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Review of previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.
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Processing of massive data sets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Summarization, materialization, and denormalization.

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Partitioning and sharding (Map-Reduce, distributed databases).
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Outline

1 Physical storage and data access

2 Materialization, denormalization and summarization

3 Summary
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Physical storage

• How to store the data below:

Year Products Sales

2010 Mountain 5076
2010 Road 4005
2010 Touring 3560
2011 Mountain 6503
2011 Road 4503
2011 Touring 3445
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Physical storage

• How to store the data below:

Sales Products

Year Mountain Road Touring

2010 5076 4005 3560
2011 6503 4503 3445
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Physical storage

• How to store the data below:

5 0 0 34 -1
0 0 0 13 0
-9 0 0 0 2
1 0 0 0 0
0 -1 0 0 2
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Physical storage

• How to store the data below:

Row Column Value

1 1 5
1 4 34
1 5 -1
2 4 13
3 1 -9
3 5 2
4 1 1
5 2 -1
5 5 2
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Physical storage

• Row-based,

• Column-based,

• Key-values stores,

• Multi-dimensional arrays,

• Dense vs. sparse structures,

• Relational OLAP vs. Multidimensional OLAP.
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Physical storage

• The following table can be stored in different ways:

Year Products Sales

2010 Mountain 5076
2010 Road 4005
2010 Touring 3560
2011 Mountain 6503
2011 Road 4503
2011 Touring 3445
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Physical storage

• Row-based storage:

001: 2010, Mountain, 5076, 002: 2010, Road, 4005, 003: 2010,
Touring, 3560, 004: 2011, Mountain, 6503, 005: 2011, Road, 4503
006: 2011, Touring, 3445.

• Column-based storage:

Y: 2010, 2010, 2010, 2011, 2011, 2011, P: Mountain, Road, Touring,
Mountain, Road, Touring, S: 5076, 5004, 3560, 6503, 4503, 3445.

or

Y: 2010: 001, 002, 003, 2011: 004, 005, 006, P: Mountain: 001,
004, Road: 002, 005, Touring: 003, 006, S: 5076: 001, 4005, 002,
3560: 003, 6503: 004, 4503: 005, 3445: 006
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Physical storage

• Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011,
006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring,
004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076,
002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

• Multidimensional array:

Y: 2010, 2011, P: Mountain, Road, Touring, S: 5076, 4005, 3560,
6503, 4503, 3445
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Data access

• Hashing

• Sorting (→ tree-based indexing).
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Grouping

• Group-by is usually performed in the following way:

I Partition tuples on grouping attributes: tuples in same group are
placed together, and in different groups separated,

I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:

I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.
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Grouping

• Example: Grouping by sorting (Month, City):

Month City Sale

March Poznań 105
March Warszawa 135
March Poznań 50
May Warszawa 100
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75

−→

Month City Sale

March Poznań 105
March Poznań 50
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75
May Warszawa 100

↓
Month City Sale

March Poznań 155
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 175
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Indexes

• Indexes allow efficient search on some attributes due to the way they
are organized.

• An index is a “thin” copy of a relation (not all columns from the
relation are included, the index is sorted in a particular way).

• Index-only plans use small indexes in place of large relations.

• Query processing on indexes – without accessing base tables.

• Indexes on two and more columns.
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Indexes

• Inverted lists,

• Trees,

• Bitmap index,

• Bit-sliced index,

• Projection index,

• Join index.
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Inverted list

• Inverted list stores a mapping from content (e.g., words) to its
locations in a database (e.g., in documents):

document 1 −→ word 1, word 5, word 4, word 175, word 7
document 2 −→ word 54, word 1, word 4, word 6, word 71
document 3 −→ word 5, word 175, word 11

· · ·
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Inverted list

• Inverted list stores a mapping from content (e.g., words) to its
locations in a database (e.g., in documents):

word 1 −→ document 1, document 2
· · ·

word 4 −→ document 1, document 2
word 5 −→ document 1, document 3
word 6 −→ document 2, . . .

· · ·
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Bitmap index

• Bitmap indexes use bit arrays (commonly called ”bitmaps”) to encode
values on a given attribute and answer queries by performing bitwise
logical operations on these bitmaps.

Customer City Car

C1 Detroit Ford
C2 Chicago Honda
C3 Detroit Honda
C4 Poznań Ford
C5 Paris BMW
C6 Paris Nissan

↓
Customer Chicago Detroit Paris Poznań

C1 0 1 0 0
C2 1 0 0 0
C3 0 1 0 0
C4 0 0 0 1
C5 0 0 1 0
C6 0 0 1 0

→

Bitmap Array of bytes

Chicago 010000 (00)
Detroit 101000 (00)
Paris 010011 (00)

Poznań 000100 (00)
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Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.
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Bit-sliced index

• Bit-sliced index is used for fact table measures and numerical
(integer) attributes:

I Efficient aggregation,
I Efficient range filtering.

• Definition:

I Assume, that values of attribute a are integer numbers coded by n+ 1
bits. In this case, attribute a can be stored as binary attributes
a0, a1, . . . , an, such that

a =

n∑
i=0

2iai = a0 + 2a1 + 22a2 · · ·+ 2nan.

Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.
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Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.
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Bit-sliced index

• Example:

Amount

5
13
2
6
7

Bitmap

0101
1101
0010
0110
0111

Bit-sliced index:
I B4: 01000
I B3: 11011
I B2: 00111
I B1: 11001
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Bit-sliced index

• Example:
I Computing the sum:

Amount

5
13
2
6
7
Sum: 33

Bit-sliced index: Counting ones:
B4: 01000 1
B3: 11011 4
B2: 00111 3
B1: 11001 3

Final results: 1 · 23 + 4 · 22 + 3 · 21 + 3 · 20 = 8 + 16 + 6 + 3 = 33

Problem: How to efficiently count the number of ones in a bitmap?
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Fast bitmap count

• Count the number of 1’s in a bitmap:

I Treat the bitmap as a byte array.
I Pre-compute lookup table with number of 1’s in each byte.
I Cycle through bitmap one byte at a time, accumulating count using.

lookup table

• Pseudocode:
numSetBits[0] = 0;

numSetBits[1] = 1;

numSetBits[2] = 1;

numSetBits[3] = 2;

. . .
numSetBits[255] = 8;

count = 0;

for (int i = 0; i < n/8; i++)

count += numSetBits[bitmap[i]];

• Treating bitmap as short int array → even faster
I Lookup table has 65536 entries instead of 256.
I Bitmap of n bits → only add n/16 numbers.
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Fast bitmap count

• Count the number of 1’s in a bitmap
I Use smartly properties of binary coding.
I Making count to be linear with the number of ones.

• Pseudocode
word = bitmap[i];

count = 0;

while (word != 0)

word &= (word - 1);

count++;
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Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:

I Logically: index entries are < V aule,RID > pairs,
I Stored in same order as records in relation (sorted by RID),
I In practice: storing RID is unnecessary (array storage format, array

index determined from RID).
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Join index

• Join indexes map the tuples in the join result of two relations to the
source tables.

Product

Id Name Category Join index

P1 Milk Groceries S1, S3, S5, S6
P2 Bread Groceries S2, S4

Sales

Id Product Customer Date Price

S1 P1 C1 D1 10
S2 P2 C1 D1 11
S3 P1 C2 D1 40
S4 P2 C3 D1 8
S5 P1 C2 D2 44
S6 P1 C2 D2 4

25 / 42



Storing and accessing multidimensional cubes

• Dense and sparse dimensions

• Organize a multi-dimensional cube by properly setting dimension
types.

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Date and measures are rather dense,
I Product and Localization are rather sparse.
I Two extreme data cube organizations are possible.
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Storing and accessing multidimensional cubes

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Two extreme data cube organizations are possible.

JAN FEB MAR
East West South East West South East West South

Prod. A XXX XXX XXX XXX XXX XXX
Rev. Prod. B XXX XXX XXX XXX XXX XXX

Prod. C XXX XXX XXX XXX XXX XXX
Prod. A XXX XXX XXX XXX XXX XXX

Exp. Prod. B XXX XXX XXX XXX XXX XXX
Prod. C XXX XXX XXX XXX XXX XXX
Prod. A XXX XXX XXX XXX XXX XXX

Net. Prod. B XXX XXX XXX XXX XXX XXX
Prod. C XXX XXX XXX XXX XXX XXX
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I Two extreme data cube organizations are possible.

East West South
JAN FEB MAR JAN FEB MAR JAN FEB MAR

Rev. XXX XXX XXX XXX XXX XXX
Prod. A Exp. XXX XXX XXX XXX XXX XXX

Net. XXX XXX XXX XXX XXX XXX
Rev. XXX XXX XXX XXX XXX XXX

Prod. B. Exp. XXX XXX XXX XXX XXX XXX
Net. XXX XXX XXX XXX XXX XXX
Rev. XXX XXX XXX XXX XXX XXX

Prod. C. Exp. XXX XXX XXX XXX XXX XXX
Net. XXX XXX XXX XXX XXX XXX
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Storing and accessing multidimensional cubes

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Two extreme data cube organizations are possible.

• The first organization allows to efficiently store the cube using 3× 3
data chunks — some of the chunks are empty.

• The second organization is inefficient.
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Storing and accessing multidimensional cubes

• Construct an index on sparse dimensions.

• Each leaf points to a multidimensional array that stores dense
dimensions.

• The multidimensional arrays can be still compressed: bitmap
compression, run-length encoding, etc.

28 / 42



Storing and accessing multidimensional cubes

• Construct an index on sparse dimensions.

• Each leaf points to a multidimensional array that stores dense
dimensions.

• The multidimensional arrays can be still compressed: bitmap
compression, run-length encoding, etc.

28 / 42



Storing and accessing multidimensional cubes

• Construct an index on sparse dimensions.

• Each leaf points to a multidimensional array that stores dense
dimensions.

• The multidimensional arrays can be still compressed: bitmap
compression, run-length encoding, etc.

28 / 42



Compression

• Example:
I A sparse array:

Product Mountain Road Touring

Day 1/1/2010 3
2/1/2011 2
3/1/2011 5

can be stored as a sequence of non-missing values

3, 2, 5

,

but we need add additional information about positions of these values:
• Indexes: 3,5,9
• Gaps: 2,1,3
• Bitmaps: 001010001
• Run-length codes: Null, Null, 3, Null, 2, Null×3, 5
• Indexes and gaps can be further coded by prefix codes.
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Outline

1 Physical storage and data access

2 Materialization, denormalization and summarization

3 Summary
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Materialization, denormalization and summarization

• Relational and multidimensional model with summarizations:

Year Products Sales

2010 Mountain 5076
2010 Road 4005
2010 Touring 3560
2011 Mountain 6503
2011 Road 4503
2011 Touring 3445
2010 * 12461
2011 * 14451

* Mountain 11579
* Road 6503
* Touring 7005
* * 27092

Product Mountain Road Touring All

Year 2010 5076 4005 3560 12641
2011 6503 4503 3445 14451

All 11579 8508 7005 27092
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Materialization, denormalization and summarization

• Trade-off between query performance and load performance

• To improve performance of query processing:
I Precompute as much as possible
I Build additional data structures like indexes

• The costs of the above are:
I Disk space,
I Load time,
I Processing time of building and updating of data structures
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Materialization, denormalization and summarization

• Typical techniques:

I Aggregate (Summary) tables: aggregating fact tables across some
dimensions.

I Dimension aggregates: for example, base date dimension, monthly
aggregate dimension, yearly aggregate dimension.

I ROLAP: Materialized views or indexed views.
I MOLAP: Subcubes or aggregations.
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Materialization, denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:

I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.
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View vs. materialized views

• View is a derived relation defined in terms of base (stored) relations.

• Materialized view (or indexed view) is a view stored in a database
that is updated from the original base tables from time to time.
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Query re-write

• Query rewrite: transforms a given query expressed in terms of base
tables or views into a statement accessing one or more materialized
views (e.g., aggregates) that are defined on the detail tables.

• The transformation is transparent to the end user or application,
requiring no intervention and no reference to the materialized view in
the query.
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Query re-write

• Example: Materialized views in SQL
I Materialized view V :

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 2010

GROUP BY p.name, p.year of release;

I Materialized view V consists of:
• Join of the fact table with dimension table,
• Group by dimension attributes,
• Aggregation of measures included in fact table.
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Query re-write

• Example: Materialized views in SQL

I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 2011

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 2011;

I The query re-write is possible since the exact match holds:

• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .
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Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.

I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.
I Full refresh and view maintenance.

I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

39 / 42



Outline

1 Physical storage and data access

2 Materialization, denormalization and summarization

3 Summary

40 / 42



Summary

• Physical storage and data access,

• Materialization, denormalization and summarization.
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