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Review of the previous lectures

Mining of massive datasets.
Evolution of database systems.
Dimensional modeling.

ETL and OLAP systems.
Processing of massive datasets.
Spark: MapReduce in practice.

Approximate query processing.
Finding similar items:

» Minhash signatures

» LSH
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Multi-dimensional structures

e To speed up the exact search of nearest neighbors we need
additional data structures.
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Multi-dimensional structures

e To speed up the exact search of nearest neighbors we need
additional data structures.

e Conventional index structures are one dimensional and are not
suitable for multi-dimensional search queries.
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Multi-dimensional structures

¢ Besides nearest-neighbor queries we distinguish other types of
multi-dimensional queries:

» Partial match queries: for specified values for one or more dimensions

find all points matching those values in those dimensions:
where salary = 5000 and age = 30

» Range queries: for specified ranges for one or more dimensions find all

the points within those ranges:
where salary between 3500 and 5000
and age between 25 and 35

» Where-am-| queries: for a given point, where this point is located (in

which shape).
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Multi-dimensional queries with conventional indexes

e Consider a range query:

where salary between 3500 and 5000
and age between 25 and 35

age
age
age

salary salary salary

e To answer the query:

» Scan along either index at once,
> Intersect the elements returned by indexes

e This approach produces many false hits on each index!
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Nearest neighbor queries

e To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.
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Nearest neighbor queries

e To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.
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Nearest neighbor queries

e To solve the nearest neighbor search one can ask the range query and

select the point closest to the target within that range.
e There are two situations we need to take into account:
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Nearest neighbor queries

e To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.
e There are two situations we need to take into account:
» There is no point within the selected range.
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Nearest neighbor queries

e To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.
e There are two situations we need to take into account:
» There is no point within the selected range.
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Nearest neighbor queries

e To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.
e There are two situations we need to take into account:
» There is no point within the selected range.
» The closest point within the range might not be the closest point
overall.
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Nearest neighbor queries

e A general technique for finding the nearest neighbor:
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Nearest neighbor queries

e A general technique for finding the nearest neighbor:

» Estimate the range in which the nearest point is likely to be found.

» Execute the corresponding range query.

» If no points are found within that range, repeat with a larger range,
until at least one point will be found.
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Nearest neighbor queries

e A general technique for finding the nearest neighbor:

>
>
>

Estimate the range in which the nearest point is likely to be found.
Execute the corresponding range query.

If no points are found within that range, repeat with a larger range,
until at least one point will be found.

Consider, whether there is the possibility that a closer point exists
outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.
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Multidimensional index structures

e Hash-table-like approaches

e Tree-like approaches
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2 Hash Structures for Multidimensional data
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Grid files

e The space of points partitioned in a grid.
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Grid files

e The space of points partitioned in a grid.
e In each dimension, grid lines partition the space into stripes.
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Grid files

e The space of points partitioned in a grid.
e In each dimension, grid lines partition the space into stripes.
e The number of grid lines in different dimensions may vary.
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Grid files

The space of points partitioned in a grid.

In each dimension, grid lines partition the space into stripes.
The number of grid lines in different dimensions may vary.
Spacings between adjacent grid lines may also vary.
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Grid files

The space of points partitioned in a grid.

In each dimension, grid lines partition the space into stripes.
The number of grid lines in different dimensions may vary.
Spacings between adjacent grid lines may also vary.

Each region corresponds to a bucket.
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Grid files

e Lookup in Grid Files:
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Grid files

e Lookup in Grid Files:
» Look at each component of a point and determine the position of the
point in the grid for that dimension.
» The positions of the point in each of the dimensions together
determine the bucket.

e |nsertion into Grid Files:

» Follow the procedure for lookup of the record and place the new record
to that bucket
» If there is no room in the bucket:

e Add overflow blocks to the buckets, as needed, or
e Reorganize the structure by adding or moving the grid lines.
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Accessing buckets of a grid file

o For each dimension with large number of stripes create an index over
the partition values.
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Accessing buckets of a grid file

o For each dimension with large number of stripes create an index over
the partition values.

e Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.
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Accessing buckets of a grid file

o For each dimension with large number of stripes create an index over
the partition values.

e Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

o Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.
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Accessing buckets of a grid file

For each dimension with large number of stripes create an index over
the partition values.

Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.

If the matrix is sparse treat it as a relation whose attributes are
corners of the nonempty buckets and a final attribute representing the
pointer to the bucket.
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Grid files

e Partial-match queries: We need to look at all the buckets in
dimension not specified in the query
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Grid files

e Range queries: We need to look at all the buckets that cover the
rectangular region defined by the query
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Grid files

o Nearest-neighbor queries:
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Grid files

o Nearest-neighbor queries:
» Start with the bucket in which the point belongs.
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Grid files

o Nearest-neighbor queries:
» Start with the bucket in which the point belongs.
» If there is no point, check the adjacent buckets, for example, by spiral
search; otherwise, find the nearest point to be a candidate.
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Grid files

o Nearest-neighbor queries:
» Start with the bucket in which the point belongs.
» If there is no point, check the adjacent buckets, for example, by spiral
search; otherwise, find the nearest point to be a candidate.
» Check points in the adjacent buckets if the distance between the query
point and the border of its bucket is less than the distance from the

candidate.
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Outline

3 Tree Structures for Multidimensional Data
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Multiple-key indexes

e Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.
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Multiple-key indexes

Multiple-key index can be seen as a kind of an index of indexes, or a

tree in which the nodes at each level are indexes for one attribute.

The indexes on each level can be of any type of conventional indexes.

Coverage vs. size trade-off
» More attributes in search key — index covers more queries, but takes

up more disk space.

Example: An index on attributes (a,b)

>

>

>

\4

v

Search key is (a,b) combination.

Index entries sorted by a value.

Entries with same a value are sorted by b value, the so-called
lexicographic sort.

A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.

But for a query SELECT SUM(A) FROM R WHERE B=5 records with
B =5 are scattered throughout index.
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Quad trees

e Quad tree splits the space into 27 equal sub-squares (cubes), where d
is number of attributes.
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Quad trees

e Quad tree splits the space into 27 equal sub-squares (cubes), where d
is number of attributes.

o Repeat the partition until: only one pixel left; only one point left; only
a few points left.
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Quad trees

e Partial-match queries: We need to look at all cubes that intersect the
condition of queries.
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Quad trees

e Range queries: We need to look at all cubes that cover the region
defined by the query
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Quad trees

o Nearest neighbor search for point ¢:

Put the root on the priority queue with the min distance = 0
Repeat {
Pop the next node T from the priority queue
if (min distance > r ) {
the candidate is the nearest neighbor;
break;

}
if (T is leaf) {

examine point(s) in T and find the candidate;
update r to be distance between q and the candidate;

else {
for each child C of T {
if( C intersects with the ball of radius r around q) {
compute the min distance from gq to any point in C;
add C to the priority queue with the min distance;

e Start search with r = oc.
e Whenever a candidate point is found, update r.
e Only investigate nodes with respect to current 7.
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Quad trees

o Nearest neighbor search for point ¢:
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kd-trees

o kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.
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kd-trees

kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

Splits the dimension at median of the chosen region (can use the
center of the region, too).

Stop criterion similar to quad trees.
Similar operations as for quad trees.

Advantages: no (or less) empty spaces, only linear space.
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kd-trees
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kd-trees
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kd-trees
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Additional aspects of multidimensional indexes

Adaptation to secondary storage.
Balancing of the tree structures.
Storing data only in leaves or in internal nodes and leaves.

Many variations of the structures presented.
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4 The curse of dimensionality
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Problems with nearest neighbor search

e Exponential query time

» The query time is from logn to O(n), but can be exponential in d.
» Tree structures are good when n > 2¢.
» The curse of dimensionality.

e Solution: Approximate nearest neighbor search.
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The curse of dimensionality

¢ In high-dimensional spaces almost all pairs of points are equally far
away from one another.

o In other words, the neighborhood becomes very large
e Example:

» Task: Find the 5-nearest neighbor in the unit hypercube.

» There are 5000 points uniformly distributed.

» The query point: The origin of the space.

» For 1-dimensional hypercube (line), the average distance to capture all
5 nearest neighbors is 5/5000 = 0.001.

» For 2 dimensional hypercube, we must go 1/0.001 in each direction to
get a square that contains 0.001 of the volume.

» In general, for d dimensions, we must go (0.001)5.

» For instance, for d = 20, it is 0.707, and for d = 200, it is 0.966.
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5 Summary
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Summary

e Multi-dimensional index structures:
» Applications: partial match queries, range queries, where-am-I-queries,
nearest-neighbor search.
» Approaches: hash table-based, tree-like structures.
» Work good for low-dimensional problems — curse of dimensionality.
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