
Finding Similar Items III

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, seventh semester
Academic year 2018/19 (winter semester)

1 / 33

Review of the previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• ETL and OLAP systems.

• Processing of massive datasets.

• Spark: MapReduce in practice.

• Approximate query processing.

• Finding similar items:
I Minhash signatures
I LSH

2 / 33

Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 The curse of dimensionality

5 Summary

3 / 33

Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 The curse of dimensionality

5 Summary

4 / 33

Multi-dimensional structures

• To speed up the exact search of nearest neighbors we need
additional data structures.

• Conventional index structures are one dimensional and are not
suitable for multi-dimensional search queries.

salary

ag
e

5 / 33

Multi-dimensional structures

• To speed up the exact search of nearest neighbors we need
additional data structures.

• Conventional index structures are one dimensional and are not
suitable for multi-dimensional search queries.

salary

ag
e

5 / 33

Multi-dimensional structures

• Besides nearest-neighbor queries we distinguish other types of
multi-dimensional queries:

I Partial match queries: for specified values for one or more dimensions
find all points matching those values in those dimensions:

where salary = 5000 and age = 30

I Range queries: for specified ranges for one or more dimensions find all
the points within those ranges:

where salary between 3500 and 5000

and age between 25 and 35

I Where-am-I queries: for a given point, where this point is located (in
which shape).

6 / 33

Multi-dimensional structures

• Besides nearest-neighbor queries we distinguish other types of
multi-dimensional queries:

I Partial match queries: for specified values for one or more dimensions
find all points matching those values in those dimensions:

where salary = 5000 and age = 30

I Range queries: for specified ranges for one or more dimensions find all
the points within those ranges:

where salary between 3500 and 5000

and age between 25 and 35

I Where-am-I queries: for a given point, where this point is located (in
which shape).

6 / 33

Multi-dimensional structures

• Besides nearest-neighbor queries we distinguish other types of
multi-dimensional queries:

I Partial match queries: for specified values for one or more dimensions
find all points matching those values in those dimensions:

where salary = 5000 and age = 30

I Range queries: for specified ranges for one or more dimensions find all
the points within those ranges:

where salary between 3500 and 5000

and age between 25 and 35

I Where-am-I queries: for a given point, where this point is located (in
which shape).

6 / 33

Multi-dimensional structures

• Besides nearest-neighbor queries we distinguish other types of
multi-dimensional queries:

I Partial match queries: for specified values for one or more dimensions
find all points matching those values in those dimensions:

where salary = 5000 and age = 30

I Range queries: for specified ranges for one or more dimensions find all
the points within those ranges:

where salary between 3500 and 5000

and age between 25 and 35

I Where-am-I queries: for a given point, where this point is located (in
which shape).

6 / 33

Multi-dimensional queries with conventional indexes

• Consider a range query:

where salary between 3500 and 5000

and age between 25 and 35

salary

a
g

e

salary

a
g

e

salary

a
g

e

• To answer the query:
I Scan along either index at once,
I Intersect the elements returned by indexes

• This approach produces many false hits on each index!

7 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:

I There is no point within the selected range.
I The closest point within the range might not be the closest point

overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:

I There is no point within the selected range.
I The closest point within the range might not be the closest point

overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:

I There is no point within the selected range.
I The closest point within the range might not be the closest point

overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:
I There is no point within the selected range.

I The closest point within the range might not be the closest point
overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:
I There is no point within the selected range.

I The closest point within the range might not be the closest point
overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:
I There is no point within the selected range.
I The closest point within the range might not be the closest point

overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:
I There is no point within the selected range.
I The closest point within the range might not be the closest point

overall.

salary

ag
e

8 / 33

Nearest neighbor queries

• A general technique for finding the nearest neighbor:

I Estimate the range in which the nearest point is likely to be found.
I Execute the corresponding range query.
I If no points are found within that range, repeat with a larger range,

until at least one point will be found.
I Consider, whether there is the possibility that a closer point exists

outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.

9 / 33

Nearest neighbor queries

• A general technique for finding the nearest neighbor:
I Estimate the range in which the nearest point is likely to be found.

I Execute the corresponding range query.
I If no points are found within that range, repeat with a larger range,

until at least one point will be found.
I Consider, whether there is the possibility that a closer point exists

outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.

9 / 33

Nearest neighbor queries

• A general technique for finding the nearest neighbor:
I Estimate the range in which the nearest point is likely to be found.
I Execute the corresponding range query.

I If no points are found within that range, repeat with a larger range,
until at least one point will be found.

I Consider, whether there is the possibility that a closer point exists
outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.

9 / 33

Nearest neighbor queries

• A general technique for finding the nearest neighbor:
I Estimate the range in which the nearest point is likely to be found.
I Execute the corresponding range query.
I If no points are found within that range, repeat with a larger range,

until at least one point will be found.

I Consider, whether there is the possibility that a closer point exists
outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.

9 / 33

Nearest neighbor queries

• A general technique for finding the nearest neighbor:
I Estimate the range in which the nearest point is likely to be found.
I Execute the corresponding range query.
I If no points are found within that range, repeat with a larger range,

until at least one point will be found.
I Consider, whether there is the possibility that a closer point exists

outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.

9 / 33

Multidimensional index structures

• Hash-table-like approaches

• Tree-like approaches

10 / 33

Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 The curse of dimensionality

5 Summary

11 / 33

Grid files

• The space of points partitioned in a grid.

• In each dimension, grid lines partition the space into stripes.
• The number of grid lines in different dimensions may vary.
• Spacings between adjacent grid lines may also vary.
• Each region corresponds to a bucket.

salary

ag
e

12 / 33

Grid files

• The space of points partitioned in a grid.
• In each dimension, grid lines partition the space into stripes.

• The number of grid lines in different dimensions may vary.
• Spacings between adjacent grid lines may also vary.
• Each region corresponds to a bucket.

salary

ag
e

12 / 33

Grid files

• The space of points partitioned in a grid.
• In each dimension, grid lines partition the space into stripes.
• The number of grid lines in different dimensions may vary.

• Spacings between adjacent grid lines may also vary.
• Each region corresponds to a bucket.

salary

ag
e

12 / 33

Grid files

• The space of points partitioned in a grid.
• In each dimension, grid lines partition the space into stripes.
• The number of grid lines in different dimensions may vary.
• Spacings between adjacent grid lines may also vary.

• Each region corresponds to a bucket.

salary

ag
e

12 / 33

Grid files

• The space of points partitioned in a grid.
• In each dimension, grid lines partition the space into stripes.
• The number of grid lines in different dimensions may vary.
• Spacings between adjacent grid lines may also vary.
• Each region corresponds to a bucket.

salary

ag
e

12 / 33

Grid files

• Lookup in Grid Files:

I Look at each component of a point and determine the position of the
point in the grid for that dimension.

I The positions of the point in each of the dimensions together
determine the bucket.

• Insertion into Grid Files:

I Follow the procedure for lookup of the record and place the new record
to that bucket

I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.

I The positions of the point in each of the dimensions together
determine the bucket.

• Insertion into Grid Files:

I Follow the procedure for lookup of the record and place the new record
to that bucket

I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.
I The positions of the point in each of the dimensions together

determine the bucket.

• Insertion into Grid Files:

I Follow the procedure for lookup of the record and place the new record
to that bucket

I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.
I The positions of the point in each of the dimensions together

determine the bucket.

• Insertion into Grid Files:

I Follow the procedure for lookup of the record and place the new record
to that bucket

I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.
I The positions of the point in each of the dimensions together

determine the bucket.

• Insertion into Grid Files:
I Follow the procedure for lookup of the record and place the new record

to that bucket

I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.
I The positions of the point in each of the dimensions together

determine the bucket.

• Insertion into Grid Files:
I Follow the procedure for lookup of the record and place the new record

to that bucket
I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.
I The positions of the point in each of the dimensions together

determine the bucket.

• Insertion into Grid Files:
I Follow the procedure for lookup of the record and place the new record

to that bucket
I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or

• Reorganize the structure by adding or moving the grid lines.

13 / 33

Grid files

• Lookup in Grid Files:
I Look at each component of a point and determine the position of the

point in the grid for that dimension.
I The positions of the point in each of the dimensions together

determine the bucket.

• Insertion into Grid Files:
I Follow the procedure for lookup of the record and place the new record

to that bucket
I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.

13 / 33

Accessing buckets of a grid file

• For each dimension with large number of stripes create an index over
the partition values.

• Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

• Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.

• If the matrix is sparse treat it as a relation whose attributes are
corners of the nonempty buckets and a final attribute representing the
pointer to the bucket.

14 / 33

Accessing buckets of a grid file

• For each dimension with large number of stripes create an index over
the partition values.

• Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

• Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.

• If the matrix is sparse treat it as a relation whose attributes are
corners of the nonempty buckets and a final attribute representing the
pointer to the bucket.

14 / 33

Accessing buckets of a grid file

• For each dimension with large number of stripes create an index over
the partition values.

• Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

• Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.

• If the matrix is sparse treat it as a relation whose attributes are
corners of the nonempty buckets and a final attribute representing the
pointer to the bucket.

14 / 33

Accessing buckets of a grid file

• For each dimension with large number of stripes create an index over
the partition values.

• Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

• Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.

• If the matrix is sparse treat it as a relation whose attributes are
corners of the nonempty buckets and a final attribute representing the
pointer to the bucket.

14 / 33

Grid files

• Partial-match queries: We need to look at all the buckets in
dimension not specified in the query

salary

ag
e

15 / 33

Grid files

• Range queries: We need to look at all the buckets that cover the
rectangular region defined by the query

salary

ag
e

16 / 33

Grid files

• Nearest-neighbor queries:

I Start with the bucket in which the point belongs.
I If there is no point, check the adjacent buckets, for example, by spiral

search; otherwise, find the nearest point to be a candidate.
I Check points in the adjacent buckets if the distance between the query

point and the border of its bucket is less than the distance from the
candidate.

salary

ag
e

17 / 33

Grid files

• Nearest-neighbor queries:
I Start with the bucket in which the point belongs.

I If there is no point, check the adjacent buckets, for example, by spiral
search; otherwise, find the nearest point to be a candidate.

I Check points in the adjacent buckets if the distance between the query
point and the border of its bucket is less than the distance from the
candidate.

salary

ag
e

17 / 33

Grid files

• Nearest-neighbor queries:
I Start with the bucket in which the point belongs.
I If there is no point, check the adjacent buckets, for example, by spiral

search; otherwise, find the nearest point to be a candidate.

I Check points in the adjacent buckets if the distance between the query
point and the border of its bucket is less than the distance from the
candidate.

salary

ag
e

17 / 33

Grid files

• Nearest-neighbor queries:
I Start with the bucket in which the point belongs.
I If there is no point, check the adjacent buckets, for example, by spiral

search; otherwise, find the nearest point to be a candidate.
I Check points in the adjacent buckets if the distance between the query

point and the border of its bucket is less than the distance from the
candidate.

salary

ag
e

17 / 33

Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 The curse of dimensionality

5 Summary

18 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off

I More attributes in search key → index covers more queries, but takes
up more disk space.

• Example: An index on attributes (a, b)

I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off

I More attributes in search key → index covers more queries, but takes
up more disk space.

• Example: An index on attributes (a, b)

I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off

I More attributes in search key → index covers more queries, but takes
up more disk space.

• Example: An index on attributes (a, b)

I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)

I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)

I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)
I Search key is (a, b) combination.

I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)
I Search key is (a, b) combination.
I Index entries sorted by a value.

I Entries with same a value are sorted by b value, the so-called
lexicographic sort.

I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)
I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.

I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)
I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.

I But for a query SELECT SUM(A) FROM R WHERE B=5 records with
B = 5 are scattered throughout index.

19 / 33

Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
I More attributes in search key → index covers more queries, but takes

up more disk space.

• Example: An index on attributes (a, b)
I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.

19 / 33

Quad trees

• Quad tree splits the space into 2d equal sub-squares (cubes), where d
is number of attributes.

• Repeat the partition until: only one pixel left; only one point left; only
a few points left.

salary

ag
e

20 / 33

Quad trees

• Quad tree splits the space into 2d equal sub-squares (cubes), where d
is number of attributes.

• Repeat the partition until: only one pixel left; only one point left; only
a few points left.

salary

ag
e

20 / 33

Quad trees

• Partial-match queries: We need to look at all cubes that intersect the
condition of queries.

salary

ag
e

21 / 33

Quad trees

• Range queries: We need to look at all cubes that cover the region
defined by the query

salary

ag
e

22 / 33

Quad trees

• Nearest neighbor search for point q:

Put t h e r o o t on t h e p r i o r i t y queue w i t h t h e min d i s t a n c e = 0
Repeat {

Pop t h e n e x t node T from t h e p r i o r i t y queue
i f (min d i s t a n c e > r) {

t h e c a n d i d a t e i s t h e n e a r e s t n e i g h b o r ;
b r e a k ;

}
i f (T i s l e a f) {

examine p o i n t (s) i n T and f i n d t h e c a n d i d a t e ;
update r to be d i s t a n c e between q and t h e c a n d i d a t e ;

}
e l s e {

f o r each c h i l d C o f T {
i f (C i n t e r s e c t s w i t h t h e b a l l o f r a d i u s r around q) {

compute t h e min d i s t a n c e from q to any p o i n t i n C ;
add C to t h e p r i o r i t y queue w i t h t h e min d i s t a n c e ;

}
}

}
}

• Start search with r =∞.

• Whenever a candidate point is found, update r.

• Only investigate nodes with respect to current r.

23 / 33

Quad trees

• Nearest neighbor search for point q:

salary

ag
e

24 / 33

Quad trees

• Nearest neighbor search for point q:

salary

ag
e

24 / 33

Quad trees

• Nearest neighbor search for point q:

salary

ag
e

24 / 33

Quad trees

• Nearest neighbor search for point q:

salary

ag
e

24 / 33

kd-trees

• kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

• Splits the dimension at median of the chosen region (can use the
center of the region, too).

• Stop criterion similar to quad trees.

• Similar operations as for quad trees.

• Advantages: no (or less) empty spaces, only linear space.

25 / 33

kd-trees

• kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

• Splits the dimension at median of the chosen region (can use the
center of the region, too).

• Stop criterion similar to quad trees.

• Similar operations as for quad trees.

• Advantages: no (or less) empty spaces, only linear space.

25 / 33

kd-trees

• kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

• Splits the dimension at median of the chosen region (can use the
center of the region, too).

• Stop criterion similar to quad trees.

• Similar operations as for quad trees.

• Advantages: no (or less) empty spaces, only linear space.

25 / 33

kd-trees

• kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

• Splits the dimension at median of the chosen region (can use the
center of the region, too).

• Stop criterion similar to quad trees.

• Similar operations as for quad trees.

• Advantages: no (or less) empty spaces, only linear space.

25 / 33

kd-trees

• kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

• Splits the dimension at median of the chosen region (can use the
center of the region, too).

• Stop criterion similar to quad trees.

• Similar operations as for quad trees.

• Advantages: no (or less) empty spaces, only linear space.

25 / 33

kd-trees

salary

ag
e

26 / 33

kd-trees

salary

ag
e

26 / 33

kd-trees

salary

ag
e

26 / 33

kd-trees

salary

ag
e

26 / 33

Additional aspects of multidimensional indexes

• Adaptation to secondary storage.

• Balancing of the tree structures.

• Storing data only in leaves or in internal nodes and leaves.

• Many variations of the structures presented.

27 / 33

Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 The curse of dimensionality

5 Summary

28 / 33

Problems with nearest neighbor search

• Exponential query time
I The query time is from log n to O(n), but can be exponential in d.
I Tree structures are good when n� 2d.
I The curse of dimensionality.

• Solution: Approximate nearest neighbor search.

29 / 33

The curse of dimensionality

• In high-dimensional spaces almost all pairs of points are equally far
away from one another.

• In other words, the neighborhood becomes very large

• Example:
I Task: Find the 5-nearest neighbor in the unit hypercube.
I There are 5000 points uniformly distributed.
I The query point: The origin of the space.
I For 1-dimensional hypercube (line), the average distance to capture all

5 nearest neighbors is 5/5000 = 0.001.
I For 2 dimensional hypercube, we must go

√
0.001 in each direction to

get a square that contains 0.001 of the volume.
I In general, for d dimensions, we must go (0.001)

1
d .

I For instance, for d = 20, it is 0.707, and for d = 200, it is 0.966.

30 / 33

Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 The curse of dimensionality

5 Summary

31 / 33

Summary

• Multi-dimensional index structures:
I Applications: partial match queries, range queries, where-am-I-queries,

nearest-neighbor search.
I Approaches: hash table-based, tree-like structures.
I Work good for low-dimensional problems – curse of dimensionality.

32 / 33

Bibliography

• H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Second Edition.

Pearson Prentice Hall, 2009

• P. Indyk. Algorithms for nearest neighbor search

33 / 33

	Motivation
	Hash Structures for Multidimensional data
	Tree Structures for Multidimensional Data
	The curse of dimensionality
	Summary

