
ETL and OLAP Systems

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Intelligent Decision Support Systems
Master studies, second semester

Academic year 2017/18 (summer course)

1 / 50

Review of the Previous Lecture

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling:
I Three goals of the logical design of data warehouse: simplicity,

expressiveness and performance.
I The most popular conceptual schema: star schema.
I Designing data warehouses is not an easy task . . .

2 / 50

Outline

1 Motivation

2 ETL

3 OLAP Systems

4 Analytical Queries

5 Summary

3 / 50

Outline

1 Motivation

2 ETL

3 OLAP Systems

4 Analytical Queries

5 Summary

4 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:

I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:

I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:

I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:

I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.

I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:

I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.

I Data integration represents 80% of effort for a typical data warehouse
project!

• Optimization of data warehouse:

I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:

I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:

I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.

I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.

I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:

I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:
I SQL extensions,

I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:
I SQL extensions,
I Multidimensional expressions (MDX),

I Map-reduce-based languages.

5 / 50

Motivation

• OLAP queries are usually performed in a separate system, i.e., a data
warehouse.

• Transferring data to data warehouse:
I Data warehouses combine data from multiple sources.
I Data must be translated into a consistent format.
I Data integration represents 80% of effort for a typical data warehouse

project!

• Optimization of data warehouse:
I Data storage: relational or multi-dimensional.
I Additional data structures: sorting, indexing, summarizing, cubes.
I Refreshing of data structures.

• Querying multidimensional data:
I SQL extensions,
I Multidimensional expressions (MDX),
I Map-reduce-based languages.

5 / 50

Outline

1 Motivation

2 ETL

3 OLAP Systems

4 Analytical Queries

5 Summary

6 / 50

ETL

• ETL = Extraction, Transformation, and Load
I Extraction of data from source systems,
I Transformation and integration of data into a useful format for

analysis,
I Load of data into the warehouse and build of additional structures.

• Refreshment of data warehouse is closely related to ETL process.

• The ETL process is described by metadata stored in data warehouse.

• Architecture of data warehousing:

Data sources ⇒ Data staging area ⇒ Data warehouse

7 / 50

ETL

8 / 50

Tools for ETL

• Data extraction from heterogeneous data sources.

• Data transformation, integration, and cleansing.

• Data quality analysis and control.

• Data loading.

• High-speed data transfer.

• Data refreshment.

• Managing and analyzing metadata.

• Examples of ETL tools:
I MS SQL Server Integration Services(SSIS), IBM Infosphere DataStage,

SAS ETL Studio, Oracle Warehouse Builder, Oracle Data Integrator,
Business Objects Data Integrator, Pentaho Data Integration.

9 / 50

Tools for ETL

• MS SQL Server Integration Services(SSIS)

10 / 50

Tools for ETL

• MS SQL Server Integration Services(SSIS)

11 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),

I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),

I additional databases (direct marketing databases) and data services
(stock data),

I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),

I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,

I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:

I Data sources are often operational systems, providing the lowest level
of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:
I Data sources are often operational systems, providing the lowest level

of data.

I Data sources are designed for operational use, not for decision support,
and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:
I Data sources are often operational systems, providing the lowest level

of data.
I Data sources are designed for operational use, not for decision support,

and the data reflect this fact.

I Multiple data sources are often from different systems, run on a wide
range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:
I Data sources are often operational systems, providing the lowest level

of data.
I Data sources are designed for operational use, not for decision support,

and the data reflect this fact.
I Multiple data sources are often from different systems, run on a wide

range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Data warehouse needs extraction of data from different external data
sources:

I operational databases (relational, hierarchical, network, itp.),
I files of standard applications (Excel, COBOL applications),
I additional databases (direct marketing databases) and data services

(stock data),
I various log files,
I and other documents (.txt, .doc, XML, WWW).

• Access to data sources can be difficult:
I Data sources are often operational systems, providing the lowest level

of data.
I Data sources are designed for operational use, not for decision support,

and the data reflect this fact.
I Multiple data sources are often from different systems, run on a wide

range of hardware and much of the software is built in-house or highly
customized.

I Data sources can be designed using different logical structures.

12 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.

I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,
2 the order is sent to the customer,
3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.

I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,
2 the order is sent to the customer,
3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.
I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,
2 the order is sent to the customer,
3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.
I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,

2 the order is sent to the customer,
3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.
I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,
2 the order is sent to the customer,

3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.
I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,
2 the order is sent to the customer,
3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Data extraction

• Identification of concepts and objects does not have to be easy.

• Example: Extract information about sales from the source system.
I What is meant by the term sale? A sale has occurred when

1 the order has been received by a customer,
2 the order is sent to the customer,
3 the invoice has been raised against the order.

I It is a common problem that there is no table SALES in the operational
databases; some other tables can exist like ORDER with an attribute
ORDER STATUS.

13 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Conflicts and dirty data

• Different logical models of operational sources,

• Different data types (account number stored as String or Numeric),

• Different data domains (gender: M, F, male, female, 1, 0),

• Different date formats (dd-mm-yyyy or mm-dd-yyyy),

• Different field lengths (address stored by using 20 or 50 chars),

• Different naming conventions: homonyms and synonyms,

• Missing values and dirty data,

• Inconsistent information concerning the same object,

• Information concerning the same object, but indicated by different
keys,

• . . .

14 / 50

Deduplication and householding

• Deduplication ensures that one accurate record exists for each
business entity represented in a database,

• Householding is the technique of grouping individual customers by
the household or organization of which they are a member; this
technique has some interesting marketing implications, and can also
support cost-saving measures of direct advertising.

• Example:

I Consider the following rows in a database:

Tim Jones 123 Main Street Marlboro MA 12234
T. Jones 123 Main St. Marlborogh MA 12234
Timothy Jones 321 Maine Street Marlborog AM 12234
Jones, Timothy 123 Maine Ave Marlborough MA 13324

I The sales for around $500 are counted for each tuple.
I Is it the same person?

15 / 50

Deduplication and householding

• Deduplication ensures that one accurate record exists for each
business entity represented in a database,

• Householding is the technique of grouping individual customers by
the household or organization of which they are a member; this
technique has some interesting marketing implications, and can also
support cost-saving measures of direct advertising.

• Example:

I Consider the following rows in a database:

Tim Jones 123 Main Street Marlboro MA 12234
T. Jones 123 Main St. Marlborogh MA 12234
Timothy Jones 321 Maine Street Marlborog AM 12234
Jones, Timothy 123 Maine Ave Marlborough MA 13324

I The sales for around $500 are counted for each tuple.
I Is it the same person?

15 / 50

Deduplication and householding

• Deduplication ensures that one accurate record exists for each
business entity represented in a database,

• Householding is the technique of grouping individual customers by
the household or organization of which they are a member; this
technique has some interesting marketing implications, and can also
support cost-saving measures of direct advertising.

• Example:

I Consider the following rows in a database:

Tim Jones 123 Main Street Marlboro MA 12234
T. Jones 123 Main St. Marlborogh MA 12234
Timothy Jones 321 Maine Street Marlborog AM 12234
Jones, Timothy 123 Maine Ave Marlborough MA 13324

I The sales for around $500 are counted for each tuple.
I Is it the same person?

15 / 50

Deduplication and householding

• Deduplication ensures that one accurate record exists for each
business entity represented in a database,

• Householding is the technique of grouping individual customers by
the household or organization of which they are a member; this
technique has some interesting marketing implications, and can also
support cost-saving measures of direct advertising.

• Example:
I Consider the following rows in a database:

Tim Jones 123 Main Street Marlboro MA 12234
T. Jones 123 Main St. Marlborogh MA 12234
Timothy Jones 321 Maine Street Marlborog AM 12234
Jones, Timothy 123 Maine Ave Marlborough MA 13324

I The sales for around $500 are counted for each tuple.
I Is it the same person?

15 / 50

Deduplication and householding

• Deduplication ensures that one accurate record exists for each
business entity represented in a database,

• Householding is the technique of grouping individual customers by
the household or organization of which they are a member; this
technique has some interesting marketing implications, and can also
support cost-saving measures of direct advertising.

• Example:
I Consider the following rows in a database:

Tim Jones 123 Main Street Marlboro MA 12234
T. Jones 123 Main St. Marlborogh MA 12234
Timothy Jones 321 Maine Street Marlborog AM 12234
Jones, Timothy 123 Maine Ave Marlborough MA 13324

I The sales for around $500 are counted for each tuple.

I Is it the same person?

15 / 50

Deduplication and householding

• Deduplication ensures that one accurate record exists for each
business entity represented in a database,

• Householding is the technique of grouping individual customers by
the household or organization of which they are a member; this
technique has some interesting marketing implications, and can also
support cost-saving measures of direct advertising.

• Example:
I Consider the following rows in a database:

Tim Jones 123 Main Street Marlboro MA 12234
T. Jones 123 Main St. Marlborogh MA 12234
Timothy Jones 321 Maine Street Marlborog AM 12234
Jones, Timothy 123 Maine Ave Marlborough MA 13324

I The sales for around $500 are counted for each tuple.
I Is it the same person?

15 / 50

Load of data

• After extracting, cleaning and transforming, data must be loaded into
the warehouse.

• Loading the warehouse includes some other processing tasks: checking
integrity constraints, sorting, summarizing, creating indexes, etc.

• Batch (bulk) load utilities are used for loading.

• A load utility must allow the administrator to monitor status, to
cancel, suspend, and resume a load, and to restart after failure with
no loss of data integrity.

16 / 50

Load of data

• After extracting, cleaning and transforming, data must be loaded into
the warehouse.

• Loading the warehouse includes some other processing tasks: checking
integrity constraints, sorting, summarizing, creating indexes, etc.

• Batch (bulk) load utilities are used for loading.

• A load utility must allow the administrator to monitor status, to
cancel, suspend, and resume a load, and to restart after failure with
no loss of data integrity.

16 / 50

Load of data

• After extracting, cleaning and transforming, data must be loaded into
the warehouse.

• Loading the warehouse includes some other processing tasks: checking
integrity constraints, sorting, summarizing, creating indexes, etc.

• Batch (bulk) load utilities are used for loading.

• A load utility must allow the administrator to monitor status, to
cancel, suspend, and resume a load, and to restart after failure with
no loss of data integrity.

16 / 50

Load of data

• After extracting, cleaning and transforming, data must be loaded into
the warehouse.

• Loading the warehouse includes some other processing tasks: checking
integrity constraints, sorting, summarizing, creating indexes, etc.

• Batch (bulk) load utilities are used for loading.

• A load utility must allow the administrator to monitor status, to
cancel, suspend, and resume a load, and to restart after failure with
no loss of data integrity.

16 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:

I Periodical refreshment (daily or weekly).
I Immediate refreshment.
I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:

I Periodical refreshment (daily or weekly).
I Immediate refreshment.
I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:

I Periodical refreshment (daily or weekly).
I Immediate refreshment.
I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:

I Periodical refreshment (daily or weekly).
I Immediate refreshment.
I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:
I Periodical refreshment (daily or weekly).

I Immediate refreshment.
I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:
I Periodical refreshment (daily or weekly).
I Immediate refreshment.

I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to
the data stored in the warehouse.

• Follows the same structure as ETL process.

• Several constraints: accessibility of data sources, size of data, size of
data warehouse, frequency of data refreshing, degradation of
performance of operational systems.

• Types of refreshments:
I Periodical refreshment (daily or weekly).
I Immediate refreshment.
I Determined by usage, types of data source, etc.

17 / 50

Data warehouse refreshment

• Detect changes in external data sources:

I Different monitoring techniques: external and intrusive techniques.
I Snapshot vs. timestamped sources
I Queryable, logged, and replicated sources
I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Data warehouse refreshment

• Detect changes in external data sources:
I Different monitoring techniques: external and intrusive techniques.

I Snapshot vs. timestamped sources
I Queryable, logged, and replicated sources
I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Data warehouse refreshment

• Detect changes in external data sources:
I Different monitoring techniques: external and intrusive techniques.
I Snapshot vs. timestamped sources

I Queryable, logged, and replicated sources
I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Data warehouse refreshment

• Detect changes in external data sources:
I Different monitoring techniques: external and intrusive techniques.
I Snapshot vs. timestamped sources
I Queryable, logged, and replicated sources

I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Data warehouse refreshment

• Detect changes in external data sources:
I Different monitoring techniques: external and intrusive techniques.
I Snapshot vs. timestamped sources
I Queryable, logged, and replicated sources
I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Data warehouse refreshment

• Detect changes in external data sources:
I Different monitoring techniques: external and intrusive techniques.
I Snapshot vs. timestamped sources
I Queryable, logged, and replicated sources
I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Data warehouse refreshment

• Detect changes in external data sources:
I Different monitoring techniques: external and intrusive techniques.
I Snapshot vs. timestamped sources
I Queryable, logged, and replicated sources
I Callback and internal action sources

• Extract the changes and integrate into the warehouse.

• Update indexes, subaggregates and any other additional data
structures.

18 / 50

Outline

1 Motivation

2 ETL

3 OLAP Systems

4 Analytical Queries

5 Summary

19 / 50

OLAP systems

• The next step is to provide solutions for querying and reporting
multidimensional analytical data.

20 / 50

Multidimensional cube

• The proper data model for multidimensional reporting is the
multidimensional one.

21 / 50

Operations in multidimensional data model

• Roll up – summarize data
along a dimension hierarchy.

• Drill down – go from higher
level summary to lower level
summary or detailed data.

• Slice and dice – corresponds
to selection and projection.

• Pivot – reorient cube.

• Raking, Time functions, etc.

22 / 50

Lattice of cuboids

• Different degrees of summarizations are presented as a lattice of
cuboids.

Example for dimensions: time, product, location, supplier
{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, product,
location}

{time, loca-
tion, supplier}

{product,
location, supplier}

Using this structure, one can easily show roll up and drill down operations.

23 / 50

Total number of cuboids

• For an n-dimensional data cube, the total number of cuboids that can
be generated is:

T =

n∏
i=1

(Li + 1) ,

where Li is the number of levels associated with dimension i
(excluding the virtual top level ”all” since generalizing to ”all” is
equivalent to the removal of a dimension).

• For example, if the cube has 10 dimensions and each dimension has 4
levels, the total number of cuboids that can be generated will be:

T = 510 = 9, 8× 106 .

24 / 50

Total number of cuboids

• Example: Consider a simple database with two dimensions:

I Columns in Date dimension: day, month, year
I Columns in Localization dimension: street, city, country.
I Without any information about hierarchies, the number of all possible

group-bys is 26:

∅ ∅
day street

month city
year country

day, month ./ street, city
day, year street, country

month, year city, country
day, month, year street, city, country

25 / 50

Total number of cuboids

• Example: Consider a simple database with two dimensions:
I Columns in Date dimension: day, month, year
I Columns in Localization dimension: street, city, country.
I Without any information about hierarchies, the number of all possible

group-bys is

26:

∅ ∅
day street

month city
year country

day, month ./ street, city
day, year street, country

month, year city, country
day, month, year street, city, country

25 / 50

Total number of cuboids

• Example: Consider a simple database with two dimensions:
I Columns in Date dimension: day, month, year
I Columns in Localization dimension: street, city, country.
I Without any information about hierarchies, the number of all possible

group-bys is 26:

∅ ∅
day street

month city
year country

day, month ./ street, city
day, year street, country

month, year city, country
day, month, year street, city, country

25 / 50

Total number of cuboids

• Example: Consider a simple database with two dimensions:
I Columns in Date dimension: day, month, year
I Columns in Localization dimension: street, city, country.
I Without any information about hierarchies, the number of all possible

group-bys is 26:

∅ ∅
day street

month city
year country

day, month ./ street, city
day, year street, country

month, year city, country
day, month, year street, city, country

25 / 50

Total number of cuboids

• Example: Consider the same relations but with defined hierarchies:

I day → month → year
I street → city → country
I Many combinations of columns can be excluded, e.g., group by day,

year, street, country.
I The number of group-bys is then 42:

∅ ∅
year ./ country

month, year city, country
day, month, year street, city, country

26 / 50

Total number of cuboids

• Example: Consider the same relations but with defined hierarchies:
I day → month → year
I street → city → country

I Many combinations of columns can be excluded, e.g., group by day,

year, street, country.
I The number of group-bys is then 42:

∅ ∅
year ./ country

month, year city, country
day, month, year street, city, country

26 / 50

Total number of cuboids

• Example: Consider the same relations but with defined hierarchies:
I day → month → year
I street → city → country
I Many combinations of columns can be excluded, e.g., group by day,

year, street, country.
I The number of group-bys is then

42:

∅ ∅
year ./ country

month, year city, country
day, month, year street, city, country

26 / 50

Total number of cuboids

• Example: Consider the same relations but with defined hierarchies:
I day → month → year
I street → city → country
I Many combinations of columns can be excluded, e.g., group by day,

year, street, country.
I The number of group-bys is then 42:

∅ ∅
year ./ country

month, year city, country
day, month, year street, city, country

26 / 50

Total number of cuboids

• Example: Consider the same relations but with defined hierarchies:
I day → month → year
I street → city → country
I Many combinations of columns can be excluded, e.g., group by day,

year, street, country.
I The number of group-bys is then 42:

∅ ∅
year ./ country

month, year city, country
day, month, year street, city, country

26 / 50

Three types of aggregate functions

• distributive: count(), sum(), max(), min(),

• algebraic: ave(), stddev(),

• holistic: median(), mode(), rank().

27 / 50

OLAP servers

• Relational OLAP (ROLAP),

• Multidimensional OLAP (MOLAP),

• Hybrid OLAP (HOLAP).

28 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:

I Denormalization,
I Materialized views,
I Partitioning,
I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:

I Denormalization,
I Materialized views,
I Partitioning,
I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:

I Denormalization,
I Materialized views,
I Partitioning,
I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:
I Denormalization,

I Materialized views,
I Partitioning,
I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:
I Denormalization,
I Materialized views,

I Partitioning,
I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:
I Denormalization,
I Materialized views,
I Partitioning,

I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:
I Denormalization,
I Materialized views,
I Partitioning,
I Joins,

I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:
I Denormalization,
I Materialized views,
I Partitioning,
I Joins,
I Indexes (join index, bitmaps),

I Query processing.

29 / 50

ROLAP

• ROLAP servers use a relational or post-relational database
management system to store and manage warehouse data.

• ROLAP systems use SQL and its OLAP extensions.

• Optimization techniques:
I Denormalization,
I Materialized views,
I Partitioning,
I Joins,
I Indexes (join index, bitmaps),
I Query processing.

29 / 50

ROLAP

• Advantages of ROLAP Servers:

I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:

I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,

I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:

I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,

I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:

I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),

I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:

I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:

I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:

I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:
I Worse performance than MOLAP,

I Additional data structures and optimization techniques used to improve
the performance.

30 / 50

ROLAP

• Advantages of ROLAP Servers:
I Scalable with respect to the number of dimensions,
I Scalable with respect to the size of data,
I Sparsity is not a problem (fact tables contain only facts),
I Mature and well-developed technology.

• Disadvantage of ROLAP Servers:
I Worse performance than MOLAP,
I Additional data structures and optimization techniques used to improve

the performance.

30 / 50

MOLAP

• MOLAP Servers use array-based multidimensional storage engines.

• Optimization techniques:

I Two-level storage representation: dense cubes are identified and stored
as array structures, sparse cubes employ compression techniques,

I Materialized cubes.

31 / 50

MOLAP

• MOLAP Servers use array-based multidimensional storage engines.

• Optimization techniques:

I Two-level storage representation: dense cubes are identified and stored
as array structures, sparse cubes employ compression techniques,

I Materialized cubes.

31 / 50

MOLAP

• MOLAP Servers use array-based multidimensional storage engines.

• Optimization techniques:
I Two-level storage representation: dense cubes are identified and stored

as array structures, sparse cubes employ compression techniques,

I Materialized cubes.

31 / 50

MOLAP

• MOLAP Servers use array-based multidimensional storage engines.

• Optimization techniques:
I Two-level storage representation: dense cubes are identified and stored

as array structures, sparse cubes employ compression techniques,
I Materialized cubes.

31 / 50

MOLAP

• Advantages of MOLAP Servers:

I Multidimensional views are directly mapped to data cube array
structures – efficient access to data,

I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:

I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,

I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:

I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:

I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:

I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:
I Scalability problem in the case of larger number of dimensions,

I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:
I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.

I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:
I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:
I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:
I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

MOLAP

• Advantages of MOLAP Servers:
I Multidimensional views are directly mapped to data cube array

structures – efficient access to data,
I Can easily store subaggregates.

• Disadvantages of MOLAP Servers:
I Scalability problem in the case of larger number of dimensions,
I Not tailored for sparse data.
I Example:

• Logical model consists of four dimensions: customer, product, location,
and day

• In case of 100 000 customers, 10 000 products, 1 000 locations and 1
000 days, the data cube will contain 1 000 000 000 000 000 cells!

• A huge number of cells is empty: a customer is not able to buy all
products in all locations . . .

32 / 50

HOLAP

• HOLAP servers are a hybrid approach that combines ROLAP and
MOLAP technology.

• HOLAP benefits from the greater scalability of ROLAP and the faster
computation of MOLAP.

33 / 50

Outline

1 Motivation

2 ETL

3 OLAP Systems

4 Analytical Queries

5 Summary

34 / 50

Multidimensional queries

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or
I Inventing a new language (→ MDX).

35 / 50

Multidimensional queries

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or
I Inventing a new language (→ MDX).

35 / 50

Multidimensional queries

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:

I Extending SQL, or
I Inventing a new language (→ MDX).

35 / 50

Multidimensional queries

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or

I Inventing a new language (→ MDX).

35 / 50

Multidimensional queries

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or
I Inventing a new language (→ MDX).

35 / 50

OLAP queries in SQL

• A typical example of an analytical query is a group-by query:

SELECT Instructor, Academic_year, AVG(Grade)

FROM Data_Warehouse

GROUP BY Instructor, Academic_year

• And the result:

Academic year Name AVG(Grade)

2013/14 Stefanowski 4.2
2014/15 Stefanowski 4.5
2013/14 S lowiński 4.1
2014/15 S lowiński 4.3
2014/15 Dembczyński 4.6

36 / 50

SQL

• OLAP extensions in SQL:
I GROUP BY CUBE,
I GROUP BY ROLLUP,
I GROUP BY GROUPING SETS,
I OVER and PARTITION BY,
I RANK.

37 / 50

SQL

• GROUP BY CUBE

I Example:
SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY CUBE (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

38 / 50

SQL

• GROUP BY CUBE
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY CUBE (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

38 / 50

SQL

• GROUP BY CUBE
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location, Supplier

UNION ALL

SELECT Time, Product, Location, ’’*’’, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location

UNION ALL

SELECT Time, Product, ’’*’’, Location, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location

UNION ALL

. . .
UNION ALL

SELECT ’*’, ’*’, ’*’, ’*’, SUM(Gain)

FROM Sales;

39 / 50

SQL

• GROUP BY CUBE
I It is not only a Macro instruction to reduce the number of

subgroup-bys.

I One can easily optimize the group-by operations, when they are
performed all-together: upper-level group-bys can be computed from
lower-level group-bys.

40 / 50

SQL

• GROUP BY CUBE
I It is not only a Macro instruction to reduce the number of

subgroup-bys.
I One can easily optimize the group-by operations, when they are

performed all-together: upper-level group-bys can be computed from
lower-level group-bys.

40 / 50

SQL

• GROUP BY CUBE
I Example:

SELECT Academic year, Name, AVG(Grade) FROM

Students grades GROUP BY CUBE(Academic year, Name);

All rows and columns

Academic year Name AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

Academic year AVG(Grade)

2011/2 4.15
2012/3 3.85
2013/4 3.8

Name AVG(Grade)

Stefanowski 3.9
S lowiński 3.6
Dembczyński 4.8

AVG(Grade)

3.95
41 / 50

SQL

• GROUP BY CUBE
I Example:

SELECT Academic year, Name, AVG(Grade) FROM

Students grades GROUP BY CUBE(Academic year, Name);

Academic year Name AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8
2011/2 NULL 4.15
2012/3 NULL 3.85
2013/4 NULL 3.8
NULL Stefanowski 3.9
NULL S lowiński 3.6
NULL Dembczyński 4.8
NULL NULL 3.95

42 / 50

SQL

• OVER():

I Determines the partitioning and ordering of a rowset before the
associated window function is applied.

I The OVER clause defines a window or user-specified set of rows within a
query result set.

I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

43 / 50

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.

I The OVER clause defines a window or user-specified set of rows within a
query result set.

I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

43 / 50

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.

I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

43 / 50

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.
I A window function then computes a value for each row in the window.

I The OVER clause can be used with functions to compute aggregated
values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

43 / 50

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.
I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

43 / 50

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.
I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

43 / 50

SQL

• OVER():

I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.
• The ROWS clause limits the rows within a partition by specifying a fixed

number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.
• The ROWS clause limits the rows within a partition by specifying a fixed

number of rows preceding or following the current row.
• The RANGE clause logically limits the rows within a partition by

specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

44 / 50

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.
• The ROWS clause limits the rows within a partition by specifying a fixed

number of rows preceding or following the current row.
• The RANGE clause logically limits the rows within a partition by

specifying a range of values with respect to the value in the current row.
• Preceding and following rows are defined based on the ordering in the

ORDER BY clause.

44 / 50

SQL

• Example

I Student grades with the average:

SELECT Student, Instructor, Lecture, Academic year,

grade, AVG (grade) OVER (PARTITION BY Student)

FROM Grades;

45 / 50

SQL

• Example
I Student grades with the average:

SELECT Student, Instructor, Lecture, Academic year,

grade, AVG (grade) OVER (PARTITION BY Student)

FROM Grades;

45 / 50

OLAP Queries in MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

46 / 50

OLAP Queries in MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

46 / 50

OLAP Queries in MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

46 / 50

OLAP Queries in MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

46 / 50

MDX

• MDX query:

SELECT {[Academic Year].[2011/2],[Academic

Year].[2012/13],[Academic Year].[2013/14]} ON COLUMNS,

{[Instructor].[Stefanowski],[Instructor].[Slowinski],
[Instructor].[Dembczynski]} ON ROW

FROM PUT

WHERE ([Measures].[Average Grades])

• Seems to be similar to SQL, but in fact it is quite different!

47 / 50

Outline

1 Motivation

2 ETL

3 OLAP Systems

4 Analytical Queries

5 Summary

48 / 50

Summary

• ETL process is a strategic element of data warehousing.

• Main concepts: extraction, transformation and integration, load, data
warehouse refreshment and metadata.

• New emerging technology . . .

• OLAP systems: ROLAP, MOLAP and HOLAP.

• Two main approaches for querying data warehouses.
I ROLAP servers: SQL and its OLAP extensions.
I MOLAP servers: MDX.

49 / 50

Bibliography

• J. Han and M. Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, second edition edition, 2006

• Mark Whitehorn, Robert Zare, and Mosha Pasumansky. Fast Track to MDX.

Springer, 2002

50 / 50

	Motivation
	ETL
	OLAP Systems
	Analytical Queries
	Summary

