Finding similar items |

Krzysztof Dembczyriski

Intelligent Decision Support Systems Laboratory (IDSS)
Poznan University of Technology, Poland

Bachelor studies, seventh semester
Academic year 2018/19 (winter semester)

/33

Review of the previous lectures

Mining of massive datasets.
Evolution of database systems.
Dimensional modeling.

ETL and OLAP systems.
Processing of massive datasets.
Spark: MapReduce in practice.

Approximate query processing.

)

33

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

1 Motivation

Outline

33

Nearest neighbor search

e Find similar elements to the query element.

33

Applications of nearest neighbor search

Similarity of documents

» Plagiarism

» Mirror pages

> Articles from the same source
Machine learning

> k-nearest neighbors

» Collaborative filtering
Computational geometry
Computer vision

Geographic Information Systems (GIS)

6

33

e Brute force search:

Nearest neighbor search

/33

Nearest neighbor search

e Brute force search:
» Given a query point ¢ scan through each of n data points in database

33

Nearest neighbor search

e Brute force search:

» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query:

33

Nearest neighbor search

e Brute force search:

» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).

33

Nearest neighbor search

e Brute force search:
» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query:

33

Nearest neighbor search

e Brute force search:
» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query: O(nlogk) or

33

Nearest neighbor search

e Brute force search:
» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query: O(nlogk) or O(n + k)

33

Nearest neighbor search

e Brute force search:

» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query: O(nlogk) or O(n + k)

o With large databases linear complexity can be too costly.

33

Nearest neighbor search

e Brute force search:

» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query: O(nlogk) or O(n + k)

o With large databases linear complexity can be too costly.

e Can we do better?

33

Nearest neighbor search

Brute force search:

» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query: O(nlogk) or O(n + k)

With large databases linear complexity can be too costly.
Can we do better?

Data structures for exact search: not robust to curse of dimensionality

Nearest neighbor search

Brute force search:

» Given a query point ¢ scan through each of n data points in database
» Computational complexity for 1-NN query: O(n).
» Computational complexity for k-NN query: O(nlogk) or O(n + k)

With large databases linear complexity can be too costly.
Can we do better?
Data structures for exact search: not robust to curse of dimensionality

Approximate algorithms

2 Shingling of Documents

Outline

33

Motivation

o Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

33

Motivation

o Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

e We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

33

Motivation

o Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

e We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

e Storing large number of sets and computing their similarity in naive
way is not sufficient.

33

Motivation

Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

Storing large number of sets and computing their similarity in naive
way is not sufficient.

We compress sets in a way that enables to deduce the similarity of
the underlying sets from their compressed versions.

33

Jaccard similarity

e We focus on similarity of sets by looking at the relative size of their
intersection.

10/33

Jaccard similarity

e We focus on similarity of sets by looking at the relative size of their
intersection.

e The Jaccard similarity of sets S and T is defined as:

18N
CSUT|

SIM(S,T)

10/33

Jaccard similarity

e We focus on similarity of sets by looking at the relative size of their
intersection.

e The Jaccard similarity of sets S and T is defined as:

18N
CSUT|

SIM(S,T)

e Example: Let S = {a,b,c,d} and T = {c,d,e, f}, then

SIM(S,T) = 2/6.

10/33

k-shingles

e A document is a string of characters.

11/33

k-shingles

e A document is a string of characters.

e A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

11/33

k-shingles

e A document is a string of characters.

e A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

e Each document may be represented as a set of k-shingles that appear
one or more times within that document.

11/33

k-shingles

A document is a string of characters.

A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

Each document may be represented as a set of k-shingles that appear
one or more times within that document.

Example: The set of all 3-shingles for the first sentence on this slide:

{“A (1777 13 d077, LLdOC”’ “OCU”’ “Cum”’ “ume”’ “men777 e “ersﬂ

11/33

k-shingles

A document is a string of characters.

A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

Each document may be represented as a set of k-shingles that appear
one or more times within that document.

Example: The set of all 3-shingles for the first sentence on this slide:

{“A (1777 13 d077, LLdOC”’ “OCU”’ “Cum”’ “ume”’ “men777 e “ersﬂ

Several options regarding white spaces:

11/33

k-shingles

A document is a string of characters.

A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

Each document may be represented as a set of k-shingles that appear
one or more times within that document.

Example: The set of all 3-shingles for the first sentence on this slide:

{“A d??, 13 d077, LLdOC”’ “OCU”’ “Cum”’ “ume”’ “men777 e “ersﬂ

Several options regarding white spaces:

» Replace any sequence of one or more white spaces by a single blank.

11/33

k-shingles

A document is a string of characters.

A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

Each document may be represented as a set of k-shingles that appear
one or more times within that document.

Example: The set of all 3-shingles for the first sentence on this slide:

{“A d??, 13 d077, LLdOC”’ “OCU”’ “Cum”’ “ume”’ “men777 e “ersﬂ

Several options regarding white spaces:

» Replace any sequence of one or more white spaces by a single blank.
» Remove all white spaces.

11/33

Size of shingles

e For small k£ we would expect most sequences of k characters to
appear in most documents.

12/33

Size of shingles

e For small k£ we would expect most sequences of k characters to
appear in most documents.

e For k =1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

12/33

Size of shingles

e For small k£ we would expect most sequences of k characters to
appear in most documents.

e For k =1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

o [should be picked large enough that the probability of any given
shingle appearing in any given document is low.

12/33

Size of shingles

For small & we would expect most sequences of k£ characters to
appear in most documents.

For k£ = 1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

k should be picked large enough that the probability of any given
shingle appearing in any given document is low.

Example: Let us check two words document and monument:

SIM({d,o,c,u,m,e,n,t},{m,o,n,u,m,e,n,t}) = 6/8
SIM ({doc, ocu, cum,ume, men, ent},

{mon, onu, num,ume, men,ent}) = 3/9

12/33

Size of shingles

e Example:

13/33

Size of shingles

e Example:
» For corpus of emails setting & = 5 should be fine.

13/33

Size of shingles

e Example:

» For corpus of emails setting & = 5 should be fine.
» If only English letters and a general white-space character appear in
emails, then there would be 27° = 14348907 possible shingles.

13/33

Size of shingles

e Example:
» For corpus of emails setting & = 5 should be fine.
» If only English letters and a general white-space character appear in
emails, then there would be 27° = 14348907 possible shingles.
» Since typical email is much smaller than 14 million characters long, this
can be right value.

13/33

Size of shingles

e Example:

>

>

For corpus of emails setting & = 5 should be fine.

If only English letters and a general white-space character appear in
emails, then there would be 27° = 14348907 possible shingles.

Since typical email is much smaller than 14 million characters long, this
can be right value.

Since distribution of characters is not uniform, the above estimate
should be corrected, for example, by assuming that there are only 20
characters.

13/33

Hashing shingles

e Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

14 /33

Hashing shingles

e Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

e Then, the resulting bucket number can be treated as the shingle.

14 /33

Hashing shingles

e Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

e Then, the resulting bucket number can be treated as the shingle.

e The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

14 /33

Hashing shingles

Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.
Then, the resulting bucket number can be treated as the shingle.
The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

Example:

14 /33

Hashing shingles

Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

Then, the resulting bucket number can be treated as the shingle.
The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

Example:
» Each 9-shingle from a document can be mapped to a bucket number in
the range from 0 to 232 — 1.

14 /33

Hashing shingles

Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.
Then, the resulting bucket number can be treated as the shingle.
The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.
Example:

» Each 9-shingle from a document can be mapped to a bucket number in

the range from 0 to 232 — 1.

» Instead of nine we use then four bytes and can manipulate (hashed)
shingles by single-word machine operations.

14 /33

Hashing shingles

e Short shingles vs. hashed shingles

15/33

Hashing shingles

e Short shingles vs. hashed shingles

» If we use 4-shingles, most sequences of four bytes are unlikely or
impossible to find in typical documents.

15/33

Hashing shingles

e Short shingles vs. hashed shingles
» If we use 4-shingles, most sequences of four bytes are unlikely or
impossible to find in typical documents.
» The effective number of different shingles is approximately
20% = 160000 much less than 232.

15/33

Hashing shingles

e Short shingles vs. hashed shingles
» If we use 4-shingles, most sequences of four bytes are unlikely or
impossible to find in typical documents.
» The effective number of different shingles is approximately
20% = 160000 much less than 232.
» if we use 9-shingles, there are many more than 232 likely shingles.

15/33

Hashing shingles

e Short shingles vs. hashed shingles

>

If we use 4-shingles, most sequences of four bytes are unlikely or
impossible to find in typical documents.

The effective number of different shingles is approximately

20% = 160000 much less than 232.

» if we use 9-shingles, there are many more than 232 likely shingles.
» When we hash them down to four bytes, we can expect almost any

sequence of four bytes to be possible.

15/33

Outline

3 Similarity-Preserving Summaries of Sets

16 /33

Similarity-preserving summaries of sets

o Sets of shingles are large!

17/33

Similarity-preserving summaries of sets

o Sets of shingles are large!

e Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

17/33

Similarity-preserving summaries of sets

o Sets of shingles are large!

e Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

o If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

17/33

Similarity-preserving summaries of sets

Sets of shingles are large!

Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

We would like to replace large sets by much smaller representations
called signatures.

17/33

Similarity-preserving summaries of sets

Sets of shingles are large!

Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

We would like to replace large sets by much smaller representations
called signatures.

The signatures, however, should preserve (at least to some extent)
the similarity between sets.

17/33

Matrix representation of sets

e Characteristic matrix

18/33

Matrix representation of sets

o Characteristic matrix
» The columns of the matrix correspond to the sets.

18/33

Matrix representation of sets

e Characteristic matrix

» The columns of the matrix correspond to the sets.
» The rows correspond to elements of the universal set from which
elements of the sets are drawn.

18/33

Matrix representation of sets

e Characteristic matrix

» The columns of the matrix correspond to the sets.

» The rows correspond to elements of the universal set from which
elements of the sets are drawn.

» Thereis a 1 in row r and column c if the element for row r is a
member of the set for column c.

18/33

Matrix representation of sets

e Characteristic matrix

» The columns of the matrix correspond to the sets.

» The rows correspond to elements of the universal set from which
elements of the sets are drawn.

» Thereis a 1 in row r and column c if the element for row r is a
member of the set for column c.

» Otherwise the value in position (r,¢) is 0.

18/33

Matrix representation of sets

e Example:

» Let the universal set be {a,b,c,d,e}.
» Let Sy ={a,d}, So ={c}, S5 ={b,d,e}, Sy ={a,c,d}.

Element | S1 Sy S3 Sy
a 1 0 0 1
b 0O 0 1 o0
C 0 1 0 1
d 1 0 1 1
e 0O 0 1 o0

e It is important to remember that the characteristic matrix is unlikely
to be the way the data is stored, but it is useful as a way to visualize
the data!

19/33

Minhashing

e The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

20/33

Minhashing

e The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

e To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

20/33

Minhashing

e The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

e To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

e The minhash value of any column is the number of the first row, in
the permuted order, in which the column has a 1 (or, the first
element of the set in the given permutation).

20/33

Minhashing

The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

The minhash value of any column is the number of the first row, in
the permuted order, in which the column has a 1 (or, the first
element of the set in the given permutation).

The index of the first row is 0 in the following.

20/33

Minhashing

e Example:
» Let us pick the order of rows beadc for the matrix from the previous
example.
Element | S Sy S3 Sy
b o 0 1 0
e o o0 1 0
a 1 0 0 1
d 1 0 1 1
C o 1 0 1

» In this matrix, we can read off the values of minhash (mh) by scanning
from the top until we come to a 1.

» Thus, we see that mh(Sy) =2 (a), mh(S2) =4 (¢), mh(S3) =0 (b),
and mh(Ss) =2 (a).

21/33

Minhashing and Jaccard similarity

e There is a remarkable connection between minhashing and Jaccard
similarity of the sets that are minhashed:

22 /33

Minhashing and Jaccard similarity

e There is a remarkable connection between minhashing and Jaccard
similarity of the sets that are minhashed:
» The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard similarity
of those sets.

Minhashing and Jaccard similarity

e Let us consider two sets, i.e., two columns of the characteristic matrix.

Element | S1 S4
b 0 O
e 0 O
a 1 1
d 1 1
C 0 1

23/33

Minhashing and Jaccard similarity

e Let us consider two sets, i.e., two columns of the characteristic matrix.

Element | S1 S4
b 0 O
e 0 O
a 1 1
d 1 1
C 0 1

e The rows can be divided into three classes:

23 /33

Minhashing and Jaccard similarity

e Let us consider two sets, i.e., two columns of the characteristic matrix.

Element | S1 S4
b 0 O
e 0 O
a 1 1
d 1 1
C 0 1

e The rows can be divided into three classes:
» Type X rows have 1 in both columns,

23 /33

Minhashing and Jaccard similarity

e Let us consider two sets, i.e., two columns of the characteristic matrix.

Element | S1 S4
b 0 O
e 0 O
a 1 1
d 1 1
C 0 1

e The rows can be divided into three classes:

» Type X rows have 1 in both columns,
» Type Y rows have 1 in one of the columns and 0 in the other,

23 /33

Minhashing and Jaccard similarity

e Let us consider two sets, i.e., two columns of the characteristic matrix.

Element | S1 S4
b 0 O
e 0 O
a 1 1
d 1 1
C 0 1

e The rows can be divided into three classes:

» Type X rows have 1 in both columns,
» Type Y rows have 1 in one of the columns and 0 in the other,
» Type Z rows have 0 in both columns.

23 /33

Minhashing and Jaccard similarity

e Since the matrix is sparse, most rows are of type Z.

24 /33

Minhashing and Jaccard similarity

e Since the matrix is sparse, most rows are of type Z.

e The ratio of the numbers of type X and type Y rows determine both
SIM(S,T) and the probability that mh(S) = mh(T).

24 /33

Minhashing and Jaccard similarity

e Since the matrix is sparse, most rows are of type Z.

e The ratio of the numbers of type X and type Y rows determine both
SIM(S,T) and the probability that mh(S) = mh(T).

e Let there be x rows of type X and y rows of type Y.

24 /33

Minhashing and Jaccard similarity

Since the matrix is sparse, most rows are of type Z.

The ratio of the numbers of type X and type Y rows determine both
SIM(S,T) and the probability that mh(S) = mh(T).

Let there be x rows of type X and y rows of type Y.

Then, the Jaccard similarity is:

24 /33

Minhashing and Jaccard similarity

Since the matrix is sparse, most rows are of type Z.

The ratio of the numbers of type X and type Y rows determine both
SIM(S,T) and the probability that mh(S) = mh(T).

Let there be x rows of type X and y rows of type Y.

Then, the Jaccard similarity is:

T

SIM(8,T) = .

24 /33

Minhashing and Jaccard similarity

Since the matrix is sparse, most rows are of type Z.
The ratio of the numbers of type X and type Y rows determine both
SIM(S,T) and the probability that mh(S) = mh(T).
Let there be x rows of type X and y rows of type Y.
Then, the Jaccard similarity is:
x
r+y

SIM(S,T) =

If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is

24 /33

Minhashing and Jaccard similarity

Since the matrix is sparse, most rows are of type Z.
The ratio of the numbers of type X and type Y rows determine both
SIM(S,T) and the probability that mh(S) = mh(T).
Let there be x rows of type X and y rows of type Y.
Then, the Jaccard similarity is:
x
r+y

SIM(S,T) =

If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

x
T4y

P(mh(S) = mh(T)) =

24 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:

25 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:

» Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

25 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:
» Pick at random some number n of permutations of the rows of M (let

say, around 100 or 1000).
» Call the minhash functions determined by these permutations mhy,

mha, ..., mh,.

25 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:

» Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

» Call the minhash functions determined by these permutations mhy,
mha, ..., mh,.

» From the column representing set S, construct the minhash signature
for S, the vector (mhy(S), mha(S),...,mh,(S)) — represented as a
column.

25 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:

» Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

» Call the minhash functions determined by these permutations mhy,
mha, ..., mh,.

» From the column representing set S, construct the minhash signature
for S, the vector (mhy(S), mha(S),...,mh,(S)) — represented as a
column.

» Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

25 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:

» Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

» Call the minhash functions determined by these permutations mhy,
mha, ..., mh,.

» From the column representing set S, construct the minhash signature
for S, the vector (mhy(S), mha(S),...,mh,(S)) — represented as a
column.

» Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

e The signature matrix has the same number of columns as M, but
only n rows!

25 /33

Minhash signatures

o For a given collection of sets represented by their characteristic matrix
M, the signatures are produced in the following way:

» Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

» Call the minhash functions determined by these permutations mhy,
mha, ..., mh,.

» From the column representing set S, construct the minhash signature
for S, the vector (mhy(S), mha(S),...,mh,(S)) — represented as a
column.

» Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

e The signature matrix has the same number of columns as M, but
only n rows!

e Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M.

25 /33

Computing minhash signatures

e Unfortunately, it is not feasible to permute a large characteristic
matrix explicitly.

26 /33

Computing minhash signatures

e Unfortunately, it is not feasible to permute a large characteristic
matrix explicitly.

e Even picking a random permutation of millions or billions of rows is
time-consuming.

26 /33

Computing minhash signatures

e Unfortunately, it is not feasible to permute a large characteristic
matrix explicitly.

e Even picking a random permutation of millions or billions of rows is
time-consuming.

o Fortunately, it is possible to simulate the effect of a random
permutation by a random hash function that maps row numbers to
as many buckets as there are rows.

26 /33

Computing minhash signatures

e A hash function that maps integers 0,1,...,%k — 1 to bucket numbers
0 through k£ — 1 typically will map some pairs of integers to the same
bucket and leave other buckets unfilled.

27 /33

Computing minhash signatures

e A hash function that maps integers 0,1,...,%k — 1 to bucket numbers
0 through k£ — 1 typically will map some pairs of integers to the same
bucket and leave other buckets unfilled.

e This difference is unimportant as long as k is large and there are not
too many collisions.

27 /33

Computing minhash signatures

e A hash function that maps integers 0,1,...,%k — 1 to bucket numbers
0 through k£ — 1 typically will map some pairs of integers to the same
bucket and leave other buckets unfilled.

e This difference is unimportant as long as k is large and there are not
too many collisions.

e We can maintain the fiction that our hash function i permutes row
r to position h(r) in the permuted order.

27 /33

Computing minhash signatures

o Instead of picking n random permutations of rows, we pick n
randomly chosen hash functions hq, ho, ..., h, on the rows.

28 /33

Computing minhash signatures

o Instead of picking n random permutations of rows, we pick n
randomly chosen hash functions hq, ho, ..., h, on the rows.

e We construct the signature matrix by considering each row in their
given order.

28 /33

Computing minhash signatures

o Instead of picking n random permutations of rows, we pick n
randomly chosen hash functions hq, ho, ..., h, on the rows.

e We construct the signature matrix by considering each row in their
given order.

e Let SIG(i,c) be the element of the signature matrix for the i-th hash
function and column ¢ defined by

SIG(i,¢) = min{h;(r) : for such r that ¢ has 1 in row r}

28 /33

Computing minhash signatures

e Example:
» Let us consider two hash functions h; and ha:

hi(r)=r+1mod5 ho(r)=3r+1mod5

Row Sl S2 Sg 54 hl (T’) h2 (T’)
0 1 0 0 1
1 0 0 1 0
2 0 1 0 1
3 1 0 1 1
4 0 0 1 0

29 /33

Computing minhash signatures

e Example:
» Let us consider two hash functions h; and ha:

hi(r)=r+1mod5 ho(r)=3r+1mod5

Row Sl S2 Sg 54 hl (T’) h2 (T’)
0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

29 /33

Computing minhash signatures

e Example:
» The signature matrix is:
\ S1 Se S3 Sy
SIG(1,¢)
SIG(2,c¢)

30/33

Computing minhash signatures

e Example:
» The signature matrix is:
ENE
SIG1,¢) | 1 3 0 1
SIG(2,¢) | 0 2 0 O
e We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

30/33

Computing minhash signatures

e Example:
» The signature matrix is:
ENE
SIG1,¢) | 1 3 0 1
SIG(2,¢) | 0 2 0 O
e We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

SIM(Sy,S,) =0 SIM(Sy,Ss)=1/2 SIM(Sy,Ss) =1

30/33

Computing minhash signatures

e Example:
» The signature matrix is:
ENE
SIG1,¢) | 1 3 0 1
SIG(2,¢) | 0 2 0 O
e We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

SIM(S1,S2) =0 SIM(S1,S3)=1/2 SIM(S1,5:) =1
while the true similarities are:

SIM(Sy,S5) =0 SIM(Sy,Ss)=1/4 SIM(Si,Ss) =2/3

30/33

Outline

4 Summary

31/33

o Similarity of documents.
e Jaccard similarity.

e Minhash technique.

Summary

32/33

Bibliography

® J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.
Cambridge University Press, 2014

33/33

	Motivation
	Shingling of Documents
	Similarity-Preserving Summaries of Sets
	Summary

