
Finding Similar Items II

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, seventh semester
Academic year 2018/19 (winter semester)

1 / 53

Review of the previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• ETL and OLAP systems.

• Processing of massive datasets.

• Spark: MapReduce in practice.

• Approximate query processing.

• Finding similar items:
I Minhash signatures

2 / 53

Outline

1 Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

3 / 53

Outline

1 Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

4 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.
I However, there are

(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.
I However, there are

(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.
I However, there are

(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.
I However, there are

(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.

I The entire data fits in a gigabyte – less than a typical main memory of
a laptop.

I However, there are
(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.

I However, there are
(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.
I However, there are

(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• We can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of
documents.

• But still, it may be impossible to find the pairs with greatest similarity
efficiently!!!

• The reason is that the number of pairs of documents may be too
large.

• Example: We have a million documents and use signatures of length
250:

I Then we use 1000 bytes per document for the signatures.
I The entire data fits in a gigabyte – less than a typical main memory of

a laptop.
I However, there are

(
1000000

2

)
or half a trillion pairs of documents.

I If it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

5 / 53

Locality-sensitive hashing for documents

• However, often we want only the most similar pairs or all pairs that
are above some lower bound in similarity.

• If so, then we need to focus our attention only on pairs that are likely
to be similar, without investigating every pair.

• A technique called locality-sensitive hashing (LSH) is a solution for
this problem.

6 / 53

Locality-sensitive hashing for documents

• However, often we want only the most similar pairs or all pairs that
are above some lower bound in similarity.

• If so, then we need to focus our attention only on pairs that are likely
to be similar, without investigating every pair.

• A technique called locality-sensitive hashing (LSH) is a solution for
this problem.

6 / 53

Locality-sensitive hashing for documents

• However, often we want only the most similar pairs or all pairs that
are above some lower bound in similarity.

• If so, then we need to focus our attention only on pairs that are likely
to be similar, without investigating every pair.

• A technique called locality-sensitive hashing (LSH) is a solution for
this problem.

6 / 53

LSH

• General idea of LSH:

I Hash items several times, in such a way that similar items are more
likely to be hashed to the same bucket than dissimilar items are.

I Any pair that hashed to the same bucket for any of the hashings is a
candidate pair.

I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.

I Any pair that hashed to the same bucket for any of the hashings is a
candidate pair.

I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.
I Any pair that hashed to the same bucket for any of the hashings is a

candidate pair.

I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.
I Any pair that hashed to the same bucket for any of the hashings is a

candidate pair.
I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.
I Any pair that hashed to the same bucket for any of the hashings is a

candidate pair.
I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.
I Any pair that hashed to the same bucket for any of the hashings is a

candidate pair.
I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.
I Any pair that hashed to the same bucket for any of the hashings is a

candidate pair.
I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH

• General idea of LSH:
I Hash items several times, in such a way that similar items are more

likely to be hashed to the same bucket than dissimilar items are.
I Any pair that hashed to the same bucket for any of the hashings is a

candidate pair.
I We check only the candidate pairs for similarity.

• The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked.

• Those dissimilar pairs that do hash to the same bucket are false
positives.

• The truly similar pairs that will not hash to the same bucket under at
least one of the hash functions are false negatives.

• We hope to have a small fraction of false positives and false negatives.

7 / 53

LSH for minhash signatures

• For minhash signatures divide the signature matrix into b bands
consisting of r rows each.

• For each band use a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to
some large number of buckets.

· · · 1 0 0 0 2 · · ·
band 1 · · · 3 2 1 2 2 · · ·

· · · 0 1 3 1 1 · · ·
· · · 5 3 5 1 3 · · ·

band 2 · · · 1 4 1 2 4 · · ·
· · · 6 1 6 1 1 · · ·
· · · 3 1 4 6 6 · · ·

band 3 · · · 3 1 1 6 6 · · ·
· · · 2 5 3 4 4 · · ·

• We assume that the chances of an accidental collision to be very
small.

8 / 53

LSH for minhash signatures

• For minhash signatures divide the signature matrix into b bands
consisting of r rows each.

• For each band use a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to
some large number of buckets.

· · · 1 0 0 0 2 · · ·
band 1 · · · 3 2 1 2 2 · · ·

· · · 0 1 3 1 1 · · ·
· · · 5 3 5 1 3 · · ·

band 2 · · · 1 4 1 2 4 · · ·
· · · 6 1 6 1 1 · · ·
· · · 3 1 4 6 6 · · ·

band 3 · · · 3 1 1 6 6 · · ·
· · · 2 5 3 4 4 · · ·

• We assume that the chances of an accidental collision to be very
small.

8 / 53

LSH for minhash signatures

• For minhash signatures divide the signature matrix into b bands
consisting of r rows each.

• For each band use a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to
some large number of buckets.

· · · 1 0 0 0 2 · · ·
band 1 · · · 3 2 1 2 2 · · ·

· · · 0 1 3 1 1 · · ·
· · · 5 3 5 1 3 · · ·

band 2 · · · 1 4 1 2 4 · · ·
· · · 6 1 6 1 1 · · ·
· · · 3 1 4 6 6 · · ·

band 3 · · · 3 1 1 6 6 · · ·
· · · 2 5 3 4 4 · · ·

• We assume that the chances of an accidental collision to be very
small.

8 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:

I The probability that the signatures agree in all rows of one particular
band is sr.

I The probability that the signatures do not agree in at least one row of
a particular band is 1− sr.

I The probability that the signatures do not agree in all rows of any of
the bands is (1− sr)b.

I The probability that the signatures agree in all the rows of at least one
band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is

sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.

I The probability that the signatures do not agree in at least one row of
a particular band is 1− sr.

I The probability that the signatures do not agree in all rows of any of
the bands is (1− sr)b.

I The probability that the signatures agree in all the rows of at least one
band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is

1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.

I The probability that the signatures do not agree in all rows of any of
the bands is (1− sr)b.

I The probability that the signatures agree in all the rows of at least one
band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is

(1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.

I The probability that the signatures agree in all the rows of at least one
band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is

1− (1− sr)b.

9 / 53

Analysis of the banding technique

• Suppose we use b bands of r rows each and that a particular pair of
documents have Jaccard similarity s.

• Recall that the probability the minhash signatures for these documents
agree in any one particular row of the signature matrix is s.

• The probability that two documents become a candidate pair is:

1− (1− sr)b ,

because of the following reasoning:
I The probability that the signatures agree in all rows of one particular

band is sr.
I The probability that the signatures do not agree in at least one row of

a particular band is 1− sr.
I The probability that the signatures do not agree in all rows of any of

the bands is (1− sr)b.
I The probability that the signatures agree in all the rows of at least one

band, and therefore become a candidate pair, is 1− (1− sr)b.

9 / 53

Analysis of the banding technique

• The probability that two documents become a candidate pair has a
form of an S-curve.

1 >>> i m p o r t numpy as np
2 >>> i m p o r t m a t p l o t l i b . p y p l o t as p l t
3 >>> s = np . a r a n g e (0 . , 1 . , 0 . 0 5)
4 >>> p l t . p l o t (s , 1−(1−s∗∗4)∗∗16 , ’−− ’)
5 >>> p l t . show ()

10 / 53

Analysis of the banding technique

• The threshold, the value of similarity s at which the rise becomes
steepest, is a function of b and r.

• Use sympy to compute the threshold:

1 >>> from sympy i m p o r t ∗
2 >>> s , r , b=Symbol (’ s ’) , Symbol (’ r ’) , Symbol (’ b ’)
3 >>> d = d i f f (1−(1−s∗∗ r)∗∗b , s , 2)
4 >>> s o l v e (d , s)
5 [((r − 1) /(b∗ r − 1))∗∗(1/ r)]

• An approximation to the threshold is (1/b)1/r.

• Example: for b = 16 and r = 4, the threshold is approximately 1/2.

11 / 53

Analysis of the banding technique

• Example:

I Consider the case for b = 20 and r = 5 (we have signatures of length
100)

I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.
I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Analysis of the banding technique

• Example:
I Consider the case for b = 20 and r = 5 (we have signatures of length

100)

I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.
I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Analysis of the banding technique

• Example:
I Consider the case for b = 20 and r = 5 (we have signatures of length

100)
I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.

I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Analysis of the banding technique

• Example:
I Consider the case for b = 20 and r = 5 (we have signatures of length

100)
I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.
I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Analysis of the banding technique

• Example:
I Consider the case for b = 20 and r = 5 (we have signatures of length

100)
I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.
I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Analysis of the banding technique

• Example:
I Consider the case for b = 20 and r = 5 (we have signatures of length

100)
I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.
I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Analysis of the banding technique

• Example:
I Consider the case for b = 20 and r = 5 (we have signatures of length

100)
I For s = 0.8, 1− sr = 0.672, and (1− sr)b = 0.00035.
I Interpretation:

• If we consider two documents with similarity 0.8, then in any one band,
they have only about 33% chance of becoming a candidate pair.

• However, there are 20 bands and thus 20 chances to become a
candidate.

• That is why the final probability is 0.99965 (since the probability of a
false negative is 0.00035).

12 / 53

Procedure for finding similar documents

• Choose a threshold t that defines how similar documents have to be
in order for them to be regarded as a desired “similar pair.”

• Pick a number of bands b and a number of rows r such that br = n,
and the threshold t is approximately (1/b)1/r.

• If avoidance of false negatives is important, you may wish to select b
and r to produce a threshold lower than t.

• If speed is important and you wish to limit false positives, select b and
r to produce a higher threshold.

13 / 53

Procedure for finding similar documents

• Choose a threshold t that defines how similar documents have to be
in order for them to be regarded as a desired “similar pair.”

• Pick a number of bands b and a number of rows r such that br = n,
and the threshold t is approximately (1/b)1/r.

• If avoidance of false negatives is important, you may wish to select b
and r to produce a threshold lower than t.

• If speed is important and you wish to limit false positives, select b and
r to produce a higher threshold.

13 / 53

Procedure for finding similar documents

• Choose a threshold t that defines how similar documents have to be
in order for them to be regarded as a desired “similar pair.”

• Pick a number of bands b and a number of rows r such that br = n,
and the threshold t is approximately (1/b)1/r.

• If avoidance of false negatives is important, you may wish to select b
and r to produce a threshold lower than t.

• If speed is important and you wish to limit false positives, select b and
r to produce a higher threshold.

13 / 53

Procedure for finding similar documents

• Choose a threshold t that defines how similar documents have to be
in order for them to be regarded as a desired “similar pair.”

• Pick a number of bands b and a number of rows r such that br = n,
and the threshold t is approximately (1/b)1/r.

• If avoidance of false negatives is important, you may wish to select b
and r to produce a threshold lower than t.

• If speed is important and you wish to limit false positives, select b and
r to produce a higher threshold.

13 / 53

Outline

1 Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

14 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),
2 d(x,y) = 0 if and only if x = y (distances are positive, except for the

distance from a point to itself),
3 d(x,y) = d(y,x) (distance is symmetric),
4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),
2 d(x,y) = 0 if and only if x = y (distances are positive, except for the

distance from a point to itself),
3 d(x,y) = d(y,x) (distance is symmetric),
4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),

2 d(x,y) = 0 if and only if x = y (distances are positive, except for the
distance from a point to itself),

3 d(x,y) = d(y,x) (distance is symmetric),
4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),
2 d(x,y) = 0 if and only if x = y (distances are positive, except for the

distance from a point to itself),

3 d(x,y) = d(y,x) (distance is symmetric),
4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),
2 d(x,y) = 0 if and only if x = y (distances are positive, except for the

distance from a point to itself),
3 d(x,y) = d(y,x) (distance is symmetric),

4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),
2 d(x,y) = 0 if and only if x = y (distances are positive, except for the

distance from a point to itself),
3 d(x,y) = d(y,x) (distance is symmetric),
4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Distance measure

• Suppose we have a set of points, called a space.

• A distance measure on this space is a function d(x,y) that takes two
points in the space as arguments and produces a real number, and
satisfies the following axioms:

1 d(x,y) ≥ 0 (no negative distances),
2 d(x,y) = 0 if and only if x = y (distances are positive, except for the

distance from a point to itself),
3 d(x,y) = d(y,x) (distance is symmetric),
4 d(x,y) ≤ d(x, z) + d(z,y) (the triangle inequality).

• The triangle-inequality axiom is what makes all distance measures
behave as if distance describes the length of a shortest path from one
point to another.

15 / 53

Euclidean distances

• The conventional distance measure in n-dimensional Euclidean space,
which we shall refer to as the L2-norm, is defined as:

d2(x,y) =

√√√√ n∑
j=1

(xj − yj)2

• In general, for any constant p, we can define the Lp-norm to be the
distance measure d defined by:

dp(x,y) =

 n∑
j=1

|xj − yj |p
 1

p

16 / 53

Euclidean distances

• Special cases are, besides the L2-norm mentioned above,
I Manhattan distance or L1-norm:

d1(x,y) =

 n∑
j=1

|xj − yj |


I Chebyshev distance or L∞-norm:

d∞(x,y) = max
j

(|xj − yj |)

17 / 53

Euclidean distances

• The spheres of Lp with different p: p = 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

18 / 53

Euclidean distances

• The spheres of Lp with different p: p = 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

18 / 53

Euclidean distances

• The spheres of Lp with different p: p = 0.2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

19 / 53

Euclidean distances

• The spheres of Lp with different p: p = 0.2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

19 / 53

Euclidean distances

• The spheres of Lp with different p: p = 0.5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

20 / 53

Euclidean distances

• The spheres of Lp with different p: p = 0.5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

20 / 53

Euclidean distances

• The spheres of Lp with different p: p = 1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

21 / 53

Euclidean distances

• The spheres of Lp with different p: p = 1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

21 / 53

Euclidean distances

• The spheres of Lp with different p: p = 1.5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

22 / 53

Euclidean distances

• The spheres of Lp with different p: p = 1.5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

22 / 53

Euclidean distances

• The spheres of Lp with different p: p = 3

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

23 / 53

Euclidean distances

• The spheres of Lp with different p: p = 3

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

23 / 53

Euclidean distances

• The spheres of Lp with different p: p = 10

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

24 / 53

Euclidean distances

• The spheres of Lp with different p: p = 10

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

24 / 53

Jaccard distance

• Jaccard similarity is not a distance measure!

• We define the Jaccard distance of sets by:

dJacc = 1− SIM(x,y)

where SIM(x,y) is defined as before.

25 / 53

Cosine distance

• Let points be thought of as directions and do not distinguish between
a vector and a multiple of that vector.

• The cosine distance between two points is the angle that the vectors
to those points make.

• This angle will be in the range 0 to 180 degrees, regardless of how
many dimensions the space has.

x

y

α
cosα

26 / 53

Cosine distance

• Let points be thought of as directions and do not distinguish between
a vector and a multiple of that vector.

• The cosine distance between two points is the angle that the vectors
to those points make.

• This angle will be in the range 0 to 180 degrees, regardless of how
many dimensions the space has.

x

y

α
cosα

26 / 53

Cosine distance

• Let points be thought of as directions and do not distinguish between
a vector and a multiple of that vector.

• The cosine distance between two points is the angle that the vectors
to those points make.

• This angle will be in the range 0 to 180 degrees, regardless of how
many dimensions the space has.

x

y

α
cosα

26 / 53

Computing the cosine distance

• Given two vectors x and y, the cosine of the angle between them is
the dot product x · y divided by the L2-norms of x and y:

cos(θ) =

∑n
j=1 xjyj√∑n

j=1 x
2
j

√∑n
j=1 y

2
j

• Apply the arccos function to translate cos(θ) to an angle in the
[0, 180] degree range.

27 / 53

Computing the cosine distance

• Given two vectors x and y, the cosine of the angle between them is
the dot product x · y divided by the L2-norms of x and y:

cos(θ) =

∑n
j=1 xjyj√∑n

j=1 x
2
j

√∑n
j=1 y

2
j

• Apply the arccos function to translate cos(θ) to an angle in the
[0, 180] degree range.

27 / 53

Hamming Distance

• The Hamming distance between two vectors is the number of
components in which they differ:

dH =

n∑
j=1

Jxj 6= yjK

28 / 53

Outline

1 Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

29 / 53

Theory of locality-sensitive functions

• For a given distance measure we would like to find a family of
functions that can be combined to distinguish strongly between pairs
at a low distance from pairs at a high distance.

• The minhash functions is one example of such family that uses the
banding technique to achieve the above goal.

30 / 53

Theory of locality-sensitive functions

• For a given distance measure we would like to find a family of
functions that can be combined to distinguish strongly between pairs
at a low distance from pairs at a high distance.

• The minhash functions is one example of such family that uses the
banding technique to achieve the above goal.

30 / 53

Theory of Locality-Sensitive Functions

• There are three conditions that we need for a family of functions:

1 They must be more likely to make close pairs be candidate pairs than
distant pairs.

2 They must be statistically independent to enable estimation of the
probability that two or more functions will all give a certain response by
the product rule for independent events.

3 They must be efficient, in two ways:

• They must be able to identify candidate pairs in time much less than
the time it takes to look at all pairs.

• They must be combinable to build functions that are better at avoiding
false positives and negatives, and the combined functions must also
take time that is much less than the number of pairs.

31 / 53

Theory of Locality-Sensitive Functions

• There are three conditions that we need for a family of functions:

1 They must be more likely to make close pairs be candidate pairs than
distant pairs.

2 They must be statistically independent to enable estimation of the
probability that two or more functions will all give a certain response by
the product rule for independent events.

3 They must be efficient, in two ways:

• They must be able to identify candidate pairs in time much less than
the time it takes to look at all pairs.

• They must be combinable to build functions that are better at avoiding
false positives and negatives, and the combined functions must also
take time that is much less than the number of pairs.

31 / 53

Theory of Locality-Sensitive Functions

• There are three conditions that we need for a family of functions:

1 They must be more likely to make close pairs be candidate pairs than
distant pairs.

2 They must be statistically independent to enable estimation of the
probability that two or more functions will all give a certain response by
the product rule for independent events.

3 They must be efficient, in two ways:

• They must be able to identify candidate pairs in time much less than
the time it takes to look at all pairs.

• They must be combinable to build functions that are better at avoiding
false positives and negatives, and the combined functions must also
take time that is much less than the number of pairs.

31 / 53

Theory of Locality-Sensitive Functions

• There are three conditions that we need for a family of functions:

1 They must be more likely to make close pairs be candidate pairs than
distant pairs.

2 They must be statistically independent to enable estimation of the
probability that two or more functions will all give a certain response by
the product rule for independent events.

3 They must be efficient, in two ways:

• They must be able to identify candidate pairs in time much less than
the time it takes to look at all pairs.

• They must be combinable to build functions that are better at avoiding
false positives and negatives, and the combined functions must also
take time that is much less than the number of pairs.

31 / 53

Theory of Locality-Sensitive Functions

• There are three conditions that we need for a family of functions:

1 They must be more likely to make close pairs be candidate pairs than
distant pairs.

2 They must be statistically independent to enable estimation of the
probability that two or more functions will all give a certain response by
the product rule for independent events.

3 They must be efficient, in two ways:
• They must be able to identify candidate pairs in time much less than

the time it takes to look at all pairs.

• They must be combinable to build functions that are better at avoiding
false positives and negatives, and the combined functions must also
take time that is much less than the number of pairs.

31 / 53

Theory of Locality-Sensitive Functions

• There are three conditions that we need for a family of functions:

1 They must be more likely to make close pairs be candidate pairs than
distant pairs.

2 They must be statistically independent to enable estimation of the
probability that two or more functions will all give a certain response by
the product rule for independent events.

3 They must be efficient, in two ways:
• They must be able to identify candidate pairs in time much less than

the time it takes to look at all pairs.
• They must be combinable to build functions that are better at avoiding

false positives and negatives, and the combined functions must also
take time that is much less than the number of pairs.

31 / 53

Locality-sensitive functions

• Consider functions f(x,y) that take two items and render a decision
about whether these items should be a candidate pair.

• It is convenient to use the notation:

I f(x) = f(y) to mean f(x,y) is yes: make x and y a candidate pair,
I f(x) 6= f(y) to mean: do not make x and y a candidate pair unless

some other function concludes we should do so.

• A collection of functions of this form will be called a family of
functions.

32 / 53

Locality-sensitive functions

• Consider functions f(x,y) that take two items and render a decision
about whether these items should be a candidate pair.

• It is convenient to use the notation:

I f(x) = f(y) to mean f(x,y) is yes: make x and y a candidate pair,
I f(x) 6= f(y) to mean: do not make x and y a candidate pair unless

some other function concludes we should do so.

• A collection of functions of this form will be called a family of
functions.

32 / 53

Locality-sensitive functions

• Consider functions f(x,y) that take two items and render a decision
about whether these items should be a candidate pair.

• It is convenient to use the notation:
I f(x) = f(y) to mean f(x,y) is yes: make x and y a candidate pair,

I f(x) 6= f(y) to mean: do not make x and y a candidate pair unless
some other function concludes we should do so.

• A collection of functions of this form will be called a family of
functions.

32 / 53

Locality-sensitive functions

• Consider functions f(x,y) that take two items and render a decision
about whether these items should be a candidate pair.

• It is convenient to use the notation:
I f(x) = f(y) to mean f(x,y) is yes: make x and y a candidate pair,
I f(x) 6= f(y) to mean: do not make x and y a candidate pair unless

some other function concludes we should do so.

• A collection of functions of this form will be called a family of
functions.

32 / 53

Locality-sensitive functions

• Consider functions f(x,y) that take two items and render a decision
about whether these items should be a candidate pair.

• It is convenient to use the notation:
I f(x) = f(y) to mean f(x,y) is yes: make x and y a candidate pair,
I f(x) 6= f(y) to mean: do not make x and y a candidate pair unless

some other function concludes we should do so.

• A collection of functions of this form will be called a family of
functions.

32 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:

I We interpret a minhash function mh to make x and y a candidate pair
if and only if mh(x) = mh(y).

I Thus, the family of minhash functions is a
(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:

I We interpret a minhash function mh to make x and y a candidate pair
if and only if mh(x) = mh(y).

I Thus, the family of minhash functions is a
(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.

2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:

I We interpret a minhash function mh to make x and y a candidate pair
if and only if mh(x) = mh(y).

I Thus, the family of minhash functions is a
(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:

I We interpret a minhash function mh to make x and y a candidate pair
if and only if mh(x) = mh(y).

I Thus, the family of minhash functions is a
(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:

I We interpret a minhash function mh to make x and y a candidate pair
if and only if mh(x) = mh(y).

I Thus, the family of minhash functions is a
(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:
I We interpret a minhash function mh to make x and y a candidate pair

if and only if mh(x) = mh(y).

I Thus, the family of minhash functions is a
(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:
I We interpret a minhash function mh to make x and y a candidate pair

if and only if mh(x) = mh(y).
I Thus, the family of minhash functions is a

(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Locality-sensitive functions

• Let d1 < d2 be two distances according to some distance measure d.

• A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f ∈ F :

1 If d(x,y) ≤ d1, then the probability that f(x) = f(y) is at least p1.
2 If d(x,y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

• Example: For Jaccard distance we have:
I We interpret a minhash function mh to make x and y a candidate pair

if and only if mh(x) = mh(y).
I Thus, the family of minhash functions is a

(d1, d2, 1− d1, 1− d2)-sensitive family for any d1 and d2, where
0 ≤ d1 < d2 ≤ 1.

I For instance, for d1 = 0.3 and d2 = 0.6 we can assert that the family
of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family.

33 / 53

Amplifying a locality-sensitive family

• Suppose we are given a (d1, d2, p1, p2)-sensitive family F .

• We can construct a new family F ′ by the AND-construction on F .

• Each member of F ′ consists of r members of F for some fixed r.

• If f is in F ′, and f is constructed from the set {f1, f2, . . . , fr} of
members of F , we say f(x) = f(y) if and only if fi(x) = fi(y) for
all i = 1, 2, . . . , r.

• Since the members of F are independently chosen to make a member
of F ′, we can assert that F ′ is a (d1, d2, (p1)

r, (p2)
r)-sensitive family.

• Example: This construction corresponds to r rows in a single band
for minhash functions.

34 / 53

Amplifying a locality-sensitive family

• Suppose we are given a (d1, d2, p1, p2)-sensitive family F .

• We can construct a new family F ′ by the AND-construction on F .

• Each member of F ′ consists of r members of F for some fixed r.

• If f is in F ′, and f is constructed from the set {f1, f2, . . . , fr} of
members of F , we say f(x) = f(y) if and only if fi(x) = fi(y) for
all i = 1, 2, . . . , r.

• Since the members of F are independently chosen to make a member
of F ′, we can assert that F ′ is a (d1, d2, (p1)

r, (p2)
r)-sensitive family.

• Example: This construction corresponds to r rows in a single band
for minhash functions.

34 / 53

Amplifying a locality-sensitive family

• Suppose we are given a (d1, d2, p1, p2)-sensitive family F .

• We can construct a new family F ′ by the AND-construction on F .

• Each member of F ′ consists of r members of F for some fixed r.

• If f is in F ′, and f is constructed from the set {f1, f2, . . . , fr} of
members of F , we say f(x) = f(y) if and only if fi(x) = fi(y) for
all i = 1, 2, . . . , r.

• Since the members of F are independently chosen to make a member
of F ′, we can assert that F ′ is a (d1, d2, (p1)

r, (p2)
r)-sensitive family.

• Example: This construction corresponds to r rows in a single band
for minhash functions.

34 / 53

Amplifying a locality-sensitive family

• Suppose we are given a (d1, d2, p1, p2)-sensitive family F .

• We can construct a new family F ′ by the AND-construction on F .

• Each member of F ′ consists of r members of F for some fixed r.

• If f is in F ′, and f is constructed from the set {f1, f2, . . . , fr} of
members of F , we say f(x) = f(y) if and only if fi(x) = fi(y) for
all i = 1, 2, . . . , r.

• Since the members of F are independently chosen to make a member
of F ′, we can assert that F ′ is a (d1, d2, (p1)

r, (p2)
r)-sensitive family.

• Example: This construction corresponds to r rows in a single band
for minhash functions.

34 / 53

Amplifying a locality-sensitive family

• Suppose we are given a (d1, d2, p1, p2)-sensitive family F .

• We can construct a new family F ′ by the AND-construction on F .

• Each member of F ′ consists of r members of F for some fixed r.

• If f is in F ′, and f is constructed from the set {f1, f2, . . . , fr} of
members of F , we say f(x) = f(y) if and only if fi(x) = fi(y) for
all i = 1, 2, . . . , r.

• Since the members of F are independently chosen to make a member
of F ′, we can assert that F ′ is a (d1, d2, (p1)

r, (p2)
r)-sensitive family.

• Example: This construction corresponds to r rows in a single band
for minhash functions.

34 / 53

Amplifying a locality-sensitive family

• Suppose we are given a (d1, d2, p1, p2)-sensitive family F .

• We can construct a new family F ′ by the AND-construction on F .

• Each member of F ′ consists of r members of F for some fixed r.

• If f is in F ′, and f is constructed from the set {f1, f2, . . . , fr} of
members of F , we say f(x) = f(y) if and only if fi(x) = fi(y) for
all i = 1, 2, . . . , r.

• Since the members of F are independently chosen to make a member
of F ′, we can assert that F ′ is a (d1, d2, (p1)

r, (p2)
r)-sensitive family.

• Example: This construction corresponds to r rows in a single band
for minhash functions.

34 / 53

Amplifying a locality-sensitive family

• There is another construction called the OR-construction.

• Each member f of F ′ is constructed from b members of F , say
f1, f2, . . . , fb.

• We define f(x) = f(y) if and only if fi(x) = fi(y) for one or more
values of i.

• This construction turns a (d1, d2, p1, p2)-sensitive family F into a
(d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive family F ′.

• Example: This construction corresponds to b bands of 1 row for
minhash functions.

35 / 53

Amplifying a locality-sensitive family

• There is another construction called the OR-construction.

• Each member f of F ′ is constructed from b members of F , say
f1, f2, . . . , fb.

• We define f(x) = f(y) if and only if fi(x) = fi(y) for one or more
values of i.

• This construction turns a (d1, d2, p1, p2)-sensitive family F into a
(d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive family F ′.

• Example: This construction corresponds to b bands of 1 row for
minhash functions.

35 / 53

Amplifying a locality-sensitive family

• There is another construction called the OR-construction.

• Each member f of F ′ is constructed from b members of F , say
f1, f2, . . . , fb.

• We define f(x) = f(y) if and only if fi(x) = fi(y) for one or more
values of i.

• This construction turns a (d1, d2, p1, p2)-sensitive family F into a
(d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive family F ′.

• Example: This construction corresponds to b bands of 1 row for
minhash functions.

35 / 53

Amplifying a locality-sensitive family

• There is another construction called the OR-construction.

• Each member f of F ′ is constructed from b members of F , say
f1, f2, . . . , fb.

• We define f(x) = f(y) if and only if fi(x) = fi(y) for one or more
values of i.

• This construction turns a (d1, d2, p1, p2)-sensitive family F into a
(d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive family F ′.

• Example: This construction corresponds to b bands of 1 row for
minhash functions.

35 / 53

Amplifying a locality-sensitive family

• There is another construction called the OR-construction.

• Each member f of F ′ is constructed from b members of F , say
f1, f2, . . . , fb.

• We define f(x) = f(y) if and only if fi(x) = fi(y) for one or more
values of i.

• This construction turns a (d1, d2, p1, p2)-sensitive family F into a
(d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive family F ′.

• Example: This construction corresponds to b bands of 1 row for
minhash functions.

35 / 53

Amplifying a locality-sensitive family

• The AND-construction lowers all probabilities, while the
OR-construction makes all probabilities rise.

• But if we choose F and r judiciously, we can make the small
probability p2 get very close to 0, while the higher probability p1 stays
significantly away from 0.

• Similarly, by choosing F and b judiciously, we can make the larger
probability approach 1 while the smaller probability remains bounded
away from 1.

• We can, moreover, cascade AND- and OR-constructions in any order
to make the low probability close to 0 and the high probability close
to 1!!!

• Obviously, the better the final family of functions is, the longer it
takes to apply the functions from this family.

36 / 53

Amplifying a locality-sensitive family

• The AND-construction lowers all probabilities, while the
OR-construction makes all probabilities rise.

• But if we choose F and r judiciously, we can make the small
probability p2 get very close to 0, while the higher probability p1 stays
significantly away from 0.

• Similarly, by choosing F and b judiciously, we can make the larger
probability approach 1 while the smaller probability remains bounded
away from 1.

• We can, moreover, cascade AND- and OR-constructions in any order
to make the low probability close to 0 and the high probability close
to 1!!!

• Obviously, the better the final family of functions is, the longer it
takes to apply the functions from this family.

36 / 53

Amplifying a locality-sensitive family

• The AND-construction lowers all probabilities, while the
OR-construction makes all probabilities rise.

• But if we choose F and r judiciously, we can make the small
probability p2 get very close to 0, while the higher probability p1 stays
significantly away from 0.

• Similarly, by choosing F and b judiciously, we can make the larger
probability approach 1 while the smaller probability remains bounded
away from 1.

• We can, moreover, cascade AND- and OR-constructions in any order
to make the low probability close to 0 and the high probability close
to 1!!!

• Obviously, the better the final family of functions is, the longer it
takes to apply the functions from this family.

36 / 53

Amplifying a locality-sensitive family

• The AND-construction lowers all probabilities, while the
OR-construction makes all probabilities rise.

• But if we choose F and r judiciously, we can make the small
probability p2 get very close to 0, while the higher probability p1 stays
significantly away from 0.

• Similarly, by choosing F and b judiciously, we can make the larger
probability approach 1 while the smaller probability remains bounded
away from 1.

• We can, moreover, cascade AND- and OR-constructions in any order
to make the low probability close to 0 and the high probability close
to 1!!!

• Obviously, the better the final family of functions is, the longer it
takes to apply the functions from this family.

36 / 53

Amplifying a locality-sensitive family

• The AND-construction lowers all probabilities, while the
OR-construction makes all probabilities rise.

• But if we choose F and r judiciously, we can make the small
probability p2 get very close to 0, while the higher probability p1 stays
significantly away from 0.

• Similarly, by choosing F and b judiciously, we can make the larger
probability approach 1 while the smaller probability remains bounded
away from 1.

• We can, moreover, cascade AND- and OR-constructions in any order
to make the low probability close to 0 and the high probability close
to 1!!!

• Obviously, the better the final family of functions is, the longer it
takes to apply the functions from this family.

36 / 53

Amplifying a locality-sensitive family

• Example:

I Suppose we start with a family F .
I We use the AND-construction with r = 4 to produce a family F1.
I We then apply the OR-construction to F1 with b = 4 to produce a

third family F2.
I The members of F2 each are built from 16 members of F .
I The 4-way AND-function converts any probability p into p4, and the

4-way OR-construction, converts this probability further into
1− (1− p4)4.

37 / 53

Amplifying a locality-sensitive family

• Example:
I Suppose we start with a family F .

I We use the AND-construction with r = 4 to produce a family F1.
I We then apply the OR-construction to F1 with b = 4 to produce a

third family F2.
I The members of F2 each are built from 16 members of F .
I The 4-way AND-function converts any probability p into p4, and the

4-way OR-construction, converts this probability further into
1− (1− p4)4.

37 / 53

Amplifying a locality-sensitive family

• Example:
I Suppose we start with a family F .
I We use the AND-construction with r = 4 to produce a family F1.

I We then apply the OR-construction to F1 with b = 4 to produce a
third family F2.

I The members of F2 each are built from 16 members of F .
I The 4-way AND-function converts any probability p into p4, and the

4-way OR-construction, converts this probability further into
1− (1− p4)4.

37 / 53

Amplifying a locality-sensitive family

• Example:
I Suppose we start with a family F .
I We use the AND-construction with r = 4 to produce a family F1.
I We then apply the OR-construction to F1 with b = 4 to produce a

third family F2.

I The members of F2 each are built from 16 members of F .
I The 4-way AND-function converts any probability p into p4, and the

4-way OR-construction, converts this probability further into
1− (1− p4)4.

37 / 53

Amplifying a locality-sensitive family

• Example:
I Suppose we start with a family F .
I We use the AND-construction with r = 4 to produce a family F1.
I We then apply the OR-construction to F1 with b = 4 to produce a

third family F2.
I The members of F2 each are built from 16 members of F .

I The 4-way AND-function converts any probability p into p4, and the
4-way OR-construction, converts this probability further into
1− (1− p4)4.

37 / 53

Amplifying a locality-sensitive family

• Example:
I Suppose we start with a family F .
I We use the AND-construction with r = 4 to produce a family F1.
I We then apply the OR-construction to F1 with b = 4 to produce a

third family F2.
I The members of F2 each are built from 16 members of F .
I The 4-way AND-function converts any probability p into p4, and the

4-way OR-construction, converts this probability further into
1− (1− p4)4.

37 / 53

Amplifying a locality-sensitive family

• Example:

I Suppose F is the minhash functions being
a (0.2, 0.6, 0.8, 0.4)-sensitive family.

I Then F2, the family constructed by a
4-way AND followed by a 4-way OR, is a
(0.2, 0.6, 0.8785, 0.0985)-sensitive family.

I This family corresponds to the banding
technique with b = 4 bands and r = 4
rows of the banding technique.

I By replacing F by F2, we have reduced
both the false-negative and false-positive
rates, at the cost of making application of
the functions take 16 times as long.

p 1− (1− p4)4
0.2 0.0064
0.3 0.0320
0.4 0.0985
0.5 0.2275
0.6 0.4260
0.7 0.6666
0.8 0.8785
0.9 0.9860

38 / 53

Amplifying a locality-sensitive family

• Example:

I Suppose F is the minhash functions being
a (0.2, 0.6, 0.8, 0.4)-sensitive family.

I Then F2, the family constructed by a
4-way AND followed by a 4-way OR, is a
(0.2, 0.6, 0.8785, 0.0985)-sensitive family.

I This family corresponds to the banding
technique with b = 4 bands and r = 4
rows of the banding technique.

I By replacing F by F2, we have reduced
both the false-negative and false-positive
rates, at the cost of making application of
the functions take 16 times as long.

p 1− (1− p4)4
0.2 0.0064
0.3 0.0320
0.4 0.0985
0.5 0.2275
0.6 0.4260
0.7 0.6666
0.8 0.8785
0.9 0.9860

38 / 53

Amplifying a locality-sensitive family

• Example:

I Suppose F is the minhash functions being
a (0.2, 0.6, 0.8, 0.4)-sensitive family.

I Then F2, the family constructed by a
4-way AND followed by a 4-way OR, is a
(0.2, 0.6, 0.8785, 0.0985)-sensitive family.

I This family corresponds to the banding
technique with b = 4 bands and r = 4
rows of the banding technique.

I By replacing F by F2, we have reduced
both the false-negative and false-positive
rates, at the cost of making application of
the functions take 16 times as long.

p 1− (1− p4)4
0.2 0.0064
0.3 0.0320
0.4 0.0985
0.5 0.2275
0.6 0.4260
0.7 0.6666
0.8 0.8785
0.9 0.9860

38 / 53

Amplifying a locality-sensitive family

• Example:

I Suppose F is the minhash functions being
a (0.2, 0.6, 0.8, 0.4)-sensitive family.

I Then F2, the family constructed by a
4-way AND followed by a 4-way OR, is a
(0.2, 0.6, 0.8785, 0.0985)-sensitive family.

I This family corresponds to the banding
technique with b = 4 bands and r = 4
rows of the banding technique.

I By replacing F by F2, we have reduced
both the false-negative and false-positive
rates, at the cost of making application of
the functions take 16 times as long.

p 1− (1− p4)4
0.2 0.0064
0.3 0.0320
0.4 0.0985
0.5 0.2275
0.6 0.4260
0.7 0.6666
0.8 0.8785
0.9 0.9860

38 / 53

Amplifying a locality-sensitive family

• Example:
I For the same cost, we can apply a 4-way OR-construction followed by a

4-way AND-construction.
I Suppose as before that F is a (0.2, 0.6, 0.8, 0.4)-sensitive family.
I Then the constructed family is a (0.2, 0.6, 0.9936, 0.5740)-sensitive.
I This choice is not necessarily the best: the higher probability has

moved much closer to 1, but the lower probability has also raised,
increasing the number of false positives.

39 / 53

Amplifying a locality-sensitive family

• We can cascade constructions as much as we like.

• We can combine the two families just discussed and obtain a family
build from 256 hash functions.

• It would, for instance, transform a (0.2, 0.8, 0.8, 0.2)-sensitive family
into a (0.2, 0.8, 0.99999996, 0.0008715)-sensitive family.

40 / 53

Amplifying a locality-sensitive family

• We can cascade constructions as much as we like.

• We can combine the two families just discussed and obtain a family
build from 256 hash functions.

• It would, for instance, transform a (0.2, 0.8, 0.8, 0.2)-sensitive family
into a (0.2, 0.8, 0.99999996, 0.0008715)-sensitive family.

40 / 53

Amplifying a locality-sensitive family

• We can cascade constructions as much as we like.

• We can combine the two families just discussed and obtain a family
build from 256 hash functions.

• It would, for instance, transform a (0.2, 0.8, 0.8, 0.2)-sensitive family
into a (0.2, 0.8, 0.99999996, 0.0008715)-sensitive family.

40 / 53

Outline

1 Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

41 / 53

LSH families for Hamming distance

• Suppose we have a space of n-dimensional vectors, and h(x,y)
denotes the Hamming distance between vectors x and y.

• Take any position i of the vectors and define the function fi(x) to be
the i-th element of vector x.

• Then fi(x) = fi(y) if and only if vectors x and y agree in the i-th
position.

• The probability that fi(x) = fi(y) for a randomly chosen i is:

1− h(x, y)

n
,

i.e., the fraction of positions in which x and y agree.

• The family F consisting of the functions {f1, f2, . . . , fn} is a
(d1, d2, 1− d1/n, 1− d2/n)-sensitive family of hash functions, for any
d1 < d2.

42 / 53

LSH families for Hamming distance

• Suppose we have a space of n-dimensional vectors, and h(x,y)
denotes the Hamming distance between vectors x and y.

• Take any position i of the vectors and define the function fi(x) to be
the i-th element of vector x.

• Then fi(x) = fi(y) if and only if vectors x and y agree in the i-th
position.

• The probability that fi(x) = fi(y) for a randomly chosen i is:

1− h(x, y)

n
,

i.e., the fraction of positions in which x and y agree.

• The family F consisting of the functions {f1, f2, . . . , fn} is a
(d1, d2, 1− d1/n, 1− d2/n)-sensitive family of hash functions, for any
d1 < d2.

42 / 53

LSH families for Hamming distance

• Suppose we have a space of n-dimensional vectors, and h(x,y)
denotes the Hamming distance between vectors x and y.

• Take any position i of the vectors and define the function fi(x) to be
the i-th element of vector x.

• Then fi(x) = fi(y) if and only if vectors x and y agree in the i-th
position.

• The probability that fi(x) = fi(y) for a randomly chosen i is:

1− h(x, y)

n
,

i.e., the fraction of positions in which x and y agree.

• The family F consisting of the functions {f1, f2, . . . , fn} is a
(d1, d2, 1− d1/n, 1− d2/n)-sensitive family of hash functions, for any
d1 < d2.

42 / 53

LSH families for Hamming distance

• Suppose we have a space of n-dimensional vectors, and h(x,y)
denotes the Hamming distance between vectors x and y.

• Take any position i of the vectors and define the function fi(x) to be
the i-th element of vector x.

• Then fi(x) = fi(y) if and only if vectors x and y agree in the i-th
position.

• The probability that fi(x) = fi(y) for a randomly chosen i is:

1− h(x, y)

n
,

i.e., the fraction of positions in which x and y agree.

• The family F consisting of the functions {f1, f2, . . . , fn} is a
(d1, d2, 1− d1/n, 1− d2/n)-sensitive family of hash functions, for any
d1 < d2.

42 / 53

LSH families for Hamming distance

• Suppose we have a space of n-dimensional vectors, and h(x,y)
denotes the Hamming distance between vectors x and y.

• Take any position i of the vectors and define the function fi(x) to be
the i-th element of vector x.

• Then fi(x) = fi(y) if and only if vectors x and y agree in the i-th
position.

• The probability that fi(x) = fi(y) for a randomly chosen i is:

1− h(x, y)

n
,

i.e., the fraction of positions in which x and y agree.

• The family F consisting of the functions {f1, f2, . . . , fn} is a
(d1, d2, 1− d1/n, 1− d2/n)-sensitive family of hash functions, for any
d1 < d2.

42 / 53

Random hyperplanes and the cosine distance

• The cosine distance between two vectors is the angle between the
vectors.

• Note that these vectors may be in a space of many dimensions, but
they always define a plane, and the angle between them is measured
in this plane.

43 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Let the angle between two vectors x and y be θ.

• Suppose we pick a hyperplane through the origin of the space that
intersects the plane of x and y in a line.

• To pick a random hyperplane, we may pick the normal vector v.

• The hyperplane is the set of points whose dot product with v is 0.

• Take the dot products of v with x and y:

v · x and v · y

and check the signs of these products.

• What is the probability that the dot products of randomly chosen
vector v with x and y will produce two different signs?

θ/180

44 / 53

Random hyperplanes and the cosine distance

• Thus, each hash function f in our locality-sensitive family F is built
from a randomly chosen vector vf .

• Given two vectors x and y, we say f(x) = f(y) if and only if the dot
products vf · x and vf · y have . . . the same sign.

• Then F is a (d1, d2, (180− d1)/180, (180− d2)/180)-sensitive family
for the cosine distance.

45 / 53

Random hyperplanes and the cosine distance

• Thus, each hash function f in our locality-sensitive family F is built
from a randomly chosen vector vf .

• Given two vectors x and y, we say f(x) = f(y) if and only if the dot
products vf · x and vf · y have . . .

the same sign.

• Then F is a (d1, d2, (180− d1)/180, (180− d2)/180)-sensitive family
for the cosine distance.

45 / 53

Random hyperplanes and the cosine distance

• Thus, each hash function f in our locality-sensitive family F is built
from a randomly chosen vector vf .

• Given two vectors x and y, we say f(x) = f(y) if and only if the dot
products vf · x and vf · y have . . . the same sign.

• Then F is a (d1, d2, (180− d1)/180, (180− d2)/180)-sensitive family
for the cosine distance.

45 / 53

Random hyperplanes and the cosine distance

• Thus, each hash function f in our locality-sensitive family F is built
from a randomly chosen vector vf .

• Given two vectors x and y, we say f(x) = f(y) if and only if the dot
products vf · x and vf · y have . . . the same sign.

• Then F is a (d1, d2, (180− d1)/180, (180− d2)/180)-sensitive family
for the cosine distance.

45 / 53

LSH families for Euclidean distance

• Consider first a 2-dimensional Euclidean space.

• Each hash function f in our family F will be associated with a
randomly chosen line in this space.

• Pick a constant a and divide the line into segments of length a.

• The segments of the line are the buckets into which function f hashes
points: a point is hashed to the bucket in which its projection onto
the line lies.

46 / 53

LSH families for Euclidean distance

• Consider first a 2-dimensional Euclidean space.

• Each hash function f in our family F will be associated with a
randomly chosen line in this space.

• Pick a constant a and divide the line into segments of length a.

• The segments of the line are the buckets into which function f hashes
points: a point is hashed to the bucket in which its projection onto
the line lies.

46 / 53

LSH families for Euclidean distance

• Consider first a 2-dimensional Euclidean space.

• Each hash function f in our family F will be associated with a
randomly chosen line in this space.

• Pick a constant a and divide the line into segments of length a.

• The segments of the line are the buckets into which function f hashes
points: a point is hashed to the bucket in which its projection onto
the line lies.

46 / 53

LSH families for Euclidean distance

• Consider first a 2-dimensional Euclidean space.

• Each hash function f in our family F will be associated with a
randomly chosen line in this space.

• Pick a constant a and divide the line into segments of length a.

• The segments of the line are the buckets into which function f hashes
points: a point is hashed to the bucket in which its projection onto
the line lies.

46 / 53

LSH families for Euclidean distance

• If the distance d between two points is small compared with a, then
there is a good chance the two points hash to the same bucket.

• For d = a/2 there is at least a 50% chance the two points will fall in
the same bucket.

• If the angle θ between the randomly chosen line and the line
connecting the points is large, then there is an even greater chance
that the two points will fall in the same bucket.

• For θ = 90 degrees the two points are certain to fall in the same
bucket.

47 / 53

LSH families for Euclidean distance

• If the distance d between two points is small compared with a, then
there is a good chance the two points hash to the same bucket.

• For d = a/2 there is at least a 50% chance the two points will fall in
the same bucket.

• If the angle θ between the randomly chosen line and the line
connecting the points is large, then there is an even greater chance
that the two points will fall in the same bucket.

• For θ = 90 degrees the two points are certain to fall in the same
bucket.

47 / 53

LSH families for Euclidean distance

• If the distance d between two points is small compared with a, then
there is a good chance the two points hash to the same bucket.

• For d = a/2 there is at least a 50% chance the two points will fall in
the same bucket.

• If the angle θ between the randomly chosen line and the line
connecting the points is large, then there is an even greater chance
that the two points will fall in the same bucket.

• For θ = 90 degrees the two points are certain to fall in the same
bucket.

47 / 53

LSH families for Euclidean distance

• If the distance d between two points is small compared with a, then
there is a good chance the two points hash to the same bucket.

• For d = a/2 there is at least a 50% chance the two points will fall in
the same bucket.

• If the angle θ between the randomly chosen line and the line
connecting the points is large, then there is an even greater chance
that the two points will fall in the same bucket.

• For θ = 90 degrees the two points are certain to fall in the same
bucket.

47 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?

I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and
for cos θ ≥ 1/2, we have θ ∈ [0, 60].

I Since θ is the smaller angle between two randomly chosen lines in the
plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?

I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and
for cos θ ≥ 1/2, we have θ ∈ [0, 60].

I Since θ is the smaller angle between two randomly chosen lines in the
plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?

I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and
for cos θ ≥ 1/2, we have θ ∈ [0, 60].

I Since θ is the smaller angle between two randomly chosen lines in the
plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?

I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and
for cos θ ≥ 1/2, we have θ ∈ [0, 60].

I Since θ is the smaller angle between two randomly chosen lines in the
plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?

I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and
for cos θ ≥ 1/2, we have θ ∈ [0, 60].

I Since θ is the smaller angle between two randomly chosen lines in the
plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?
I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and

for cos θ ≥ 1/2, we have θ ∈ [0, 60].

I Since θ is the smaller angle between two randomly chosen lines in the
plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• Suppose d is larger than a.

• To have any chance of the two points falling in the same bucket, we
need d cos θ < a.

• Note, however, that even if d cos θ � a, it is still not certain that the
two points will fall in the same bucket.

• However, we can guarantee that If d ≥ 2a, then there is no more than
a 1/3 chance the two points fall in the same bucket.

• Why?
I The reason is that for cos θ < 1/2 we have θ ∈ (60, 90] degrees, and

for cos θ ≥ 1/2, we have θ ∈ [0, 60].
I Since θ is the smaller angle between two randomly chosen lines in the

plane, θ is twice as likely to be between 0 and 60 as it is to be between
60 and 90.

48 / 53

LSH families for Euclidean distance

• The family F of random line is a (a/2, 2a, 1/2, 1/3)-sensitive family
of hash functions.

• For distances up to a/2 the probability is at least 1/2 that two points
at that distance will fall in the same bucket.

• For distances at least 2a the probability points at that distance will
fall in the same bucket is at most 1/3.

• We can amplify this family as we like, just as for the other examples
of locality-sensitive hash functions.

49 / 53

LSH families for Euclidean distance

• The family F of random line is a (a/2, 2a, 1/2, 1/3)-sensitive family
of hash functions.

• For distances up to a/2 the probability is at least 1/2 that two points
at that distance will fall in the same bucket.

• For distances at least 2a the probability points at that distance will
fall in the same bucket is at most 1/3.

• We can amplify this family as we like, just as for the other examples
of locality-sensitive hash functions.

49 / 53

LSH families for Euclidean distance

• The family F of random line is a (a/2, 2a, 1/2, 1/3)-sensitive family
of hash functions.

• For distances up to a/2 the probability is at least 1/2 that two points
at that distance will fall in the same bucket.

• For distances at least 2a the probability points at that distance will
fall in the same bucket is at most 1/3.

• We can amplify this family as we like, just as for the other examples
of locality-sensitive hash functions.

49 / 53

LSH families for Euclidean distance

• The family F of random line is a (a/2, 2a, 1/2, 1/3)-sensitive family
of hash functions.

• For distances up to a/2 the probability is at least 1/2 that two points
at that distance will fall in the same bucket.

• For distances at least 2a the probability points at that distance will
fall in the same bucket is at most 1/3.

• We can amplify this family as we like, just as for the other examples
of locality-sensitive hash functions.

49 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:

I The above reasoning was given only for 2-dimensional spaces.
I This locality-sensitive family for any pair of distances d1 and d2 needs

the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:
I The above reasoning was given only for 2-dimensional spaces.

I This locality-sensitive family for any pair of distances d1 and d2 needs
the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:
I The above reasoning was given only for 2-dimensional spaces.
I This locality-sensitive family for any pair of distances d1 and d2 needs

the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:
I The above reasoning was given only for 2-dimensional spaces.
I This locality-sensitive family for any pair of distances d1 and d2 needs

the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:
I The above reasoning was given only for 2-dimensional spaces.
I This locality-sensitive family for any pair of distances d1 and d2 needs

the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:
I The above reasoning was given only for 2-dimensional spaces.
I This locality-sensitive family for any pair of distances d1 and d2 needs

the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

LSH families for Euclidean distance

• There are, however, two problems with this family of hash functions:
I The above reasoning was given only for 2-dimensional spaces.
I This locality-sensitive family for any pair of distances d1 and d2 needs

the stronger condition d1 < 4d2 than the families before, for which we
have d1 < d2.

• It turns out that there is a locality-sensitive family of hash functions
for any d1 < d2 and for any number of dimensions constructed in a
similar way.

• Given that d1 < d2, we may not know what exactly the probabilities
of p1 and p2 are, but we can be certain that p1 > p2.

• The reason is that this probability surely grows as the distance shrinks.

• Thus, even if we cannot calculate p1 and p2 easily, we know that
there is a (d1, d2, p1, p2)-sensitive family of hash functions for any
d1 < d2 and any given number of dimensions.

50 / 53

Outline

1 Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

51 / 53

Summary

• Locality-sensitive hashing.

• Distance measures.

• Theory of LSH.

• LSH for different distance measures.

52 / 53

Bibliography

• J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2014
http://www.mmds.org

• P. Indyk. Algorithms for nearest neighbor search

53 / 53

http://www.mmds.org

	Locality-Sensitive Hashing for Documents
	Distance measures
	Theory of Locality-Sensitive Functions
	LSH Families for Other Distance Measures
	Summary

