
Finding similar items I

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, seventh semester
Academic year 2018/19 (winter semester)

1 / 33

Review of the previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• ETL and OLAP systems.

• Processing of massive datasets.

• Spark: MapReduce in practice.

• Approximate query processing.

2 / 33

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

3 / 33

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

4 / 33

Nearest neighbor search

• Find similar elements to the query element.

5 / 33

Applications of nearest neighbor search

• Similarity of documents
I Plagiarism
I Mirror pages
I Articles from the same source

• Machine learning
I k-nearest neighbors
I Collaborative filtering

• Computational geometry

• Computer vision

• Geographic Information Systems (GIS)

6 / 33

Nearest neighbor search

• Brute force search:

I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database

I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query:

O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).

I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query:

O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or

O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Nearest neighbor search

• Brute force search:
I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k) or O(n+ k)

• With large databases linear complexity can be too costly.

• Can we do better?

• Data structures for exact search: not robust to curse of dimensionality

• Approximate algorithms

7 / 33

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

8 / 33

Motivation

• Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

• We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

• Storing large number of sets and computing their similarity in naive
way is not sufficient.

• We compress sets in a way that enables to deduce the similarity of
the underlying sets from their compressed versions.

9 / 33

Motivation

• Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

• We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

• Storing large number of sets and computing their similarity in naive
way is not sufficient.

• We compress sets in a way that enables to deduce the similarity of
the underlying sets from their compressed versions.

9 / 33

Motivation

• Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

• We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

• Storing large number of sets and computing their similarity in naive
way is not sufficient.

• We compress sets in a way that enables to deduce the similarity of
the underlying sets from their compressed versions.

9 / 33

Motivation

• Consider an application of finding near-duplicates of Web pages, like
plagiarisms or mirrors.

• We can represents pages as sets of character k-grams (or k-shingles)
and formulate a problem as finding sets with a relatively large
intersection.

• Storing large number of sets and computing their similarity in naive
way is not sufficient.

• We compress sets in a way that enables to deduce the similarity of
the underlying sets from their compressed versions.

9 / 33

Jaccard similarity

• We focus on similarity of sets by looking at the relative size of their
intersection.

• The Jaccard similarity of sets S and T is defined as:

SIM(S, T) =
|S ∩ T |
|S ∪ T |

• Example: Let S = {a, b, c, d} and T = {c, d, e, f}, then

SIM(S, T) = 2/6.

10 / 33

Jaccard similarity

• We focus on similarity of sets by looking at the relative size of their
intersection.

• The Jaccard similarity of sets S and T is defined as:

SIM(S, T) =
|S ∩ T |
|S ∪ T |

• Example: Let S = {a, b, c, d} and T = {c, d, e, f}, then

SIM(S, T) = 2/6.

10 / 33

Jaccard similarity

• We focus on similarity of sets by looking at the relative size of their
intersection.

• The Jaccard similarity of sets S and T is defined as:

SIM(S, T) =
|S ∩ T |
|S ∪ T |

• Example: Let S = {a, b, c, d} and T = {c, d, e, f}, then

SIM(S, T) = 2/6.

10 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:

I Replace any sequence of one or more white spaces by a single blank.
I Remove all white spaces.

11 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:

I Replace any sequence of one or more white spaces by a single blank.
I Remove all white spaces.

11 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:

I Replace any sequence of one or more white spaces by a single blank.
I Remove all white spaces.

11 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:

I Replace any sequence of one or more white spaces by a single blank.
I Remove all white spaces.

11 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:

I Replace any sequence of one or more white spaces by a single blank.
I Remove all white spaces.

11 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:
I Replace any sequence of one or more white spaces by a single blank.

I Remove all white spaces.

11 / 33

k-shingles

• A document is a string of characters.

• A k-shingle (or k-gram) for a document is any substring of length k
found within the document.

• Each document may be represented as a set of k-shingles that appear
one or more times within that document.

• Example: The set of all 3-shingles for the first sentence on this slide:

{“A d”, “ do”, “doc”, “ocu”, “cum”, “ume”, “men”, . . . , “ers”}

• Several options regarding white spaces:
I Replace any sequence of one or more white spaces by a single blank.
I Remove all white spaces.

11 / 33

Size of shingles

• For small k we would expect most sequences of k characters to
appear in most documents.

• For k = 1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

• k should be picked large enough that the probability of any given
shingle appearing in any given document is low.

• Example: Let us check two words document and monument:

SIM({d, o, c, u,m, e, n, t}, {m, o, n, u,m, e, n, t}) = 6/8

SIM({doc, ocu, cum, ume,men, ent},
{mon, onu, num, ume,men, ent}) = 3/9

12 / 33

Size of shingles

• For small k we would expect most sequences of k characters to
appear in most documents.

• For k = 1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

• k should be picked large enough that the probability of any given
shingle appearing in any given document is low.

• Example: Let us check two words document and monument:

SIM({d, o, c, u,m, e, n, t}, {m, o, n, u,m, e, n, t}) = 6/8

SIM({doc, ocu, cum, ume,men, ent},
{mon, onu, num, ume,men, ent}) = 3/9

12 / 33

Size of shingles

• For small k we would expect most sequences of k characters to
appear in most documents.

• For k = 1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

• k should be picked large enough that the probability of any given
shingle appearing in any given document is low.

• Example: Let us check two words document and monument:

SIM({d, o, c, u,m, e, n, t}, {m, o, n, u,m, e, n, t}) = 6/8

SIM({doc, ocu, cum, ume,men, ent},
{mon, onu, num, ume,men, ent}) = 3/9

12 / 33

Size of shingles

• For small k we would expect most sequences of k characters to
appear in most documents.

• For k = 1 most documents will have most of the common characters
and few other characters, so almost all documents will have high
similarity.

• k should be picked large enough that the probability of any given
shingle appearing in any given document is low.

• Example: Let us check two words document and monument:

SIM({d, o, c, u,m, e, n, t}, {m, o, n, u,m, e, n, t}) = 6/8

SIM({doc, ocu, cum, ume,men, ent},
{mon, onu, num, ume,men, ent}) = 3/9

12 / 33

Size of shingles

• Example:

I For corpus of emails setting k = 5 should be fine.
I If only English letters and a general white-space character appear in

emails, then there would be 275 = 14348907 possible shingles.
I Since typical email is much smaller than 14 million characters long, this

can be right value.
I Since distribution of characters is not uniform, the above estimate

should be corrected, for example, by assuming that there are only 20
characters.

13 / 33

Size of shingles

• Example:
I For corpus of emails setting k = 5 should be fine.

I If only English letters and a general white-space character appear in
emails, then there would be 275 = 14348907 possible shingles.

I Since typical email is much smaller than 14 million characters long, this
can be right value.

I Since distribution of characters is not uniform, the above estimate
should be corrected, for example, by assuming that there are only 20
characters.

13 / 33

Size of shingles

• Example:
I For corpus of emails setting k = 5 should be fine.
I If only English letters and a general white-space character appear in

emails, then there would be 275 = 14348907 possible shingles.

I Since typical email is much smaller than 14 million characters long, this
can be right value.

I Since distribution of characters is not uniform, the above estimate
should be corrected, for example, by assuming that there are only 20
characters.

13 / 33

Size of shingles

• Example:
I For corpus of emails setting k = 5 should be fine.
I If only English letters and a general white-space character appear in

emails, then there would be 275 = 14348907 possible shingles.
I Since typical email is much smaller than 14 million characters long, this

can be right value.

I Since distribution of characters is not uniform, the above estimate
should be corrected, for example, by assuming that there are only 20
characters.

13 / 33

Size of shingles

• Example:
I For corpus of emails setting k = 5 should be fine.
I If only English letters and a general white-space character appear in

emails, then there would be 275 = 14348907 possible shingles.
I Since typical email is much smaller than 14 million characters long, this

can be right value.
I Since distribution of characters is not uniform, the above estimate

should be corrected, for example, by assuming that there are only 20
characters.

13 / 33

Hashing shingles

• Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

• Then, the resulting bucket number can be treated as the shingle.

• The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

• Example:

I Each 9-shingle from a document can be mapped to a bucket number in
the range from 0 to 232 − 1.

I Instead of nine we use then four bytes and can manipulate (hashed)
shingles by single-word machine operations.

14 / 33

Hashing shingles

• Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

• Then, the resulting bucket number can be treated as the shingle.

• The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

• Example:

I Each 9-shingle from a document can be mapped to a bucket number in
the range from 0 to 232 − 1.

I Instead of nine we use then four bytes and can manipulate (hashed)
shingles by single-word machine operations.

14 / 33

Hashing shingles

• Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

• Then, the resulting bucket number can be treated as the shingle.

• The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

• Example:

I Each 9-shingle from a document can be mapped to a bucket number in
the range from 0 to 232 − 1.

I Instead of nine we use then four bytes and can manipulate (hashed)
shingles by single-word machine operations.

14 / 33

Hashing shingles

• Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

• Then, the resulting bucket number can be treated as the shingle.

• The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

• Example:

I Each 9-shingle from a document can be mapped to a bucket number in
the range from 0 to 232 − 1.

I Instead of nine we use then four bytes and can manipulate (hashed)
shingles by single-word machine operations.

14 / 33

Hashing shingles

• Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

• Then, the resulting bucket number can be treated as the shingle.

• The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

• Example:
I Each 9-shingle from a document can be mapped to a bucket number in

the range from 0 to 232 − 1.

I Instead of nine we use then four bytes and can manipulate (hashed)
shingles by single-word machine operations.

14 / 33

Hashing shingles

• Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets.

• Then, the resulting bucket number can be treated as the shingle.

• The set representing a document is then the set of integers that are
bucket numbers of one or more k-shingles that appear in the
document.

• Example:
I Each 9-shingle from a document can be mapped to a bucket number in

the range from 0 to 232 − 1.
I Instead of nine we use then four bytes and can manipulate (hashed)

shingles by single-word machine operations.

14 / 33

Hashing shingles

• Short shingles vs. hashed shingles

I If we use 4-shingles, most sequences of four bytes are unlikely or
impossible to find in typical documents.

I The effective number of different shingles is approximately
204 = 160000 much less than 232.

I if we use 9-shingles, there are many more than 232 likely shingles.
I When we hash them down to four bytes, we can expect almost any

sequence of four bytes to be possible.

15 / 33

Hashing shingles

• Short shingles vs. hashed shingles
I If we use 4-shingles, most sequences of four bytes are unlikely or

impossible to find in typical documents.

I The effective number of different shingles is approximately
204 = 160000 much less than 232.

I if we use 9-shingles, there are many more than 232 likely shingles.
I When we hash them down to four bytes, we can expect almost any

sequence of four bytes to be possible.

15 / 33

Hashing shingles

• Short shingles vs. hashed shingles
I If we use 4-shingles, most sequences of four bytes are unlikely or

impossible to find in typical documents.
I The effective number of different shingles is approximately

204 = 160000 much less than 232.

I if we use 9-shingles, there are many more than 232 likely shingles.
I When we hash them down to four bytes, we can expect almost any

sequence of four bytes to be possible.

15 / 33

Hashing shingles

• Short shingles vs. hashed shingles
I If we use 4-shingles, most sequences of four bytes are unlikely or

impossible to find in typical documents.
I The effective number of different shingles is approximately

204 = 160000 much less than 232.
I if we use 9-shingles, there are many more than 232 likely shingles.

I When we hash them down to four bytes, we can expect almost any
sequence of four bytes to be possible.

15 / 33

Hashing shingles

• Short shingles vs. hashed shingles
I If we use 4-shingles, most sequences of four bytes are unlikely or

impossible to find in typical documents.
I The effective number of different shingles is approximately

204 = 160000 much less than 232.
I if we use 9-shingles, there are many more than 232 likely shingles.
I When we hash them down to four bytes, we can expect almost any

sequence of four bytes to be possible.

15 / 33

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

16 / 33

Similarity-preserving summaries of sets

• Sets of shingles are large!

• Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

• If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

• We would like to replace large sets by much smaller representations
called signatures.

• The signatures, however, should preserve (at least to some extent)
the similarity between sets.

17 / 33

Similarity-preserving summaries of sets

• Sets of shingles are large!

• Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

• If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

• We would like to replace large sets by much smaller representations
called signatures.

• The signatures, however, should preserve (at least to some extent)
the similarity between sets.

17 / 33

Similarity-preserving summaries of sets

• Sets of shingles are large!

• Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

• If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

• We would like to replace large sets by much smaller representations
called signatures.

• The signatures, however, should preserve (at least to some extent)
the similarity between sets.

17 / 33

Similarity-preserving summaries of sets

• Sets of shingles are large!

• Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

• If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

• We would like to replace large sets by much smaller representations
called signatures.

• The signatures, however, should preserve (at least to some extent)
the similarity between sets.

17 / 33

Similarity-preserving summaries of sets

• Sets of shingles are large!

• Even if we hash them to four bytes each, the space needed to store a
set is still roughly four times the space taken by the document.

• If we have millions of documents, it may well not be possible to store
all the shingle-sets in main memory.

• We would like to replace large sets by much smaller representations
called signatures.

• The signatures, however, should preserve (at least to some extent)
the similarity between sets.

17 / 33

Matrix representation of sets

• Characteristic matrix

I The columns of the matrix correspond to the sets.
I The rows correspond to elements of the universal set from which

elements of the sets are drawn.
I There is a 1 in row r and column c if the element for row r is a

member of the set for column c.
I Otherwise the value in position (r, c) is 0.

18 / 33

Matrix representation of sets

• Characteristic matrix
I The columns of the matrix correspond to the sets.

I The rows correspond to elements of the universal set from which
elements of the sets are drawn.

I There is a 1 in row r and column c if the element for row r is a
member of the set for column c.

I Otherwise the value in position (r, c) is 0.

18 / 33

Matrix representation of sets

• Characteristic matrix
I The columns of the matrix correspond to the sets.
I The rows correspond to elements of the universal set from which

elements of the sets are drawn.

I There is a 1 in row r and column c if the element for row r is a
member of the set for column c.

I Otherwise the value in position (r, c) is 0.

18 / 33

Matrix representation of sets

• Characteristic matrix
I The columns of the matrix correspond to the sets.
I The rows correspond to elements of the universal set from which

elements of the sets are drawn.
I There is a 1 in row r and column c if the element for row r is a

member of the set for column c.

I Otherwise the value in position (r, c) is 0.

18 / 33

Matrix representation of sets

• Characteristic matrix
I The columns of the matrix correspond to the sets.
I The rows correspond to elements of the universal set from which

elements of the sets are drawn.
I There is a 1 in row r and column c if the element for row r is a

member of the set for column c.
I Otherwise the value in position (r, c) is 0.

18 / 33

Matrix representation of sets

• Example:
I Let the universal set be {a, b, c, d, e}.
I Let S1 = {a, d}, S2 = {c}, S3 = {b, d, e}, S4 = {a, c, d}.

Element S1 S2 S3 S4

a 1 0 0 1
b 0 0 1 0
c 0 1 0 1
d 1 0 1 1
e 0 0 1 0

• It is important to remember that the characteristic matrix is unlikely
to be the way the data is stored, but it is useful as a way to visualize
the data!

19 / 33

Minhashing

• The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

• To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

• The minhash value of any column is the number of the first row, in
the permuted order, in which the column has a 1 (or, the first
element of the set in the given permutation).

• The index of the first row is 0 in the following.

20 / 33

Minhashing

• The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

• To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

• The minhash value of any column is the number of the first row, in
the permuted order, in which the column has a 1 (or, the first
element of the set in the given permutation).

• The index of the first row is 0 in the following.

20 / 33

Minhashing

• The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

• To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

• The minhash value of any column is the number of the first row, in
the permuted order, in which the column has a 1 (or, the first
element of the set in the given permutation).

• The index of the first row is 0 in the following.

20 / 33

Minhashing

• The signatures we desire to construct for sets are composed of the
results of some number of calculations (say several hundred) each of
which is a minhash of the characteristic matrix.

• To minhash a set represented by a column of the characteristic
matrix, pick a permutation of the rows.

• The minhash value of any column is the number of the first row, in
the permuted order, in which the column has a 1 (or, the first
element of the set in the given permutation).

• The index of the first row is 0 in the following.

20 / 33

Minhashing

• Example:
I Let us pick the order of rows beadc for the matrix from the previous

example.

Element S1 S2 S3 S4

b 0 0 1 0
e 0 0 1 0
a 1 0 0 1
d 1 0 1 1
c 0 1 0 1

I In this matrix, we can read off the values of minhash (mh) by scanning
from the top until we come to a 1.

I Thus, we see that mh(S1) = 2 (a), mh(S2) = 4 (c), mh(S3) = 0 (b),
and mh(S4) = 2 (a).

21 / 33

Minhashing and Jaccard similarity

• There is a remarkable connection between minhashing and Jaccard
similarity of the sets that are minhashed:

I The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard similarity
of those sets.

22 / 33

Minhashing and Jaccard similarity

• There is a remarkable connection between minhashing and Jaccard
similarity of the sets that are minhashed:

I The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard similarity
of those sets.

22 / 33

Minhashing and Jaccard similarity

• Let us consider two sets, i.e., two columns of the characteristic matrix.

Element S1 S4

b 0 0
e 0 0
a 1 1
d 1 1
c 0 1

• The rows can be divided into three classes:

I Type X rows have 1 in both columns,
I Type Y rows have 1 in one of the columns and 0 in the other,
I Type Z rows have 0 in both columns.

23 / 33

Minhashing and Jaccard similarity

• Let us consider two sets, i.e., two columns of the characteristic matrix.

Element S1 S4

b 0 0
e 0 0
a 1 1
d 1 1
c 0 1

• The rows can be divided into three classes:

I Type X rows have 1 in both columns,
I Type Y rows have 1 in one of the columns and 0 in the other,
I Type Z rows have 0 in both columns.

23 / 33

Minhashing and Jaccard similarity

• Let us consider two sets, i.e., two columns of the characteristic matrix.

Element S1 S4

b 0 0
e 0 0
a 1 1
d 1 1
c 0 1

• The rows can be divided into three classes:
I Type X rows have 1 in both columns,

I Type Y rows have 1 in one of the columns and 0 in the other,
I Type Z rows have 0 in both columns.

23 / 33

Minhashing and Jaccard similarity

• Let us consider two sets, i.e., two columns of the characteristic matrix.

Element S1 S4

b 0 0
e 0 0
a 1 1
d 1 1
c 0 1

• The rows can be divided into three classes:
I Type X rows have 1 in both columns,
I Type Y rows have 1 in one of the columns and 0 in the other,

I Type Z rows have 0 in both columns.

23 / 33

Minhashing and Jaccard similarity

• Let us consider two sets, i.e., two columns of the characteristic matrix.

Element S1 S4

b 0 0
e 0 0
a 1 1
d 1 1
c 0 1

• The rows can be divided into three classes:
I Type X rows have 1 in both columns,
I Type Y rows have 1 in one of the columns and 0 in the other,
I Type Z rows have 0 in both columns.

23 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is

, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhashing and Jaccard similarity

• Since the matrix is sparse, most rows are of type Z.

• The ratio of the numbers of type X and type Y rows determine both
SIM(S, T) and the probability that mh(S) = mh(T).

• Let there be x rows of type X and y rows of type Y .

• Then, the Jaccard similarity is:

SIM(S, T) =
x

x+ y
.

• If we imagine the rows permuted randomly, and we proceed from the
top, the probability that we shall meet a type X row before we meet
a type Y row is, as before,

P (mh(S) = mh(T)) =
x

x+ y
.

24 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Minhash signatures

• For a given collection of sets represented by their characteristic matrix
M , the signatures are produced in the following way:

I Pick at random some number n of permutations of the rows of M (let
say, around 100 or 1000).

I Call the minhash functions determined by these permutations mh1,
mh2, . . . , mhn.

I From the column representing set S, construct the minhash signature
for S, the vector (mh1(S),mh2(S), . . . ,mhn(S)) – represented as a
column.

I Thus, we can form from matrix M a signature matrix, in which the
i-th column of M is replaced by the minhash signature for (the set of)
the i-th column.

• The signature matrix has the same number of columns as M , but
only n rows!

• Even if M is not represented explicitly (but as a sparse matrix by the
location of its ones), it is normal for the signature matrix to be much
smaller than M .

25 / 33

Computing minhash signatures

• Unfortunately, it is not feasible to permute a large characteristic
matrix explicitly.

• Even picking a random permutation of millions or billions of rows is
time-consuming.

• Fortunately, it is possible to simulate the effect of a random
permutation by a random hash function that maps row numbers to
as many buckets as there are rows.

26 / 33

Computing minhash signatures

• Unfortunately, it is not feasible to permute a large characteristic
matrix explicitly.

• Even picking a random permutation of millions or billions of rows is
time-consuming.

• Fortunately, it is possible to simulate the effect of a random
permutation by a random hash function that maps row numbers to
as many buckets as there are rows.

26 / 33

Computing minhash signatures

• Unfortunately, it is not feasible to permute a large characteristic
matrix explicitly.

• Even picking a random permutation of millions or billions of rows is
time-consuming.

• Fortunately, it is possible to simulate the effect of a random
permutation by a random hash function that maps row numbers to
as many buckets as there are rows.

26 / 33

Computing minhash signatures

• A hash function that maps integers 0, 1, . . . , k − 1 to bucket numbers
0 through k − 1 typically will map some pairs of integers to the same
bucket and leave other buckets unfilled.

• This difference is unimportant as long as k is large and there are not
too many collisions.

• We can maintain the fiction that our hash function h permutes row
r to position h(r) in the permuted order.

27 / 33

Computing minhash signatures

• A hash function that maps integers 0, 1, . . . , k − 1 to bucket numbers
0 through k − 1 typically will map some pairs of integers to the same
bucket and leave other buckets unfilled.

• This difference is unimportant as long as k is large and there are not
too many collisions.

• We can maintain the fiction that our hash function h permutes row
r to position h(r) in the permuted order.

27 / 33

Computing minhash signatures

• A hash function that maps integers 0, 1, . . . , k − 1 to bucket numbers
0 through k − 1 typically will map some pairs of integers to the same
bucket and leave other buckets unfilled.

• This difference is unimportant as long as k is large and there are not
too many collisions.

• We can maintain the fiction that our hash function h permutes row
r to position h(r) in the permuted order.

27 / 33

Computing minhash signatures

• Instead of picking n random permutations of rows, we pick n
randomly chosen hash functions h1, h2, . . . , hn on the rows.

• We construct the signature matrix by considering each row in their
given order.

• Let SIG(i, c) be the element of the signature matrix for the i-th hash
function and column c defined by

SIG(i, c) = min{hi(r) : for such r that c has 1 in row r}

28 / 33

Computing minhash signatures

• Instead of picking n random permutations of rows, we pick n
randomly chosen hash functions h1, h2, . . . , hn on the rows.

• We construct the signature matrix by considering each row in their
given order.

• Let SIG(i, c) be the element of the signature matrix for the i-th hash
function and column c defined by

SIG(i, c) = min{hi(r) : for such r that c has 1 in row r}

28 / 33

Computing minhash signatures

• Instead of picking n random permutations of rows, we pick n
randomly chosen hash functions h1, h2, . . . , hn on the rows.

• We construct the signature matrix by considering each row in their
given order.

• Let SIG(i, c) be the element of the signature matrix for the i-th hash
function and column c defined by

SIG(i, c) = min{hi(r) : for such r that c has 1 in row r}

28 / 33

Computing minhash signatures

• Example:
I Let us consider two hash functions h1 and h2:

h1(r) = r + 1 mod 5 h2(r) = 3r + 1 mod 5

Row S1 S2 S3 S4 h1(r) h2(r)
0 1 0 0 1
1 0 0 1 0
2 0 1 0 1
3 1 0 1 1
4 0 0 1 0

29 / 33

Computing minhash signatures

• Example:
I Let us consider two hash functions h1 and h2:

h1(r) = r + 1 mod 5 h2(r) = 3r + 1 mod 5

Row S1 S2 S3 S4 h1(r) h2(r)
0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

29 / 33

Computing minhash signatures

• Example:
I The signature matrix is:

S1 S2 S3 S4

SIG(1, c)
SIG(2, c)

• We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/2 SIM(S1, S4) = 1

while the true similarities are:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/4 SIM(S1, S4) = 2/3

30 / 33

Computing minhash signatures

• Example:
I The signature matrix is:

S1 S2 S3 S4

SIG(1, c) 1 3 0 1
SIG(2, c) 0 2 0 0

• We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/2 SIM(S1, S4) = 1

while the true similarities are:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/4 SIM(S1, S4) = 2/3

30 / 33

Computing minhash signatures

• Example:
I The signature matrix is:

S1 S2 S3 S4

SIG(1, c) 1 3 0 1
SIG(2, c) 0 2 0 0

• We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/2 SIM(S1, S4) = 1

while the true similarities are:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/4 SIM(S1, S4) = 2/3

30 / 33

Computing minhash signatures

• Example:
I The signature matrix is:

S1 S2 S3 S4

SIG(1, c) 1 3 0 1
SIG(2, c) 0 2 0 0

• We can estimate the Jaccard similarities of the underlying sets from
this signature matrix:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/2 SIM(S1, S4) = 1

while the true similarities are:

SIM(S1, S2) = 0 SIM(S1, S3) = 1/4 SIM(S1, S4) = 2/3

30 / 33

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

31 / 33

Summary

• Similarity of documents.

• Jaccard similarity.

• Minhash technique.

32 / 33

Bibliography

• J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2014

33 / 33

	Motivation
	Shingling of Documents
	Similarity-Preserving Summaries of Sets
	Summary

