Finding Similar Items II

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, eighth semester
Academic year 2018/19 (summer semester)

Review of the previous lectures

- Processing of massive datasets
- Evolution of database systems
- OLTP and OLAP systems
- ETL
- Dimensional modeling
- Data processing
- MapReduce in Spark
- Approximate query processing
- Finding similar items:
- Minhash signatures

Outline

(1) Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

Outline

(1) Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions
(4) LSH Families for Other Distance Measures

5 Summary

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!
- The reason is that the number of pairs of documents may be too large.

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!
- The reason is that the number of pairs of documents may be too large.
- Example: We have a million documents and use signatures of length 250:

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!
- The reason is that the number of pairs of documents may be too large.
- Example: We have a million documents and use signatures of length 250:
- Then we use 1000 bytes per document for the signatures.

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!
- The reason is that the number of pairs of documents may be too large.
- Example: We have a million documents and use signatures of length 250:
- Then we use 1000 bytes per document for the signatures.
- The entire data fits in a gigabyte - less than a typical main memory of a laptop.

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!
- The reason is that the number of pairs of documents may be too large.
- Example: We have a million documents and use signatures of length 250:
- Then we use 1000 bytes per document for the signatures.
- The entire data fits in a gigabyte - less than a typical main memory of a laptop.
- However, there are $\binom{1000000}{2}$ or half a trillion pairs of documents.

Locality-sensitive hashing for documents

- We can use minhashing to compress large documents into small signatures and preserve the expected similarity of any pair of documents.
- But still, it may be impossible to find the pairs with greatest similarity efficiently!!!
- The reason is that the number of pairs of documents may be too large.
- Example: We have a million documents and use signatures of length 250:
- Then we use 1000 bytes per document for the signatures.
- The entire data fits in a gigabyte - less than a typical main memory of a laptop.
- However, there are $\binom{1000000}{2}$ or half a trillion pairs of documents.
- If it takes a microsecond to compute the similarity of two signatures, then it takes almost six days to compute all the similarities on that laptop.

Locality-sensitive hashing for documents

- However, often we want only the most similar pairs or all pairs that are above some lower bound in similarity.

Locality-sensitive hashing for documents

- However, often we want only the most similar pairs or all pairs that are above some lower bound in similarity.
- If so, then we need to focus our attention only on pairs that are likely to be similar, without investigating every pair.

Locality-sensitive hashing for documents

- However, often we want only the most similar pairs or all pairs that are above some lower bound in similarity.
- If so, then we need to focus our attention only on pairs that are likely to be similar, without investigating every pair.
- A technique called locality-sensitive hashing (LSH) is a solution for this problem.

LSH

- General idea of LSH:

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is a candidate pair.

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is a candidate pair.
- We check only the candidate pairs for similarity.

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is a candidate pair.
- We check only the candidate pairs for similarity.
- The hope is that most of the dissimilar pairs will never hash to the same bucket, and therefore will never be checked.

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is a candidate pair.
- We check only the candidate pairs for similarity.
- The hope is that most of the dissimilar pairs will never hash to the same bucket, and therefore will never be checked.
- Those dissimilar pairs that do hash to the same bucket are false positives.

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is a candidate pair.
- We check only the candidate pairs for similarity.
- The hope is that most of the dissimilar pairs will never hash to the same bucket, and therefore will never be checked.
- Those dissimilar pairs that do hash to the same bucket are false positives.
- The truly similar pairs that will not hash to the same bucket under at least one of the hash functions are false negatives.

LSH

- General idea of LSH:
- Hash items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is a candidate pair.
- We check only the candidate pairs for similarity.
- The hope is that most of the dissimilar pairs will never hash to the same bucket, and therefore will never be checked.
- Those dissimilar pairs that do hash to the same bucket are false positives.
- The truly similar pairs that will not hash to the same bucket under at least one of the hash functions are false negatives.
- We hope to have a small fraction of false positives and false negatives.

LSH for minhash signatures

- For minhash signatures divide the signature matrix into b bands consisting of r rows each.

LSH for minhash signatures

- For minhash signatures divide the signature matrix into b bands consisting of r rows each.
- For each band use a hash function that takes vectors of r integers (the portion of one column within that band) and hashes them to some large number of buckets.

band 1 | | \cdots | 1 | 0 | 0 | 0 | 2 | \cdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \cdots | 3 | 2 | 1 | 2 | 2 | \cdots |
| band 2 | \cdots | 0 | 1 | 3 | 1 | 1 | \cdots |
| | \cdots | 5 | 3 | 5 | 1 | 3 | \cdots |
| | \cdots | 1 | 4 | 1 | 2 | 4 | \cdots |
| | \cdots | 6 | 1 | 6 | 1 | 1 | \cdots |
| | \cdots | 3 | 1 | 4 | 6 | 6 | \cdots |
| | \cdots | 3 | 1 | 1 | 6 | 6 | \cdots |
| | \cdots | 2 | 5 | 3 | 4 | 4 | \cdots |

LSH for minhash signatures

- For minhash signatures divide the signature matrix into b bands consisting of r rows each.
- For each band use a hash function that takes vectors of r integers (the portion of one column within that band) and hashes them to some large number of buckets.

band 1 | | \cdots | 1 | 0 | 0 | 0 | 2 | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \cdots | 3 | 2 | 1 | 2 | 2 | \cdots |
| band 2 | \cdots | 0 | 1 | 3 | 1 | 1 | \cdots |
| | | \cdots | 5 | 3 | 5 | 1 | 3 |
| \cdots | | | | | | | |
| | \cdots | 1 | 4 | 1 | 2 | 4 | \cdots |
| | \cdots | 6 | 1 | 6 | 1 | 1 | \cdots |
| | \cdots | 3 | 1 | 4 | 6 | 6 | \cdots |
| | \cdots | 3 | 1 | 1 | 6 | 6 | \cdots |
| | \cdots | 2 | 5 | 3 | 4 | 4 | \cdots |

- We assume that the chances of an accidental collision to be very small.

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.
- The probability that the signatures do not agree in at least one row of a particular band is

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.
- The probability that the signatures do not agree in at least one row of a particular band is $1-s^{r}$.

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.
- The probability that the signatures do not agree in at least one row of a particular band is $1-s^{r}$.
- The probability that the signatures do not agree in all rows of any of the bands is

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.
- The probability that the signatures do not agree in at least one row of a particular band is $1-s^{r}$.
- The probability that the signatures do not agree in all rows of any of the bands is $\left(1-s^{r}\right)^{b}$.

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.
- The probability that the signatures do not agree in at least one row of a particular band is $1-s^{r}$.
- The probability that the signatures do not agree in all rows of any of the bands is $\left(1-s^{r}\right)^{b}$.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is

Analysis of the banding technique

- Suppose we use b bands of r rows each and that a particular pair of documents have Jaccard similarity s.
- Recall that the probability the minhash signatures for these documents agree in any one particular row of the signature matrix is s.
- The probability that two documents become a candidate pair is:

$$
1-\left(1-s^{r}\right)^{b}
$$

because of the following reasoning:

- The probability that the signatures agree in all rows of one particular band is s^{r}.
- The probability that the signatures do not agree in at least one row of a particular band is $1-s^{r}$.
- The probability that the signatures do not agree in all rows of any of the bands is $\left(1-s^{r}\right)^{b}$.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1-\left(1-s^{r}\right)^{b}$.

Analysis of the banding technique

- The probability that two documents become a candidate pair has a form of an S-curve.

Analysis of the banding technique

- The threshold, the value of similarity s at which the rise becomes steepest, is a function of b and r.
- Use sympy to compute the threshold:

```
>> from sympy import *
>> s,r,b=Symbol('s'),Symbol('r'),Symbol('b')
>> d = diff(1-(1-s**r)**b, s, 2)
>> solve(d,s)
[((r - 1)/(b*r - 1))**(1/r)]
```

- An approximation to the threshold is $(1 / b)^{1 / r}$.
- Example: for $b=16$ and $r=4$, the threshold is approximately $1 / 2$.

Analysis of the banding technique

- Example:

Analysis of the banding technique

- Example:
- Consider the case for $b=20$ and $r=5$ (we have signatures of length 100)

Analysis of the banding technique

- Example:
- Consider the case for $b=20$ and $r=5$ (we have signatures of length 100)
- For $s=0.8,1-s^{r}=0.672$, and $\left(1-s^{r}\right)^{b}=0.00035$.

Analysis of the banding technique

- Example:
- Consider the case for $b=20$ and $r=5$ (we have signatures of length 100)
- For $s=0.8,1-s^{r}=0.672$, and $\left(1-s^{r}\right)^{b}=0.00035$.
- Interpretation:

Analysis of the banding technique

- Example:
- Consider the case for $b=20$ and $r=5$ (we have signatures of length 100)
- For $s=0.8,1-s^{r}=0.672$, and $\left(1-s^{r}\right)^{b}=0.00035$.
- Interpretation:
- If we consider two documents with similarity 0.8 , then in any one band, they have only about 33% chance of becoming a candidate pair.

Analysis of the banding technique

- Example:
- Consider the case for $b=20$ and $r=5$ (we have signatures of length 100)
- For $s=0.8,1-s^{r}=0.672$, and $\left(1-s^{r}\right)^{b}=0.00035$.
- Interpretation:
- If we consider two documents with similarity 0.8 , then in any one band, they have only about 33% chance of becoming a candidate pair.
- However, there are 20 bands and thus 20 chances to become a candidate.

Analysis of the banding technique

- Example:
- Consider the case for $b=20$ and $r=5$ (we have signatures of length 100)
- For $s=0.8,1-s^{r}=0.672$, and $\left(1-s^{r}\right)^{b}=0.00035$.
- Interpretation:
- If we consider two documents with similarity 0.8 , then in any one band, they have only about 33% chance of becoming a candidate pair.
- However, there are 20 bands and thus 20 chances to become a candidate.
- That is why the final probability is 0.99965 (since the probability of a false negative is 0.00035).

Procedure for finding similar documents

- Choose a threshold t that defines how similar documents have to be in order for them to be regarded as a desired "similar pair."

Procedure for finding similar documents

- Choose a threshold t that defines how similar documents have to be in order for them to be regarded as a desired "similar pair."
- Pick a number of bands b and a number of rows r such that $b r=n$, and the threshold t is approximately $(1 / b)^{1 / r}$.

Procedure for finding similar documents

- Choose a threshold t that defines how similar documents have to be in order for them to be regarded as a desired "similar pair."
- Pick a number of bands b and a number of rows r such that $b r=n$, and the threshold t is approximately $(1 / b)^{1 / r}$.
- If avoidance of false negatives is important, you may wish to select b and r to produce a threshold lower than t.

Procedure for finding similar documents

- Choose a threshold t that defines how similar documents have to be in order for them to be regarded as a desired "similar pair."
- Pick a number of bands b and a number of rows r such that $b r=n$, and the threshold t is approximately $(1 / b)^{1 / r}$.
- If avoidance of false negatives is important, you may wish to select b and r to produce a threshold lower than t.
- If speed is important and you wish to limit false positives, select b and r to produce a higher threshold.

Outline

(1) Locality-Sensitive Hashing for Documents

2 Distance measures
(3) Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

Distance measure

- Suppose we have a set of points, called a space.

Distance measure

- Suppose we have a set of points, called a space.
- A distance measure on this space is a function $d(\boldsymbol{x}, \boldsymbol{y})$ that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:

Distance measure

- Suppose we have a set of points, called a space.
- A distance measure on this space is a function $d(\boldsymbol{x}, \boldsymbol{y})$ that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:
(1) $d(\boldsymbol{x}, \boldsymbol{y}) \geq 0$ (no negative distances),

Distance measure

- Suppose we have a set of points, called a space.
- A distance measure on this space is a function $d(\boldsymbol{x}, \boldsymbol{y})$ that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:
(1) $d(\boldsymbol{x}, \boldsymbol{y}) \geq 0$ (no negative distances),

2 $d(\boldsymbol{x}, \boldsymbol{y})=0$ if and only if $\boldsymbol{x}=\boldsymbol{y}$ (distances are positive, except for the distance from a point to itself),

Distance measure

- Suppose we have a set of points, called a space.
- A distance measure on this space is a function $d(\boldsymbol{x}, \boldsymbol{y})$ that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:
(1) $d(\boldsymbol{x}, \boldsymbol{y}) \geq 0$ (no negative distances),
$2 d(\boldsymbol{x}, \boldsymbol{y})=0$ if and only if $\boldsymbol{x}=\boldsymbol{y}$ (distances are positive, except for the distance from a point to itself),

3. $d(\boldsymbol{x}, \boldsymbol{y})=d(\boldsymbol{y}, \boldsymbol{x})$ (distance is symmetric),

Distance measure

- Suppose we have a set of points, called a space.
- A distance measure on this space is a function $d(\boldsymbol{x}, \boldsymbol{y})$ that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:

1) $d(\boldsymbol{x}, \boldsymbol{y}) \geq 0$ (no negative distances),
$2 d(\boldsymbol{x}, \boldsymbol{y})=0$ if and only if $\boldsymbol{x}=\boldsymbol{y}$ (distances are positive, except for the distance from a point to itself),
3 . $d(\boldsymbol{x}, \boldsymbol{y})=d(\boldsymbol{y}, \boldsymbol{x})$ (distance is symmetric),
$4 d(\boldsymbol{x}, \boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{z})+d(\boldsymbol{z}, \boldsymbol{y})$ (the triangle inequality).

Distance measure

- Suppose we have a set of points, called a space.
- A distance measure on this space is a function $d(\boldsymbol{x}, \boldsymbol{y})$ that takes two points in the space as arguments and produces a real number, and satisfies the following axioms:
(1) $d(\boldsymbol{x}, \boldsymbol{y}) \geq 0$ (no negative distances),

2) $d(\boldsymbol{x}, \boldsymbol{y})=0$ if and only if $\boldsymbol{x}=\boldsymbol{y}$ (distances are positive, except for the distance from a point to itself),
3 . $d(\boldsymbol{x}, \boldsymbol{y})=d(\boldsymbol{y}, \boldsymbol{x})$ (distance is symmetric),
$4 d(\boldsymbol{x}, \boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{z})+d(\boldsymbol{z}, \boldsymbol{y})$ (the triangle inequality).

- The triangle-inequality axiom is what makes all distance measures behave as if distance describes the length of a shortest path from one point to another.

Euclidean distances

- The conventional distance measure in n-dimensional Euclidean space, which we shall refer to as the L_{2}-norm, is defined as:

$$
d_{2}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}}
$$

- In general, for any constant p, we can define the L_{p}-norm to be the distance measure d defined by:

$$
d_{p}(\boldsymbol{x}, \boldsymbol{y})=\left(\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|^{p}\right)^{\frac{1}{p}}
$$

Euclidean distances

- Special cases are, besides the L_{2}-norm mentioned above,
- Manhattan distance or L_{1}-norm:

$$
d_{1}(\boldsymbol{x}, \boldsymbol{y})=\left(\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|\right)
$$

- Chebyshev distance or L_{∞}-norm:

$$
d_{\infty}(\boldsymbol{x}, \boldsymbol{y})=\max _{j}\left(\left|x_{j}-y_{j}\right|\right)
$$

Euclidean distances

- The spheres of L_{p} with different $p: p=2$

Euclidean distances

- The spheres of L_{p} with different $p: p=2$

Euclidean distances

- The spheres of L_{p} with different $p: p=0.2$

Euclidean distances

- The spheres of L_{p} with different $p: p=0.2$

Euclidean distances

- The spheres of L_{p} with different $p: p=0.5$

Euclidean distances

- The spheres of L_{p} with different $p: p=0.5$

Euclidean distances

- The spheres of L_{p} with different $p: p=1$

Euclidean distances

- The spheres of L_{p} with different $p: p=1$

Euclidean distances

- The spheres of L_{p} with different $p: p=1.5$

Euclidean distances

- The spheres of L_{p} with different $p: p=1.5$

Euclidean distances

- The spheres of L_{p} with different $p: p=3$

Euclidean distances

- The spheres of L_{p} with different $p: p=3$

Euclidean distances

- The spheres of L_{p} with different $p: p=10$

Euclidean distances

- The spheres of L_{p} with different $p: p=10$

Jaccard distance

- Jaccard similarity is not a distance measure!
- We define the Jaccard distance of sets by:

$$
d_{J a c c}=1-S I M(\boldsymbol{x}, \boldsymbol{y})
$$

where $\operatorname{SIM}(\boldsymbol{x}, \boldsymbol{y})$ is defined as before.

Cosine distance

- Let points be thought of as directions and do not distinguish between a vector and a multiple of that vector.

Cosine distance

- Let points be thought of as directions and do not distinguish between a vector and a multiple of that vector.
- The cosine distance between two points is the angle that the vectors to those points make.

Cosine distance

- Let points be thought of as directions and do not distinguish between a vector and a multiple of that vector.
- The cosine distance between two points is the angle that the vectors to those points make.
- This angle will be in the range 0 to 180 degrees, regardless of how many dimensions the space has.

Computing the cosine distance

- Given two vectors \boldsymbol{x} and \boldsymbol{y}, the cosine of the angle between them is the dot product $\boldsymbol{x} \cdot \boldsymbol{y}$ divided by the L_{2}-norms of \boldsymbol{x} and \boldsymbol{y} :

$$
\cos (\theta)=\frac{\sum_{j=1}^{n} x_{j} y_{j}}{\sqrt{\sum_{j=1}^{n} x_{j}^{2}} \sqrt{\sum_{j=1}^{n} y_{j}^{2}}}
$$

Computing the cosine distance

- Given two vectors \boldsymbol{x} and \boldsymbol{y}, the cosine of the angle between them is the dot product $\boldsymbol{x} \cdot \boldsymbol{y}$ divided by the L_{2}-norms of \boldsymbol{x} and \boldsymbol{y} :

$$
\cos (\theta)=\frac{\sum_{j=1}^{n} x_{j} y_{j}}{\sqrt{\sum_{j=1}^{n} x_{j}^{2}} \sqrt{\sum_{j=1}^{n} y_{j}^{2}}}
$$

- Apply the arccos function to translate $\cos (\theta)$ to an angle in the [0,180] degree range.

Hamming Distance

- The Hamming distance between two vectors is the number of components in which they differ:

$$
d_{H}=\sum_{j=1}^{n} \llbracket x_{j} \neq y_{j} \rrbracket
$$

Outline

(1) Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

Theory of locality-sensitive functions

- For a given distance measure we would like to find a family of functions that can be combined to distinguish strongly between pairs at a low distance from pairs at a high distance.

Theory of locality-sensitive functions

- For a given distance measure we would like to find a family of functions that can be combined to distinguish strongly between pairs at a low distance from pairs at a high distance.
- The minhash functions is one example of such family that uses the banding technique to achieve the above goal.

Theory of Locality-Sensitive Functions

- There are three conditions that we need for a family of functions:

Theory of Locality-Sensitive Functions

- There are three conditions that we need for a family of functions:
(1) They must be more likely to make close pairs be candidate pairs than distant pairs.

Theory of Locality-Sensitive Functions

- There are three conditions that we need for a family of functions:
(1) They must be more likely to make close pairs be candidate pairs than distant pairs.
2 They must be statistically independent to enable estimation of the probability that two or more functions will all give a certain response by the product rule for independent events.

Theory of Locality-Sensitive Functions

- There are three conditions that we need for a family of functions:
(1) They must be more likely to make close pairs be candidate pairs than distant pairs.
2 They must be statistically independent to enable estimation of the probability that two or more functions will all give a certain response by the product rule for independent events.
3 They must be efficient, in two ways:

Theory of Locality-Sensitive Functions

- There are three conditions that we need for a family of functions:
(1) They must be more likely to make close pairs be candidate pairs than distant pairs.
2 They must be statistically independent to enable estimation of the probability that two or more functions will all give a certain response by the product rule for independent events.
3 They must be efficient, in two ways:
- They must be able to identify candidate pairs in time much less than the time it takes to look at all pairs.

Theory of Locality-Sensitive Functions

- There are three conditions that we need for a family of functions:
(1) They must be more likely to make close pairs be candidate pairs than distant pairs.
2 They must be statistically independent to enable estimation of the probability that two or more functions will all give a certain response by the product rule for independent events.
3 They must be efficient, in two ways:
- They must be able to identify candidate pairs in time much less than the time it takes to look at all pairs.
- They must be combinable to build functions that are better at avoiding false positives and negatives, and the combined functions must also take time that is much less than the number of pairs.

Locality-sensitive functions

- Consider functions $f(\boldsymbol{x}, \boldsymbol{y})$ that take two items and render a decision about whether these items should be a candidate pair.

Locality-sensitive functions

- Consider functions $f(\boldsymbol{x}, \boldsymbol{y})$ that take two items and render a decision about whether these items should be a candidate pair.
- It is convenient to use the notation:

Locality-sensitive functions

- Consider functions $f(\boldsymbol{x}, \boldsymbol{y})$ that take two items and render a decision about whether these items should be a candidate pair.
- It is convenient to use the notation:
- $f(\boldsymbol{x})=f(\boldsymbol{y})$ to mean $f(\boldsymbol{x}, \boldsymbol{y})$ is yes: make \boldsymbol{x} and \boldsymbol{y} a candidate pair,

Locality-sensitive functions

- Consider functions $f(\boldsymbol{x}, \boldsymbol{y})$ that take two items and render a decision about whether these items should be a candidate pair.
- It is convenient to use the notation:
- $f(\boldsymbol{x})=f(\boldsymbol{y})$ to mean $f(\boldsymbol{x}, \boldsymbol{y})$ is yes: make \boldsymbol{x} and \boldsymbol{y} a candidate pair,
- $f(\boldsymbol{x}) \neq f(\boldsymbol{y})$ to mean: do not make \boldsymbol{x} and \boldsymbol{y} a candidate pair unless some other function concludes we should do so.

Locality-sensitive functions

- Consider functions $f(\boldsymbol{x}, \boldsymbol{y})$ that take two items and render a decision about whether these items should be a candidate pair.
- It is convenient to use the notation:
- $f(\boldsymbol{x})=f(\boldsymbol{y})$ to mean $f(\boldsymbol{x}, \boldsymbol{y})$ is yes: make \boldsymbol{x} and \boldsymbol{y} a candidate pair,
- $f(\boldsymbol{x}) \neq f(\boldsymbol{y})$ to mean: do not make \boldsymbol{x} and \boldsymbol{y} a candidate pair unless some other function concludes we should do so.
- A collection of functions of this form will be called a family of functions.

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:
(1) If $d(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at least p_{1}.

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:
(1) If $d(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at least p_{1}.

2 If $d(\boldsymbol{x}, \boldsymbol{y}) \geq d_{2}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at most p_{2}.

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:
(1) If $d(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at least p_{1}.

2 If $d(\boldsymbol{x}, \boldsymbol{y}) \geq d_{2}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at most p_{2}.

- Example: For Jaccard distance we have:

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:
(1) If $d(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at least p_{1}.

2 If $d(\boldsymbol{x}, \boldsymbol{y}) \geq d_{2}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at most p_{2}.

- Example: For Jaccard distance we have:
- We interpret a minhash function $m h$ to make \boldsymbol{x} and \boldsymbol{y} a candidate pair if and only if $m h(\boldsymbol{x})=m h(\boldsymbol{y})$.

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:
(1) If $d(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at least p_{1}.

2 If $d(\boldsymbol{x}, \boldsymbol{y}) \geq d_{2}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at most p_{2}.

- Example: For Jaccard distance we have:
- We interpret a minhash function $m h$ to make \boldsymbol{x} and \boldsymbol{y} a candidate pair if and only if $m h(\boldsymbol{x})=m h(\boldsymbol{y})$.
- Thus, the family of minhash functions is a $\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$-sensitive family for any d_{1} and d_{2}, where $0 \leq d_{1}<d_{2} \leq 1$.

Locality-sensitive functions

- Let $d_{1}<d_{2}$ be two distances according to some distance measure d.
- A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in \mathcal{F}$:
(1) If $d(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at least p_{1}.

2 If $d(\boldsymbol{x}, \boldsymbol{y}) \geq d_{2}$, then the probability that $f(\boldsymbol{x})=f(\boldsymbol{y})$ is at most p_{2}.

- Example: For Jaccard distance we have:
- We interpret a minhash function $m h$ to make \boldsymbol{x} and \boldsymbol{y} a candidate pair if and only if $m h(\boldsymbol{x})=m h(\boldsymbol{y})$.
- Thus, the family of minhash functions is a $\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$-sensitive family for any d_{1} and d_{2}, where $0 \leq d_{1}<d_{2} \leq 1$.
- For instance, for $d_{1}=0.3$ and $d_{2}=0.6$ we can assert that the family of minhash functions is a $(0.3,0.6,0.7,0.4)$-sensitive family.

Amplifying a locality-sensitive family

- Suppose we are given a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}.

Amplifying a locality-sensitive family

- Suppose we are given a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}.
- We can construct a new family \mathcal{F}^{\prime} by the AND-construction on \mathcal{F}.

Amplifying a locality-sensitive family

- Suppose we are given a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}.
- We can construct a new family \mathcal{F}^{\prime} by the AND-construction on \mathcal{F}.
- Each member of \mathcal{F}^{\prime} consists of r members of \mathcal{F} for some fixed r.

Amplifying a locality-sensitive family

- Suppose we are given a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}.
- We can construct a new family \mathcal{F}^{\prime} by the AND-construction on \mathcal{F}.
- Each member of \mathcal{F}^{\prime} consists of r members of \mathcal{F} for some fixed r.
- If f is in \mathcal{F}^{\prime}, and f is constructed from the set $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ of members of \mathcal{F}, we say $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for all $i=1,2, \ldots, r$.

Amplifying a locality-sensitive family

- Suppose we are given a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}.
- We can construct a new family \mathcal{F}^{\prime} by the AND-construction on \mathcal{F}.
- Each member of \mathcal{F}^{\prime} consists of r members of \mathcal{F} for some fixed r.
- If f is in \mathcal{F}^{\prime}, and f is constructed from the set $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ of members of \mathcal{F}, we say $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for all $i=1,2, \ldots, r$.
- Since the members of \mathcal{F} are independently chosen to make a member of \mathcal{F}^{\prime}, we can assert that \mathcal{F}^{\prime} is a $\left(d_{1}, d_{2},\left(p_{1}\right)^{r},\left(p_{2}\right)^{r}\right)$-sensitive family.

Amplifying a locality-sensitive family

- Suppose we are given a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}.
- We can construct a new family \mathcal{F}^{\prime} by the AND-construction on \mathcal{F}.
- Each member of \mathcal{F}^{\prime} consists of r members of \mathcal{F} for some fixed r.
- If f is in \mathcal{F}^{\prime}, and f is constructed from the set $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ of members of \mathcal{F}, we say $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for all $i=1,2, \ldots, r$.
- Since the members of \mathcal{F} are independently chosen to make a member of \mathcal{F}^{\prime}, we can assert that \mathcal{F}^{\prime} is a $\left(d_{1}, d_{2},\left(p_{1}\right)^{r},\left(p_{2}\right)^{r}\right)$-sensitive family.
- Example: This construction corresponds to r rows in a single band for minhash functions.

Amplifying a locality-sensitive family

- There is another construction called the OR-construction.

Amplifying a locality-sensitive family

- There is another construction called the OR-construction.
- Each member f of \mathcal{F}^{\prime} is constructed from b members of \mathcal{F}, say $f_{1}, f_{2}, \ldots, f_{b}$.

Amplifying a locality-sensitive family

- There is another construction called the OR-construction.
- Each member f of \mathcal{F}^{\prime} is constructed from b members of \mathcal{F}, say $f_{1}, f_{2}, \ldots, f_{b}$.
- We define $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for one or more values of i.

Amplifying a locality-sensitive family

- There is another construction called the OR-construction.
- Each member f of \mathcal{F}^{\prime} is constructed from b members of \mathcal{F}, say $f_{1}, f_{2}, \ldots, f_{b}$.
- We define $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for one or more values of i.
- This construction turns a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F} into a $\left(d_{1}, d_{2}, 1-\left(1-p_{1}\right)^{b}, 1-\left(1-p_{2}\right)^{b}\right)$-sensitive family \mathcal{F}^{\prime}.

Amplifying a locality-sensitive family

- There is another construction called the OR-construction.
- Each member f of \mathcal{F}^{\prime} is constructed from b members of \mathcal{F}, say $f_{1}, f_{2}, \ldots, f_{b}$.
- We define $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for one or more values of i.
- This construction turns a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F} into a $\left(d_{1}, d_{2}, 1-\left(1-p_{1}\right)^{b}, 1-\left(1-p_{2}\right)^{b}\right)$-sensitive family \mathcal{F}^{\prime}.
- Example: This construction corresponds to b bands of 1 row for minhash functions.

Amplifying a locality-sensitive family

- The AND-construction lowers all probabilities, while the OR-construction makes all probabilities rise.

Amplifying a locality-sensitive family

- The AND-construction lowers all probabilities, while the OR-construction makes all probabilities rise.
- But if we choose \mathcal{F} and r judiciously, we can make the small probability p_{2} get very close to 0 , while the higher probability p_{1} stays significantly away from 0.

Amplifying a locality-sensitive family

- The AND-construction lowers all probabilities, while the OR-construction makes all probabilities rise.
- But if we choose \mathcal{F} and r judiciously, we can make the small probability p_{2} get very close to 0 , while the higher probability p_{1} stays significantly away from 0.
- Similarly, by choosing \mathcal{F} and b judiciously, we can make the larger probability approach 1 while the smaller probability remains bounded away from 1.

Amplifying a locality-sensitive family

- The AND-construction lowers all probabilities, while the OR-construction makes all probabilities rise.
- But if we choose \mathcal{F} and r judiciously, we can make the small probability p_{2} get very close to 0 , while the higher probability p_{1} stays significantly away from 0.
- Similarly, by choosing \mathcal{F} and b judiciously, we can make the larger probability approach 1 while the smaller probability remains bounded away from 1.
- We can, moreover, cascade AND- and OR-constructions in any order to make the low probability close to 0 and the high probability close to $1!!!$

Amplifying a locality-sensitive family

- The AND-construction lowers all probabilities, while the OR-construction makes all probabilities rise.
- But if we choose \mathcal{F} and r judiciously, we can make the small probability p_{2} get very close to 0 , while the higher probability p_{1} stays significantly away from 0.
- Similarly, by choosing \mathcal{F} and b judiciously, we can make the larger probability approach 1 while the smaller probability remains bounded away from 1.
- We can, moreover, cascade AND- and OR-constructions in any order to make the low probability close to 0 and the high probability close to $1!!!$
- Obviously, the better the final family of functions is, the longer it takes to apply the functions from this family.

Amplifying a locality-sensitive family

- Example:

Amplifying a locality-sensitive family

- Example:
- Suppose we start with a family \mathcal{F}.

Amplifying a locality-sensitive family

- Example:
- Suppose we start with a family \mathcal{F}.
- We use the AND-construction with $r=4$ to produce a family \mathcal{F}_{1}.

Amplifying a locality-sensitive family

- Example:
- Suppose we start with a family \mathcal{F}.
- We use the AND-construction with $r=4$ to produce a family \mathcal{F}_{1}.
- We then apply the OR-construction to \mathcal{F}_{1} with $b=4$ to produce a third family F_{2}.

Amplifying a locality-sensitive family

- Example:
- Suppose we start with a family \mathcal{F}.
- We use the AND-construction with $r=4$ to produce a family \mathcal{F}_{1}.
- We then apply the OR-construction to \mathcal{F}_{1} with $b=4$ to produce a third family F_{2}.
- The members of F_{2} each are built from 16 members of \mathcal{F}.

Amplifying a locality-sensitive family

- Example:
- Suppose we start with a family \mathcal{F}.
- We use the AND-construction with $r=4$ to produce a family \mathcal{F}_{1}.
- We then apply the OR-construction to \mathcal{F}_{1} with $b=4$ to produce a third family F_{2}.
- The members of F_{2} each are built from 16 members of \mathcal{F}.
- The 4 -way AND-function converts any probability p into p^{4}, and the 4-way OR-construction, converts this probability further into $1-\left(1-p^{4}\right)^{4}$.

Amplifying a locality-sensitive family

- Example:
- Suppose \mathcal{F} is the minhash functions being a ($0.2,0.6,0.8,0.4$)-sensitive family.

p	$1-\left(1-p^{4}\right)^{4}$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

Amplifying a locality-sensitive family

- Example:
- Suppose \mathcal{F} is the minhash functions being a ($0.2,0.6,0.8,0.4$)-sensitive family.
- Then \mathcal{F}_{2}, the family constructed by a 4-way AND followed by a 4-way OR, is a ($0.2,0.6,0.8785,0.0985$)-sensitive family.

p	$1-\left(1-p^{4}\right)^{4}$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

Amplifying a locality-sensitive family

- Example:

- Suppose \mathcal{F} is the minhash functions being a ($0.2,0.6,0.8,0.4$)-sensitive family.
- Then \mathcal{F}_{2}, the family constructed by a 4-way AND followed by a 4-way OR, is a ($0.2,0.6,0.8785,0.0985$)-sensitive family.

p	$1-\left(1-p^{4}\right)^{4}$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

Amplifying a locality-sensitive family

- Example:

- Suppose \mathcal{F} is the minhash functions being a ($0.2,0.6,0.8,0.4$)-sensitive family.

p	$1-\left(1-p^{4}\right)^{4}$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

- By replacing \mathcal{F} by \mathcal{F}_{2}, we have reduced both the false-negative and false-positive rates, at the cost of making application of the functions take 16 times as long.

Amplifying a locality-sensitive family

- Example:
- For the same cost, we can apply a 4-way OR-construction followed by a 4-way AND-construction.
- Suppose as before that \mathcal{F} is a $(0.2,0.6,0.8,0.4)$-sensitive family.
- Then the constructed family is a $(0.2,0.6,0.9936,0.5740)$-sensitive.
- This choice is not necessarily the best: the higher probability has moved much closer to 1 , but the lower probability has also raised, increasing the number of false positives.

Amplifying a locality-sensitive family

- We can cascade constructions as much as we like.

Amplifying a locality-sensitive family

- We can cascade constructions as much as we like.
- We can combine the two families just discussed and obtain a family build from 256 hash functions.

Amplifying a locality-sensitive family

- We can cascade constructions as much as we like.
- We can combine the two families just discussed and obtain a family build from 256 hash functions.
- It would, for instance, transform a ($0.2,0.8,0.8,0.2$)-sensitive family into a ($0.2,0.8,0.99999996,0.0008715$)-sensitive family.

Outline

(1) Locality-Sensitive Hashing for Documents

2 Distance measures
3) Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

LSH families for Hamming distance

- Suppose we have a space of n-dimensional vectors, and $h(\boldsymbol{x}, \boldsymbol{y})$ denotes the Hamming distance between vectors \boldsymbol{x} and \boldsymbol{y}.

LSH families for Hamming distance

- Suppose we have a space of n-dimensional vectors, and $h(\boldsymbol{x}, \boldsymbol{y})$ denotes the Hamming distance between vectors \boldsymbol{x} and \boldsymbol{y}.
- Take any position i of the vectors and define the function $f_{i}(\boldsymbol{x})$ to be the i-th element of vector \boldsymbol{x}.

LSH families for Hamming distance

- Suppose we have a space of n-dimensional vectors, and $h(\boldsymbol{x}, \boldsymbol{y})$ denotes the Hamming distance between vectors \boldsymbol{x} and \boldsymbol{y}.
- Take any position i of the vectors and define the function $f_{i}(\boldsymbol{x})$ to be the i-th element of vector \boldsymbol{x}.
- Then $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ if and only if vectors \boldsymbol{x} and \boldsymbol{y} agree in the i-th position.
- The probability that $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for a randomly chosen i is:

LSH families for Hamming distance

- Suppose we have a space of n-dimensional vectors, and $h(\boldsymbol{x}, \boldsymbol{y})$ denotes the Hamming distance between vectors \boldsymbol{x} and \boldsymbol{y}.
- Take any position i of the vectors and define the function $f_{i}(\boldsymbol{x})$ to be the i-th element of vector \boldsymbol{x}.
- Then $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ if and only if vectors \boldsymbol{x} and \boldsymbol{y} agree in the i-th position.
- The probability that $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for a randomly chosen i is:

$$
1-\frac{h(x, y)}{n}
$$

i.e., the fraction of positions in which \boldsymbol{x} and \boldsymbol{y} agree.

LSH families for Hamming distance

- Suppose we have a space of n-dimensional vectors, and $h(\boldsymbol{x}, \boldsymbol{y})$ denotes the Hamming distance between vectors \boldsymbol{x} and \boldsymbol{y}.
- Take any position i of the vectors and define the function $f_{i}(\boldsymbol{x})$ to be the i-th element of vector \boldsymbol{x}.
- Then $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ if and only if vectors \boldsymbol{x} and \boldsymbol{y} agree in the i-th position.
- The probability that $f_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{y})$ for a randomly chosen i is:

$$
1-\frac{h(x, y)}{n}
$$

i.e., the fraction of positions in which \boldsymbol{x} and \boldsymbol{y} agree.

- The family \mathcal{F} consisting of the functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a ($d_{1}, d_{2}, 1-d_{1} / n, 1-d_{2} / n$)-sensitive family of hash functions, for any $d_{1}<d_{2}$.

Random hyperplanes and the cosine distance

- The cosine distance between two vectors is the angle between the vectors.
- Note that these vectors may be in a space of many dimensions, but they always define a plane, and the angle between them is measured in this plane.

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.
- Suppose we pick a hyperplane through the origin of the space that intersects the plane of \boldsymbol{x} and \boldsymbol{y} in a line.

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.
- Suppose we pick a hyperplane through the origin of the space that intersects the plane of \boldsymbol{x} and \boldsymbol{y} in a line.
- To pick a random hyperplane, we may pick the normal vector \boldsymbol{v}.

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.
- Suppose we pick a hyperplane through the origin of the space that intersects the plane of \boldsymbol{x} and \boldsymbol{y} in a line.
- To pick a random hyperplane, we may pick the normal vector \boldsymbol{v}.
- The hyperplane is the set of points whose dot product with \boldsymbol{v} is 0 .

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.
- Suppose we pick a hyperplane through the origin of the space that intersects the plane of \boldsymbol{x} and \boldsymbol{y} in a line.
- To pick a random hyperplane, we may pick the normal vector \boldsymbol{v}.
- The hyperplane is the set of points whose dot product with \boldsymbol{v} is 0 .
- Take the dot products of \boldsymbol{v} with \boldsymbol{x} and \boldsymbol{y} :

$$
\boldsymbol{v} \cdot \boldsymbol{x} \quad \text { and } \quad \boldsymbol{v} \cdot \boldsymbol{y}
$$

and check the signs of these products.

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.
- Suppose we pick a hyperplane through the origin of the space that intersects the plane of \boldsymbol{x} and \boldsymbol{y} in a line.
- To pick a random hyperplane, we may pick the normal vector \boldsymbol{v}.
- The hyperplane is the set of points whose dot product with \boldsymbol{v} is 0 .
- Take the dot products of \boldsymbol{v} with \boldsymbol{x} and \boldsymbol{y} :

$$
\boldsymbol{v} \cdot \boldsymbol{x} \quad \text { and } \quad \boldsymbol{v} \cdot \boldsymbol{y}
$$

and check the signs of these products.

- What is the probability that the dot products of randomly chosen vector \boldsymbol{v} with \boldsymbol{x} and \boldsymbol{y} will produce two different signs?

Random hyperplanes and the cosine distance

- Let the angle between two vectors \boldsymbol{x} and \boldsymbol{y} be θ.
- Suppose we pick a hyperplane through the origin of the space that intersects the plane of \boldsymbol{x} and \boldsymbol{y} in a line.
- To pick a random hyperplane, we may pick the normal vector \boldsymbol{v}.
- The hyperplane is the set of points whose dot product with \boldsymbol{v} is 0 .
- Take the dot products of \boldsymbol{v} with \boldsymbol{x} and \boldsymbol{y} :

$$
\boldsymbol{v} \cdot \boldsymbol{x} \quad \text { and } \quad \boldsymbol{v} \cdot \boldsymbol{y}
$$

and check the signs of these products.

- What is the probability that the dot products of randomly chosen vector \boldsymbol{v} with \boldsymbol{x} and \boldsymbol{y} will produce two different signs?
$\theta / 180$

Random hyperplanes and the cosine distance

- Thus, each hash function f in our locality-sensitive family \mathcal{F} is built from a randomly chosen vector \boldsymbol{v}_{f}.

Random hyperplanes and the cosine distance

- Thus, each hash function f in our locality-sensitive family \mathcal{F} is built from a randomly chosen vector \boldsymbol{v}_{f}.
- Given two vectors \boldsymbol{x} and \boldsymbol{y}, we say $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if the dot products $\boldsymbol{v}_{f} \cdot \boldsymbol{x}$ and $\boldsymbol{v}_{f} \cdot \boldsymbol{y}$ have \ldots

Random hyperplanes and the cosine distance

- Thus, each hash function f in our locality-sensitive family \mathcal{F} is built from a randomly chosen vector \boldsymbol{v}_{f}.
- Given two vectors \boldsymbol{x} and \boldsymbol{y}, we say $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if the dot products $\boldsymbol{v}_{f} \cdot \boldsymbol{x}$ and $\boldsymbol{v}_{f} \cdot \boldsymbol{y}$ have \ldots the same sign.

Random hyperplanes and the cosine distance

- Thus, each hash function f in our locality-sensitive family \mathcal{F} is built from a randomly chosen vector \boldsymbol{v}_{f}.
- Given two vectors \boldsymbol{x} and \boldsymbol{y}, we say $f(\boldsymbol{x})=f(\boldsymbol{y})$ if and only if the dot products $\boldsymbol{v}_{f} \cdot \boldsymbol{x}$ and $\boldsymbol{v}_{f} \cdot \boldsymbol{y}$ have \ldots the same sign.
- Then \mathcal{F} is a $\left(d_{1}, d_{2},\left(180-d_{1}\right) / 180,\left(180-d_{2}\right) / 180\right)$-sensitive family for the cosine distance.

LSH families for Euclidean distance

- Consider first a 2-dimensional Euclidean space.

LSH families for Euclidean distance

- Consider first a 2-dimensional Euclidean space.
- Each hash function f in our family \mathcal{F} will be associated with a randomly chosen line in this space.

LSH families for Euclidean distance

- Consider first a 2-dimensional Euclidean space.
- Each hash function f in our family \mathcal{F} will be associated with a randomly chosen line in this space.
- Pick a constant a and divide the line into segments of length a.

LSH families for Euclidean distance

- Consider first a 2-dimensional Euclidean space.
- Each hash function f in our family \mathcal{F} will be associated with a randomly chosen line in this space.
- Pick a constant a and divide the line into segments of length a.
- The segments of the line are the buckets into which function f hashes points: a point is hashed to the bucket in which its projection onto the line lies.

LSH families for Euclidean distance

- If the distance d between two points is small compared with a, then there is a good chance the two points hash to the same bucket.

LSH families for Euclidean distance

- If the distance d between two points is small compared with a, then there is a good chance the two points hash to the same bucket.
- For $d=a / 2$ there is at least a 50% chance the two points will fall in the same bucket.

LSH families for Euclidean distance

- If the distance d between two points is small compared with a, then there is a good chance the two points hash to the same bucket.
- For $d=a / 2$ there is at least a 50% chance the two points will fall in the same bucket.
- If the angle θ between the randomly chosen line and the line connecting the points is large, then there is an even greater chance that the two points will fall in the same bucket.

LSH families for Euclidean distance

- If the distance d between two points is small compared with a, then there is a good chance the two points hash to the same bucket.
- For $d=a / 2$ there is at least a 50% chance the two points will fall in the same bucket.
- If the angle θ between the randomly chosen line and the line connecting the points is large, then there is an even greater chance that the two points will fall in the same bucket.
- For $\theta=90$ degrees the two points are certain to fall in the same bucket.

LSH families for Euclidean distance

- Suppose d is larger than a.

LSH families for Euclidean distance

- Suppose d is larger than a.
- To have any chance of the two points falling in the same bucket, we need $d \cos \theta<a$.

LSH families for Euclidean distance

- Suppose d is larger than a.
- To have any chance of the two points falling in the same bucket, we need $d \cos \theta<a$.
- Note, however, that even if $d \cos \theta \ll a$, it is still not certain that the two points will fall in the same bucket.

LSH families for Euclidean distance

- Suppose d is larger than a.
- To have any chance of the two points falling in the same bucket, we need $d \cos \theta<a$.
- Note, however, that even if $d \cos \theta \ll a$, it is still not certain that the two points will fall in the same bucket.
- However, we can guarantee that If $d \geq 2 a$, then there is no more than a $1 / 3$ chance the two points fall in the same bucket.

LSH families for Euclidean distance

- Suppose d is larger than a.
- To have any chance of the two points falling in the same bucket, we need $d \cos \theta<a$.
- Note, however, that even if $d \cos \theta \ll a$, it is still not certain that the two points will fall in the same bucket.
- However, we can guarantee that If $d \geq 2 a$, then there is no more than a $1 / 3$ chance the two points fall in the same bucket.
- Why?

LSH families for Euclidean distance

- Suppose d is larger than a.
- To have any chance of the two points falling in the same bucket, we need $d \cos \theta<a$.
- Note, however, that even if $d \cos \theta \ll a$, it is still not certain that the two points will fall in the same bucket.
- However, we can guarantee that If $d \geq 2 a$, then there is no more than a $1 / 3$ chance the two points fall in the same bucket.
- Why?
- The reason is that for $\cos \theta<1 / 2$ we have $\theta \in(60,90]$ degrees, and for $\cos \theta \geq 1 / 2$, we have $\theta \in[0,60]$.

LSH families for Euclidean distance

- Suppose d is larger than a.
- To have any chance of the two points falling in the same bucket, we need $d \cos \theta<a$.
- Note, however, that even if $d \cos \theta \ll a$, it is still not certain that the two points will fall in the same bucket.
- However, we can guarantee that If $d \geq 2 a$, then there is no more than a $1 / 3$ chance the two points fall in the same bucket.
- Why?
- The reason is that for $\cos \theta<1 / 2$ we have $\theta \in(60,90]$ degrees, and for $\cos \theta \geq 1 / 2$, we have $\theta \in[0,60]$.
- Since θ is the smaller angle between two randomly chosen lines in the plane, θ is twice as likely to be between 0 and 60 as it is to be between 60 and 90.

LSH families for Euclidean distance

- The family \mathcal{F} of random line is a $(a / 2,2 a, 1 / 2,1 / 3)$-sensitive family of hash functions.

LSH families for Euclidean distance

- The family \mathcal{F} of random line is a $(a / 2,2 a, 1 / 2,1 / 3)$-sensitive family of hash functions.
- For distances up to $a / 2$ the probability is at least $1 / 2$ that two points at that distance will fall in the same bucket.

LSH families for Euclidean distance

- The family \mathcal{F} of random line is a $(a / 2,2 a, 1 / 2,1 / 3)$-sensitive family of hash functions.
- For distances up to $a / 2$ the probability is at least $1 / 2$ that two points at that distance will fall in the same bucket.
- For distances at least $2 a$ the probability points at that distance will fall in the same bucket is at most $1 / 3$.

LSH families for Euclidean distance

- The family \mathcal{F} of random line is a $(a / 2,2 a, 1 / 2,1 / 3)$-sensitive family of hash functions.
- For distances up to $a / 2$ the probability is at least $1 / 2$ that two points at that distance will fall in the same bucket.
- For distances at least $2 a$ the probability points at that distance will fall in the same bucket is at most $1 / 3$.
- We can amplify this family as we like, just as for the other examples of locality-sensitive hash functions.

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:
- The above reasoning was given only for 2-dimensional spaces.

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:
- The above reasoning was given only for 2-dimensional spaces.
- This locality-sensitive family for any pair of distances d_{1} and d_{2} needs the stronger condition $d_{1}<4 d_{2}$ than the families before, for which we have $d_{1}<d_{2}$.

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:
- The above reasoning was given only for 2-dimensional spaces.
- This locality-sensitive family for any pair of distances d_{1} and d_{2} needs the stronger condition $d_{1}<4 d_{2}$ than the families before, for which we have $d_{1}<d_{2}$.
- It turns out that there is a locality-sensitive family of hash functions for any $d_{1}<d_{2}$ and for any number of dimensions constructed in a similar way.

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:
- The above reasoning was given only for 2-dimensional spaces.
- This locality-sensitive family for any pair of distances d_{1} and d_{2} needs the stronger condition $d_{1}<4 d_{2}$ than the families before, for which we have $d_{1}<d_{2}$.
- It turns out that there is a locality-sensitive family of hash functions for any $d_{1}<d_{2}$ and for any number of dimensions constructed in a similar way.
- Given that $d_{1}<d_{2}$, we may not know what exactly the probabilities of p_{1} and p_{2} are, but we can be certain that $p_{1}>p_{2}$.

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:
- The above reasoning was given only for 2-dimensional spaces.
- This locality-sensitive family for any pair of distances d_{1} and d_{2} needs the stronger condition $d_{1}<4 d_{2}$ than the families before, for which we have $d_{1}<d_{2}$.
- It turns out that there is a locality-sensitive family of hash functions for any $d_{1}<d_{2}$ and for any number of dimensions constructed in a similar way.
- Given that $d_{1}<d_{2}$, we may not know what exactly the probabilities of p_{1} and p_{2} are, but we can be certain that $p_{1}>p_{2}$.
- The reason is that this probability surely grows as the distance shrinks.

LSH families for Euclidean distance

- There are, however, two problems with this family of hash functions:
- The above reasoning was given only for 2-dimensional spaces.
- This locality-sensitive family for any pair of distances d_{1} and d_{2} needs the stronger condition $d_{1}<4 d_{2}$ than the families before, for which we have $d_{1}<d_{2}$.
- It turns out that there is a locality-sensitive family of hash functions for any $d_{1}<d_{2}$ and for any number of dimensions constructed in a similar way.
- Given that $d_{1}<d_{2}$, we may not know what exactly the probabilities of p_{1} and p_{2} are, but we can be certain that $p_{1}>p_{2}$.
- The reason is that this probability surely grows as the distance shrinks.
- Thus, even if we cannot calculate p_{1} and p_{2} easily, we know that there is a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family of hash functions for any $d_{1}<d_{2}$ and any given number of dimensions.

Outline

(1) Locality-Sensitive Hashing for Documents

2 Distance measures

3 Theory of Locality-Sensitive Functions

4 LSH Families for Other Distance Measures

5 Summary

Summary

- Locality-sensitive hashing.
- Distance measures.
- Theory of LSH.
- LSH for different distance measures.

Bibliography

- J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press, 2014 http://www.mmds.org
- P. Indyk. Algorithms for nearest neighbor search

