveDS = Seq(1, 2, 3).toDS()

primitiveDS .map(.- + 1).collect() // Returns: Array(2, 3, 4)

// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF spark.sparkContext

.textFile (" examples/src/main/resources/people.txt”)

.map(_-.split(","”))

.map(attributes => Person(attributes(0), attributes(1).trim.tolnt))

.toDF ()

40 /48

Dataframes and Datasets

e Data sources:
» The default data source is parquet, which is highly efficient columnar
format.
» Other data sources are also supported like json, databases via jdbc,
hive databases, and many others.

val usersDF = spark.read.load (" examples/src/main/resources/users.parquet”)
usersDF . select ("name”, " favorite_color”).write.save(”"namesAndFavColors. parquet”)

val peopleDF = spark.read.format(”json").load (" examples/src/main/resources/people.
json”)
peopleDF . select ("name”, "age”).write.format(” parquet”).save (" namesAndAges.parquet”)

e For file-based data source, it is also possible to bucket and sort or
partition the output.

peopleDF
.write
.partitionBy (" favorite_color”)
.bucketBy (42, "name”)
.saveAsTable(" people_partitioned_bucketed”)

41 /48

Let us check some code

e Dataframes and Datasets:

val songs = spark.read.
option (" delimiter”, " ").
csv (" songs”).
toDF("song_id”, "track_long_id”, "song_long_id", "artist”, "song”
)
val facts = spark.read.
option (" delimiter”, " ,").
csv (" facts”).
toDF("id”, "user_id”, "song_id", "date_id")

facts.groupBy("song.id").
count .
join(songs, facts(”"song.id")=—=songs("song.id")).
select ("song”, "count”).
orderBy (desc (" count”)).
show (10)

42 /48

Monitoring Spark

Every SparkContext launches a web Ul, by default on port 4040.
It displays useful information about the application:

A list of scheduler stages and tasks

» A summary of RDD sizes and memory usage

» Environmental information

» Information about the running executors

\4

To access the interface, you can open in your web browser the
following page:

http://<driver-node>:4040 (e.g. http://localhost:4040)

If multiple SparkContexts are running on the same host, they will bind

to successive ports beginning with 4040 (4041, 4042, etc).

43 /48

http://<driver-node>:4040
http://localhost:4040

Spark Jobs (?

User: kdembozynski
Total Uptime: 5.4 min
Scheduling Mode: FIFO
Completed Jobs: 8

» Event Timeline
~ Completed Jobs (8)
Jobld ~ Description

7 reduce at <consol
reduce at <console>:

3
6 collect at <console>:27
collect at <console>:27
5 sortBy at <console>:27
sortBy at <console>:27
4 reduce at <console>:26
reduce at <consok

3 reduce at <console>:26
reduce at <console>:26
2 collect at <console>:27
collect at <console>:27

Storage

Monitoring Spark

Submitted
2018/11/26 10:56:35

2018/11/26 10:56:28

2018/11/26 10:56:28

2018/11/26 10:55:12

2018/11/26 10:55:11

2018/11/26 10:55:10

Environment

Executors

Duration

12ms

‘Stages: Succeeded/Total
1/1 (1 skipped)

2/2 (1 skipped)

111 (1 skipped)

n

171 (1 skipped)

202 (1 skipped)

Spark shell application Ul

g
3
H
;
i
§
H

44 /48

Aggregation functions

e distributive: count (), sum, max, min,
e algebraic: ave(), stdev, var,

e holistic: median, rank, mode, distinct count.

45

48

Outline

5 Summary

46 /48

Summary

o Algorithms in MapReduce:

» Relational-algebra operations.
» Matrix multiplication.

e Programming in Spark

47 /48

Bibliography

J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2014
http://infolab.stanford.edu/~ullman/mmds.html

J.Lin and Ch. Dyer. Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010
http://lintool.github.com/MapReduceAlgorithms/

Ch. Lam. Hadoop in Action.
Manning Publications Co., 2011

https://spark.apache.org/docs/

Anthony D. Joseph. Introduction to Big Data with Apache Spark, 2016

48 /48

http://infolab.stanford.edu/~ullman/mmds.html
http://lintool.github.com/MapReduceAlgorithms/
https://spark.apache.org/docs/

	Motivation
	Relational-algebra operations
	Matrix Multiplication
	Programming in Spark
	Summary

