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Review of previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• Processing of massive data sets I:
I Physical storage and data access
I Materialization, denormalization and summarization

‘
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Motivation

• Computational burden → divide and conquer

I Data partitioning
I Distributed systems
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Data partitioning

• In general, partitioning divides data (e.g., tables and indexes) into
smaller pieces, enabling these pieces to be managed and accessed at a
finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables and datasets.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.
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Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.
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Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:

I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition
I Composite Partitioning: partitions data using the range method, and

within each partition, subpartitions it using the hash or list method.
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Data partitioning

• Example:

CREATE TABLE sales list (

salesman id NUMBER(5),

salesman name VARCHAR2(30),

sales state VARCHAR2(20),

sales amount NUMBER(10),

sales date DATE)

PARTITION BY LIST(sales state)

(

PARTITION sales west VALUES(’California’, ’Hawaii’),

PARTITION sales east VALUES (’New York’, ’Virginia’),

PARTITION sales central VALUES(’Texas’, ’Illinois’)

PARTITION sales other VALUES(DEFAULT)

)

);
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Partitioning and manageability

• Maintenance operations can be focused on particular portions of
tables,

• Partial compression,

• Partial backups,

• Data recovery can concern partitions,

• ”Divide and conquer” approach to data management.
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Data partitioning and star schema

• Partition fact table:

I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins.

• One big dimension:

I Sometimes one dimension table is quite big (e.g. customer),
I Partition the big dimension table,
I Partition fact table on key of big dimension,
I The join operation can be performed on smaller tables.
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Data partitioning and star schema

• Reducing load time via partitioning:

I Often fact tables are partitioned on Date,
I Newly loaded records go into the last partition,
I Only indexes and aggregates for that partition need to be updated,
I All other partitions remain unchanged.

• Expiring old data:

I Often older data is less useful / relevant for data analysts,
I To reduce database size, old data is often deleted,
I If data is partitioned on date, simply delete or compress the oldest

partitions.
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Partitioning and sorting

• External-memory sorting:

I Let data be of size n and main memory be of size k + 1 units (k input
and one output buffer).

I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.
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MapReduce-based systems

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• Computational burden → distributed systems

I Scaling-out instead of scaling-up
I Move-code-to-data
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MapReduce-based systems

• Accessible – run on large clusters of commodity machines or on cloud
computing services such as AWS (Amazon Web Services).

• Robust – are intended to run on commodity hardware; designed with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

• Scalable – scales linearly to handle larger data by adding more nodes
to the cluster.

• Simple – allow users to quickly write efficient parallel code.
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MapReduce: Two simple procedures

• Word count: A basic operation for every search engine.

• Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

• How to implement these procedures for efficient execution in a
distributed system?

• How much can we gain by such implementation?

• Let us focus on the word count problem . . .
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Word count

• Count the number of times each word occurs in a set of documents:

Do as I say, not as I do.

Word Count

as 2
do 2
i 2

not 1
say 1

18 / 45



Word count

• Let us write the procedure in pseudo-code for a single machine:

d e f i n e wordCount as M u l t i s e t ;

f o r each document i n documentSet {
T = t o k e n i z e ( document ) ;

f o r each token i n T {
wordCount [ token ]++;

}

}

d i s p l a y ( wordCount ) ;
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Word count

• Let us write the procedure in pseudo-code for many machines:

I First step:

d e f i n e wordCount as M u l t i s e t ;

f o r each document i n documentSubset {
T = t o k e n i z e ( document ) ;
f o r each token i n T {

wordCount [ token ]++;
}

}

sendToSecondPhase ( wordCount ) ;

I Second step:

d e f i n e tota lWordCount as M u l t i s e t ;

f o r each wordCount r e c e i v e d from f i r s t P h a s e {
m u l t i s e t A d d ( totalWordCount , wordCount ) ;

}
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Word count

• To make the procedure work properly across a cluster of distributed
machines, we need to add a number of functionalities:

I Store files over many processing machines (of phase one).
I Write a disk-based hash table permitting processing without being

limited by RAM capacity.
I Partition the intermediate data (that is, wordCount) from phase one.
I Shuffle the partitions to the appropriate machines in phase two.
I Ensure fault tolerance.
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MapReduce

• MapReduce programs are executed in two main phases, called
mapping and reducing:

I Map: the map function is written to convert input elements to
key-value pairs.

I Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.
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MapReduce

• The complete data flow:

Input Output

map (<k1, v1>) list(<k2, v2>)

reduce (<k2, list(<v2>) list(<k3, v3>)
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MapReduce

Figure: The complete data flow
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MapReduce

• The complete data flow:

I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.
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Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.
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WordCount in MapReduce

• Map:
I For a pair <k1,document> produce a sequence of pairs <token,1>,

where token is a token/word found in the document.

map( S t r i n g f i l e n a m e , S t r i n g document ) {
L i s t <S t r i n g > T = t o k e n i z e ( document ) ;

f o r each token i n T {
emit ( ( S t r i n g ) token , ( I n t e g e r ) 1) ;

}

}
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WordCount in MapReduce

• Reduce
I For a pair <word, list(1, 1, ..., 1)> sum up all ones appearing

in the list and return <word, sum>, where sum is the sum of ones.

r e d u c e ( S t r i n g token , L i s t <I n t e g e r > v a l u e s ) {
I n t e g e r sum = 0 ;

f o r each v a l u e i n v a l u e s {
sum = sum + v a l u e ;

}

emit ( ( S t r i n g ) token , ( I n t e g e r ) sum ) ;
}
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Matrix-vector Multiplication

• Let A to be large n×m matrix, and x a long vector of size m.

• The matrix-vector multiplication is defined as:

Ax = v,

where v = (v1, . . . , vn) and

vi =
m∑
j=1

aijxj .
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Matrix-vector multiplication

• Let us first assume that m is large, but not so large that vector x
cannot fit in main memory, and be part of the input to every Map
task.

• The matrix A is stored with explicit coordinates, as a triple (i, j, aij).

• We also assume the position of element xj in the vector x will be
stored in the analogous way.
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Matrix-vector multiplication

• Map:

each map task will take the entire vector x and a chunk of the
matrix A. From each matrix element aij it produces the key-value
pair (i, aijxj). Thus, all terms of the sum that make up the
component vi of the matrix-vector product will get the same key.

• Reduce: a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, vi) where:

vi =

m∑
j=1

aijxj .
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Matrix-Vector Multiplication with Large Vector v

• Divide the matrix into vertical stripes of equal width and divide the
vector into an equal number of horizontal stripes, of the same height.

×

• The ith stripe of the matrix multiplies only components from the ith
stripe of the vector.

• Thus, we can divide the matrix into one file for each stripe, and do
the same for the vector.
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Matrix-Vector Multiplication with Large Vector v

• Each Map task is assigned a chunk from one the stripes of the matrix
and gets the entire corresponding stripe of the vector.

• The Map and Reduce tasks can then act exactly as in the case where
Map tasks get the entire vector.
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1 Data partitioning
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Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:

I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/
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Spark

• Spark collaborates with Hadoop which is a popular open-source
implementation of MapReduce.

• Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

• Hadoop Distributed File System (HDFS) is responsible for distributed
storage.
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Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.
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HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/myname

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt
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WordCount in Hadoop

import j a v a . i o . I O E x c e p t i o n ;
import j a v a . u t i l . S t r i n g T o k e n i z e r ;

import org . apache . hadoop . c o n f . C o n f i g u r a t i o n ;
import org . apache . hadoop . f s . Path ;
import org . apache . hadoop . i o . I n t W r i t a b l e ;
import org . apache . hadoop . i o . Text ;
import org . apache . hadoop . mapreduce . Job ;
import org . apache . hadoop . mapreduce . Mapper ;
import org . apache . hadoop . mapreduce . Reducer ;
import org . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o r m a t ;
import org . apache . hadoop . mapreduce . l i b . output . F i l e O u t p u t F o r m a t ;

pub l i c c l a s s WordCount {

pub l i c s t a t i c c l a s s TokenizerMapper
extends Mapper<Object , Text , Text , I n t W r i t a b l e >{

p r i v a t e f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e ( 1 ) ;
p r i v a t e Text word = new Text ( ) ;

pub l i c vo id map( Object key , Text v a l u e , Context c o n t e x t
) throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

S t r i n g T o k e n i z e r i t r = new S t r i n g T o k e n i z e r ( v a l u e . t o S t r i n g ( ) ) ;
wh i l e ( i t r . hasMoreTokens ( ) ) {

word . s e t ( i t r . nextToken ( ) ) ;
c o n t e x t . w r i t e ( word , one ) ;

}
}

}
( . . . )
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WordCount in Hadoop

( . . . )
pub l i c s t a t i c c l a s s IntSumReducer

extends Reducer<Text , I n t W r i t a b l e , Text , I n t W r i t a b l e> {
p r i v a t e I n t W r i t a b l e r e s u l t = new I n t W r i t a b l e ( ) ;

pub l i c vo id r e d u c e ( Text key , I t e r a b l e <I n t W r i t a b l e> v a l u e s ,
Context c o n t e x t
) throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

i n t sum = 0 ;
f o r ( I n t W r i t a b l e v a l : v a l u e s ) {

sum += v a l . g e t ( ) ;
}
r e s u l t . s e t ( sum ) ;
c o n t e x t . w r i t e ( key , r e s u l t ) ;

}
}

pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {
C o n f i g u r a t i o n c o n f = new C o n f i g u r a t i o n ( ) ;
Job j o b = Job . g e t I n s t a n c e ( conf , ” word count ” ) ;
j o b . s e t J a r B y C l a s s ( WordCount . c l a s s ) ;
j o b . s e t M a p p e r C l a s s ( TokenizerMapper . c l a s s ) ;
j o b . s e t C o m b i n e r C l a s s ( IntSumReducer . c l a s s ) ;
j o b . s e t R e d u c e r C l a s s ( IntSumReducer . c l a s s ) ;
j o b . s e t O u t p u t K e y C l a s s ( Text . c l a s s ) ;
j o b . s e t O u t p u t V a l u e C l a s s ( I n t W r i t a b l e . c l a s s ) ;
F i l e I n p u t F o r m a t . addInputPath ( job , new Path ( a r g s [ 0 ] ) ) ;
F i l e O u t p u t F o r m a t . setOutputPath ( job , new Path ( a r g s [ 1 ] ) ) ;
System . e x i t ( j o b . w a i t F o r C o m p l e t i o n ( t rue ) ? 0 : 1) ;

}
}
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WordCount in Spark

• The same code is much simpler in Spark

• To run the Spark shell type: ./bin/spark-shell

• The code

v a l t e x t F i l e = s c . t e x t F i l e ( ”˜/ data / a l l−b i b l e . t x t ” )
v a l c o u n t s = ( t e x t F i l e . f l a tMap ( l i n e => l i n e . s p l i t ( ” ” ) )

. map( word => ( word , 1) )

. reduceByKey ( + ) )
c o u n t s . s a v e A s T e x t F i l e ( ”˜/ data / a l l−b i b l e−c o u n t s . t x t ” )

Alternatively:

v a l t e x t F i l e = s p a r k . r e a d . t e x t F i l e ( ”˜/ data / a l l−b i b l e . t x t ” )
v a l wordCounts = t e x t F i l e . f l a tMap ( l i n e => l i n e . s p l i t ( ” ” ) ) . groupByKey ( i d e n t i t y ) .

count ( )
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Matrix-vector multiplication in Spark

• The Spark code is quite simple:

v a l x = s c . t e x t F i l e ( ”˜/ data / x . t x t ” ) . map( l i n e => { v a l t = l i n e . s p l i t ( ” , ” ) ; ( t ( 0 ) .
t r i m . t o I n t , t ( 1 ) . t r i m . toDouble )})

v a l v e c t o r X = x . map{case ( i , v ) => v} . c o l l e c t
v a l b r oa dc a s t ed X = s c . b r o a d c a s t ( v e c t o r X )
v a l m a t r i x = s c . t e x t F i l e ( ”˜/ data /M. t x t ” ) . map( l i n e => { v a l t = l i n e . s p l i t ( ” , ” ) ; ( t

( 0 ) . t r i m . t o I n t , t ( 1 ) . t r i m . t o I n t , t ( 2 ) . t r i m . toDouble )})
v a l v = m a t r i x . map { case ( i , j , a ) => ( i , a ∗ b ro ad ca s te dX . v a l u e ( j−1)) } . reduceByKey (

+ )
v . toDF . orderBy ( ” 1 ” ) . show
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Summary

• Computational burden → data partitioning, distributed systems.

• Data partitioning

• New data-intensive challenges like search engines.

• MapReduce: The overall idea and simple algorithms.

• Spark: MapReduce in practice.
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