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Review of previous lectures

Mining of massive datasets.
Evolution of database systems.
Dimensional modeling.

Processing of massive data sets I:

» Physical storage and data access
» Materialization, denormalization and summarization
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In general, partitioning divides data (e.g., tables and indexes) into
smaller pieces, enabling these pieces to be managed and accessed at a
finer level of granularity.

Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables and datasets.

Partitioning can provide benefits by improving manageability,
performance, and availability.

Partitioning is transparent for database queries.

Horizontal vs. vertical vs. chunk partitioning.
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Data partitioning

Table or index is subdivided into smaller pieces.
Each piece of database object is called a partition.

Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.



Data partitioning

e Tables are partitioned using a 'partitioning key', a set of columns
which determines in which partition a given row will reside.

45



Data partitioning

e Tables are partitioned using a 'partitioning key', a set of columns
which determines in which partition a given row will reside.
o Different techniques for partitioning tables:

45



Data partitioning

e Tables are partitioned using a 'partitioning key', a set of columns
which determines in which partition a given row will reside.
o Different techniques for partitioning tables:
» Hash partitioning: Rows divided into partitions using a hash function

45



Data partitioning

e Tables are partitioned using a 'partitioning key', a set of columns
which determines in which partition a given row will reside.
o Different techniques for partitioning tables:

» Hash partitioning: Rows divided into partitions using a hash function
» Range partitioning: Each partition holds a range of attribute values

45



Data partitioning

e Tables are partitioned using a 'partitioning key', a set of columns
which determines in which partition a given row will reside.
o Different techniques for partitioning tables:
» Hash partitioning: Rows divided into partitions using a hash function
» Range partitioning: Each partition holds a range of attribute values
» List partitioning: Rows divided according to lists of values that describe
the partition



Data partitioning

e Tables are partitioned using a 'partitioning key', a set of columns
which determines in which partition a given row will reside.

o Different techniques for partitioning tables:

>
>
>

Hash partitioning: Rows divided into partitions using a hash function
Range partitioning: Each partition holds a range of attribute values
List partitioning: Rows divided according to lists of values that describe
the partition

Composite Partitioning: partitions data using the range method, and
within each partition, subpartitions it using the hash or list method.



Data partitioning

o Example:
CREATE TABLE sales_list (

salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_state VARCHAR2(20),
sales_amount NUMBER(10),
sales_date DATE)

PARTITION BY LIST(sales_state)
(

PARTITION sales_west VALUES(’California’
PARTITION sales_east VALUES (’New York’, ’Virginia’),

PARTITION sales_central VALUES(’Texas’,
PARTITION sales_other VALUES(DEFAULT)

, ’Hawaii’),

’Illinois’)
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Partitioning and manageability

Maintenance operations can be focused on particular portions of
tables,

Partial compression,
Partial backups,
Data recovery can concern partitions,

"Divide and conquer” approach to data management.
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Data partitioning and star schema

e Partition fact table:

Fact tables are big,

» Process queries in parallel for each partition,

» Divide the work among the nodes in the cluster,
» Specific queries would access only few partitions.

v

e Replicate dimension tables across cluster nodes:

» Dimension tables are small,
» Storing multiple copies of them is cheap,
» No communication needed for parallel joins.
¢ One big dimension:
Sometimes one dimension table is quite big (e.g. customer),
Partition the big dimension table,
Partition fact table on key of big dimension,
The join operation can be performed on smaller tables.

vV vy VvYyy
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Data partitioning and star schema

e Reducing load time via partitioning:

>

vvyy

Often fact tables are partitioned on Date,

Newly loaded records go into the last partition,

Only indexes and aggregates for that partition need to be updated,
All other partitions remain unchanged.

e Expiring old data:

>

>

>

Often older data is less useful / relevant for data analysts,

To reduce database size, old data is often deleted,

If data is partitioned on date, simply delete or compress the oldest
partitions.
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e External-memory sorting:
» Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
Partition data into n/k parts (does not have to be made explicitly).
For each partition (each uses k memory units):

e Read to main memory

e Sort partition

e Write sorted partition to disk
Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).
Do

o Perform k-way merge sort using the output buffer to store globally

sorted data.
o Write output buffer to disk if it is filled.
o |f the ith input buffer is exhausted, read next portion from ith partition.

e Remark that k > /n (otherwise we need additional merge passes).
e External-memory sorting is used in merge-join of large data sets.
e Similarly one can generalize hash-join to the so-called partitioned

vy

v

\4

hash-join.
13 /45



Outline

2 MapReduce

14 /45



MapReduce-based systems

e Traditional DBMS vs. NoSQL

15 /45



MapReduce-based systems

e Traditional DBMS vs. NoSQL

o New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

15 /45



MapReduce-based systems

e Traditional DBMS vs. NoSQL

o New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

o New computational challenges: WordCount, PageRank, etc.

15 /45



MapReduce-based systems

Traditional DBMS vs. NoSQL

New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

New computational challenges: WordCount, PageRank, etc.
Computational burden — distributed systems

15 /45



MapReduce-based systems

Traditional DBMS vs. NoSQL

New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

New computational challenges: WordCount, PageRank, etc.

Computational burden — distributed systems
» Scaling-out instead of scaling-up

15 /45



MapReduce-based systems
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New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

New computational challenges: WordCount, PageRank, etc.
Computational burden — distributed systems

» Scaling-out instead of scaling-up
» Move-code-to-data
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Accessible — run on large clusters of commodity machines or on cloud
computing services such as AWS (Amazon Web Services).

Robust — are intended to run on commodity hardware; designed with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

Scalable — scales linearly to handle larger data by adding more nodes
to the cluster.

Simple — allow users to quickly write efficient parallel code.
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MapReduce: Two simple procedures

Word count: A basic operation for every search engine.

Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

How to implement these procedures for efficient execution in a
distributed system?

How much can we gain by such implementation?
Let us focus on the word count problem ...
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Word count

e Count the number of times each word occurs in a set of documents:

Do as | say, not as | do.

Word | Count
as 2
do 2

i 2
not 1
say 1
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define wordCount as Multiset;

for each document in documentSet {
T = tokenize(document);

for each token in T {
wordCount [token]++;
}

}

display (wordCount);
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Word count

e Let us write the procedure in pseudo-code for many machines:
» First step:

define wordCount as Multiset;

for each document in documentSubset {
T = tokenize(document);
for each token in T {
wordCount [token]++;
}

}

sendToSecondPhase (wordCount) ;
» Second step:

define totalWordCount as Multiset;

for each wordCount received from firstPhase {
multisetAdd (totalWordCount, wordCount);
}
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e To make the procedure work properly across a cluster of distributed
machines, we need to add a number of functionalities:
» Store files over many processing machines (of phase one).
» Write a disk-based hash table permitting processing without being
limited by RAM capacity.
» Partition the intermediate data (that is, wordCount) from phase one.
» Shuffle the partitions to the appropriate machines in phase two.
» Ensure fault tolerance.
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MapReduce

e MapReduce programs are executed in two main phases, called
mapping and reducing:
» Map: the map function is written to convert input elements to
key-value pairs.
» Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.



MapReduce

e The complete data flow:
‘ Input ‘ Output
map (<k1, vi1>) list(kk2, v2>)
reduce | (<k2, list(<v2>) | list(<k3, v3>)
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MapReduce

Figure: The complete data flow

Input data
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» The input is structured as a list of key-value pairs: list(<k1,v1>).
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e The

MapReduce

complete data flow:

The input is structured as a list of key-value pairs: 1list(<k1,v1>).
The list of key-value pairs is broken up and each individual key-value
pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

» The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
» The key-value pairs are processed in arbitrary order.
» The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

The framework asks the reducer to process each one of these
aggregated key-value pairs individually.
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Combiner and partitioner

e Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.
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Combiner and partitioner

e Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the

data flow.

e Combiner — perform local aggregation (the reduce step) on the map
node.

o Partitioner — divide the key space of the map output and assign the
key-value pairs to reducers.
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WordCount in MapReduce

e Map:
» For a pair <k1,document> produce a sequence of pairs <token, 1>,
where token is a token/word found in the document.

map(String filename, String document) {
List<String> T = tokenize(document);

for each token in T {
emit ((String)token, (Integer) 1);
}
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WordCount in MapReduce

e Reduce
» For a pair <word, list(1, 1, ., 1)> sum up all ones appearing
in the list and return <word, sum>, where sum is the sum of ones.

reduce(String token, List<Integer> values) {
Integer sum = 0;

for each value in values {
sum = sum + value;

}

emit ((String)token, (Integer) sum);
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Matrix-vector Multiplication

o Let A to be large n X m matrix, and x a long vector of size m.

e The matrix-vector multiplication is defined as:
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o Let A to be large n X m matrix, and x a long vector of size m.

e The matrix-vector multiplication is defined as:
Ax =,

where v = (v1,...,v,) and

m
v; = E aijxj.
Jj=1
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Matrix-vector multiplication

o Let us first assume that m is large, but not so large that vector «
cannot fit in main memory, and be part of the input to every Map

task.
e The matrix A is stored with explicit coordinates, as a triple (4, j, a;;).
e We also assume the position of element x; in the vector x will be
stored in the analogous way.
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Matrix-vector multiplication

e Map:
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Matrix-vector multiplication

e Map: each map task will take the entire vector & and a chunk of the
matrix A. From each matrix element a;; it produces the key-value
pair (i,a;;x;). Thus, all terms of the sum that make up the
component v; of the matrix-vector product will get the same key.

¢ Reduce: a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, v;) where:

m
v; = E aijxj.
Jj=1
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Matrix-Vector Multiplication with Large Vector v
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Matrix-Vector Multiplication with Large Vector v

e Divide the matrix into vertical stripes of equal width and divide the
vector into an equal number of horizontal stripes, of the same height.

e The ith stripe of the matrix multiplies only components from the ith

stripe of the vector.

e Thus, we can divide the matrix into one file for each stripe, and do

the same for the vector.
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Matrix-Vector Multiplication with Large Vector v

e Each Map task is assigned a chunk from one the stripes of the matrix
and gets the entire corresponding stripe of the vector.

e The Map and Reduce tasks can then act exactly as in the case where
Map tasks get the entire vector.
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3 Spark
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Spark

e Spark is a fast and general-purpose cluster computing system.
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Spark

e Spark collaborates with Hadoop which is a popular open-source
implementation of MapReduce.

e Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

¢ Hadoop Distributed File System (HDFS) is responsible for distributed
storage.
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Installation of Spark

Download Spark from
http://spark.apache.org/downloads.html
Untar the spark archive:
tar xvfz spark-2.2.0-bin-hadoop2.7.tar

To play with Spark there is no need to install HDFS ...

But, you can try to play around with HDFS.
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HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

o Copy the input files into the distributed filesystem:
hdfs dfs -put data.txt /user/myname/data.txt
o View the files in the distributed filesystem:

hdfs dfs -1s /user/myname/
hdfs dfs -cat /user/myname/data.txt
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WordCount in Hadoop

import java.io.lOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf. Configuration;

import org.apache.hadoop. fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io. Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce. Reducer;

import org.apache.hadoop.mapreduce. lib.input.FilelnputFormat;
import org.apache.hadoop.mapreduce. lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws |OException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word . set (itr.nextToken());
context.write(word, one);
}
¥
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WordCount in Hadoop

(...
public static class IntSumReducer
extends Reducer<Text, IntWritable , Text, IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, lterable<IntWritable> values,
Context context
) throws |OException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

result.set(sum);
context.write(key, result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getlnstance(conf, "word count”);
job.setJarByClass (WordCount. class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer. class);
job.setReducerClass(IntSumReducer. class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addlnputPath(job, new Path(args[0]))
FileOutputFormat.setOutputPath(job, new Path(args[1]
System.exit(job.waitForCompletion(true) ? 0 : 1);

)):
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WordCount in Spark

e The same code is much simpler in Spark
e To run the Spark shell type: ./bin/spark-shell
e The code

val textFile = sc.textFile(”~/data/all—bible.txt")
val counts = (textFile.flatMap(line => line.split(” "))
.map(word => (word, 1))
.reduceByKey (- + _.))
counts.saveAsTextFile(”~/data/all —bible—counts.txt")

Alternatively:

val textFile = spark.read.textFile(””/data/all—bible.txt")

val wordCounts = textFile.flatMap(line => line.split(” ")).groupByKey(identity).
count ()
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Matrix-vector multiplication in Spark

e The Spark code is quite simple:

val x = sc.textFile(”"”/data/x.txt").map(line => {val t
trim.tolnt, t(1).trim.toDouble)})

line.split(”,”); (t(0).

val vectorX = x.map{case (i,v) => v}.collect
val broadcastedX = sc.broadcast(vectorX)
val matrix = sc.textFile(”"/data/M.txt"”).map(line => {val t = line.split(",”); (t

(0).trim.tolnt, t(1).trim.tolnt, t(2).trim.toDouble)})
val v = matrix.map { case (i,j,a) => (i, a % broadcastedX.value(j—1))}.reduceByKey(

-+ 2)
v.toDF.orderBy (" -1").show

42 /45



Outline

4 Summary

43 /45



Summary

Computational burden — data partitioning, distributed systems.

Data partitioning
New data-intensive challenges like search engines.
MapReduce: The overall idea and simple algorithms.

Spark: MapReduce in practice.

44 /45



Bibliography

® J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2014
http://infolab.stanford.edu/~ullman/mmds.html

e J.Lin and Ch. Dyer. Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010
http://lintool.github.com/MapReduceAlgorithms/

® Ch. Lam. Hadoop in Action.
Manning Publications Co., 2011

45 /45


http://infolab.stanford.edu/~ullman/mmds.html
http://lintool.github.com/MapReduceAlgorithms/

	Data partitioning
	MapReduce
	Spark
	Summary

