Finding similar items I

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, eighth semester
Academic year 2018/19 (summer semester)

Review of the previous lectures

- Processing of massive datasets
- Evolution of database systems
- OLTP and OLAP systems
- ETL
- Dimensional modeling
- Data processing
- MapReduce in Spark
- Approximate query processing

Outline

(1) Motivation

2 Shingling of Documents
(3) Similarity-Preserving Summaries of Sets
(4) Summary

Outline

(1) Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

Nearest neighbor search

- Find similar elements to the query element.

Applications of nearest neighbor search

- Similarity of documents
- Plagiarism
- Mirror pages
- Articles from the same source
- Machine learning
- k-nearest neighbors
- Collaborative filtering
- Computational geometry
- Computer vision
- Geographic Information Systems (GIS)

Nearest neighbor search

- Brute force search:

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query:

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query:

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query: $\mathcal{O}(n \log k)$ or

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query: $\mathcal{O}(n \log k)$ or $\mathcal{O}(n+k)$

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query: $\mathcal{O}(n \log k)$ or $\mathcal{O}(n+k)$
- With large databases linear complexity can be too costly.

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query: $\mathcal{O}(n \log k)$ or $\mathcal{O}(n+k)$
- With large databases linear complexity can be too costly.
- Can we do better?

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query: $\mathcal{O}(n \log k)$ or $\mathcal{O}(n+k)$
- With large databases linear complexity can be too costly.
- Can we do better?
- Data structures for exact search: not robust to curse of dimensionality

Nearest neighbor search

- Brute force search:
- Given a query point q scan through each of n data points in database
- Computational complexity for 1-NN query: $\mathcal{O}(n)$.
- Computational complexity for k-NN query: $\mathcal{O}(n \log k)$ or $\mathcal{O}(n+k)$
- With large databases linear complexity can be too costly.
- Can we do better?
- Data structures for exact search: not robust to curse of dimensionality
- Approximate algorithms

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

4 Summary

Motivation

- Consider an application of finding near-duplicates of Web pages, like plagiarisms or mirrors.

Motivation

- Consider an application of finding near-duplicates of Web pages, like plagiarisms or mirrors.
- We can represents pages as sets of character k-grams (or k-shingles) and formulate a problem as finding sets with a relatively large intersection.

Motivation

- Consider an application of finding near-duplicates of Web pages, like plagiarisms or mirrors.
- We can represents pages as sets of character k-grams (or k-shingles) and formulate a problem as finding sets with a relatively large intersection.
- Storing large number of sets and computing their similarity in naive way is not sufficient.

Motivation

- Consider an application of finding near-duplicates of Web pages, like plagiarisms or mirrors.
- We can represents pages as sets of character k-grams (or k-shingles) and formulate a problem as finding sets with a relatively large intersection.
- Storing large number of sets and computing their similarity in naive way is not sufficient.
- We compress sets in a way that enables to deduce the similarity of the underlying sets from their compressed versions.

Jaccard similarity

- We focus on similarity of sets by looking at the relative size of their intersection.

Jaccard similarity

- We focus on similarity of sets by looking at the relative size of their intersection.
- The Jaccard similarity of sets S and T is defined as:

$$
S I M(S, T)=\frac{|S \cap T|}{|S \cup T|}
$$

Jaccard similarity

- We focus on similarity of sets by looking at the relative size of their intersection.
- The Jaccard similarity of sets S and T is defined as:

$$
S I M(S, T)=\frac{|S \cap T|}{|S \cup T|}
$$

- Example: Let $S=\{a, b, c, d\}$ and $T=\{c, d, e, f\}$, then

$$
S I M(S, T)=2 / 6
$$

k-shingles

- A document is a string of characters.

k-shingles

- A document is a string of characters.
- A k-shingle (or k-gram) for a document is any substring of length k found within the document.

k-shingles

- A document is a string of characters.
- A k-shingle (or k-gram) for a document is any substring of length k found within the document.
- Each document may be represented as a set of k-shingles that appear one or more times within that document.

k-shingles

- A document is a string of characters.
- A k-shingle (or k-gram) for a document is any substring of length k found within the document.
- Each document may be represented as a set of k-shingles that appear one or more times within that document.
- Example: The set of all 3-shingles for the first sentence on this slide:

$$
\{\text { "A d", " do", "doc", "ocu", "cum", "ume", "men", ..., "ers" }\}
$$

k-shingles

- A document is a string of characters.
- A k-shingle (or k-gram) for a document is any substring of length k found within the document.
- Each document may be represented as a set of k-shingles that appear one or more times within that document.
- Example: The set of all 3-shingles for the first sentence on this slide:

$$
\{\text { "A d", " do", "doc", "ocu", "cum", "ume", "men", ..., "ers" }\}
$$

- Several options regarding white spaces:

k-shingles

- A document is a string of characters.
- A k-shingle (or k-gram) for a document is any substring of length k found within the document.
- Each document may be represented as a set of k-shingles that appear one or more times within that document.
- Example: The set of all 3-shingles for the first sentence on this slide:

$$
\{\text { "A d", " do", "doc", "ocu", "cum", "ume", "men", ..., "ers" }\}
$$

- Several options regarding white spaces:
- Replace any sequence of one or more white spaces by a single blank.

k-shingles

- A document is a string of characters.
- A k-shingle (or k-gram) for a document is any substring of length k found within the document.
- Each document may be represented as a set of k-shingles that appear one or more times within that document.
- Example: The set of all 3-shingles for the first sentence on this slide:

$$
\{\text { "A d", " do", "doc", "ocu", "cum", "ume", "men", ..., "ers" }\}
$$

- Several options regarding white spaces:
- Replace any sequence of one or more white spaces by a single blank.
- Remove all white spaces.

Size of shingles

- For small k we would expect most sequences of k characters to appear in most documents.

Size of shingles

- For small k we would expect most sequences of k characters to appear in most documents.
- For $k=1$ most documents will have most of the common characters and few other characters, so almost all documents will have high similarity.

Size of shingles

- For small k we would expect most sequences of k characters to appear in most documents.
- For $k=1$ most documents will have most of the common characters and few other characters, so almost all documents will have high similarity.
- k should be picked large enough that the probability of any given shingle appearing in any given document is low.

Size of shingles

- For small k we would expect most sequences of k characters to appear in most documents.
- For $k=1$ most documents will have most of the common characters and few other characters, so almost all documents will have high similarity.
- k should be picked large enough that the probability of any given shingle appearing in any given document is low.
- Example: Let us check two words document and monument:

$$
\begin{aligned}
S I M(\{d, o, c, u, m, e, n, t\},\{m, o, n, u, m, e, n, t\}) & =6 / 8 \\
S I M(\{d o c, o c u, \text { cum }, \text { ume }, \text { men }, \text { ent }\} & \\
\{\text { mon,onu, num }, \text { ume, men }, \text { ent }\}) & =3 / 9
\end{aligned}
$$

Size of shingles

- Example:

Size of shingles

- Example:
- For corpus of emails setting $k=5$ should be fine.

Size of shingles

- Example:
- For corpus of emails setting $k=5$ should be fine.
- If only English letters and a general white-space character appear in emails, then there would be $27^{5}=14348907$ possible shingles.

Size of shingles

- Example:
- For corpus of emails setting $k=5$ should be fine.
- If only English letters and a general white-space character appear in emails, then there would be $27^{5}=14348907$ possible shingles.
- Since typical email is much smaller than 14 million characters long, this can be right value.

Size of shingles

- Example:
- For corpus of emails setting $k=5$ should be fine.
- If only English letters and a general white-space character appear in emails, then there would be $27^{5}=14348907$ possible shingles.
- Since typical email is much smaller than 14 million characters long, this can be right value.
- Since distribution of characters is not uniform, the above estimate should be corrected, for example, by assuming that there are only 20 characters.

Hashing shingles

- Instead of using substrings directly as shingles, we can pick a hash function that maps strings of length k to some number of buckets.

Hashing shingles

- Instead of using substrings directly as shingles, we can pick a hash function that maps strings of length k to some number of buckets.
- Then, the resulting bucket number can be treated as the shingle.

Hashing shingles

- Instead of using substrings directly as shingles, we can pick a hash function that maps strings of length k to some number of buckets.
- Then, the resulting bucket number can be treated as the shingle.
- The set representing a document is then the set of integers that are bucket numbers of one or more k-shingles that appear in the document.

Hashing shingles

- Instead of using substrings directly as shingles, we can pick a hash function that maps strings of length k to some number of buckets.
- Then, the resulting bucket number can be treated as the shingle.
- The set representing a document is then the set of integers that are bucket numbers of one or more k-shingles that appear in the document.
- Example:

Hashing shingles

- Instead of using substrings directly as shingles, we can pick a hash function that maps strings of length k to some number of buckets.
- Then, the resulting bucket number can be treated as the shingle.
- The set representing a document is then the set of integers that are bucket numbers of one or more k-shingles that appear in the document.
- Example:
- Each 9-shingle from a document can be mapped to a bucket number in the range from 0 to $2^{32}-1$.

Hashing shingles

- Instead of using substrings directly as shingles, we can pick a hash function that maps strings of length k to some number of buckets.
- Then, the resulting bucket number can be treated as the shingle.
- The set representing a document is then the set of integers that are bucket numbers of one or more k-shingles that appear in the document.
- Example:
- Each 9-shingle from a document can be mapped to a bucket number in the range from 0 to $2^{32}-1$.
- Instead of nine we use then four bytes and can manipulate (hashed) shingles by single-word machine operations.

Hashing shingles

- Short shingles vs. hashed shingles

Hashing shingles

- Short shingles vs. hashed shingles
- If we use 4-shingles, most sequences of four bytes are unlikely or impossible to find in typical documents.

Hashing shingles

- Short shingles vs. hashed shingles
- If we use 4-shingles, most sequences of four bytes are unlikely or impossible to find in typical documents.
- The effective number of different shingles is approximately $20^{4}=160000$ much less than 2^{32}.

Hashing shingles

- Short shingles vs. hashed shingles
- If we use 4-shingles, most sequences of four bytes are unlikely or impossible to find in typical documents.
- The effective number of different shingles is approximately $20^{4}=160000$ much less than 2^{32}.
- if we use 9 -shingles, there are many more than 2^{32} likely shingles.

Hashing shingles

- Short shingles vs. hashed shingles
- If we use 4-shingles, most sequences of four bytes are unlikely or impossible to find in typical documents.
- The effective number of different shingles is approximately $20^{4}=160000$ much less than 2^{32}.
- if we use 9 -shingles, there are many more than 2^{32} likely shingles.
- When we hash them down to four bytes, we can expect almost any sequence of four bytes to be possible.

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets

Similarity-preserving summaries of sets

- Sets of shingles are large!

Similarity-preserving summaries of sets

- Sets of shingles are large!
- Even if we hash them to four bytes each, the space needed to store a set is still roughly four times the space taken by the document.

Similarity-preserving summaries of sets

- Sets of shingles are large!
- Even if we hash them to four bytes each, the space needed to store a set is still roughly four times the space taken by the document.
- If we have millions of documents, it may well not be possible to store all the shingle-sets in main memory.

Similarity-preserving summaries of sets

- Sets of shingles are large!
- Even if we hash them to four bytes each, the space needed to store a set is still roughly four times the space taken by the document.
- If we have millions of documents, it may well not be possible to store all the shingle-sets in main memory.
- We would like to replace large sets by much smaller representations called signatures.

Similarity-preserving summaries of sets

- Sets of shingles are large!
- Even if we hash them to four bytes each, the space needed to store a set is still roughly four times the space taken by the document.
- If we have millions of documents, it may well not be possible to store all the shingle-sets in main memory.
- We would like to replace large sets by much smaller representations called signatures.
- The signatures, however, should preserve (at least to some extent) the similarity between sets.

Matrix representation of sets

- Characteristic matrix

Matrix representation of sets

- Characteristic matrix
- The columns of the matrix correspond to the sets.

Matrix representation of sets

- Characteristic matrix
- The columns of the matrix correspond to the sets.
- The rows correspond to elements of the universal set from which elements of the sets are drawn.

Matrix representation of sets

- Characteristic matrix
- The columns of the matrix correspond to the sets.
- The rows correspond to elements of the universal set from which elements of the sets are drawn.
- There is a 1 in row r and column c if the element for row r is a member of the set for column c.

Matrix representation of sets

- Characteristic matrix
- The columns of the matrix correspond to the sets.
- The rows correspond to elements of the universal set from which elements of the sets are drawn.
- There is a 1 in row r and column c if the element for row r is a member of the set for column c.
- Otherwise the value in position (r, c) is 0 .

Matrix representation of sets

- Example:
- Let the universal set be $\{a, b, c, d, e\}$.
- Let $S_{1}=\{a, d\}, S_{2}=\{c\}, S_{3}=\{b, d, e\}, S_{4}=\{a, c, d\}$.

Element	S_{1}	S_{2}	S_{3}	S_{4}
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

- It is important to remember that the characteristic matrix is unlikely to be the way the data is stored, but it is useful as a way to visualize the data!

Minhashing

- The signatures we desire to construct for sets are composed of the results of some number of calculations (say several hundred) each of which is a minhash of the characteristic matrix.

Minhashing

- The signatures we desire to construct for sets are composed of the results of some number of calculations (say several hundred) each of which is a minhash of the characteristic matrix.
- To minhash a set represented by a column of the characteristic matrix, pick a permutation of the rows.

Minhashing

- The signatures we desire to construct for sets are composed of the results of some number of calculations (say several hundred) each of which is a minhash of the characteristic matrix.
- To minhash a set represented by a column of the characteristic matrix, pick a permutation of the rows.
- The minhash value of any column is the number of the first row, in the permuted order, in which the column has a 1 (or, the first element of the set in the given permutation).

Minhashing

- The signatures we desire to construct for sets are composed of the results of some number of calculations (say several hundred) each of which is a minhash of the characteristic matrix.
- To minhash a set represented by a column of the characteristic matrix, pick a permutation of the rows.
- The minhash value of any column is the number of the first row, in the permuted order, in which the column has a 1 (or, the first element of the set in the given permutation).
- The index of the first row is 0 in the following.

Minhashing

- Example:
- Let us pick the order of rows beadc for the matrix from the previous example.

Element	S_{1}	S_{2}	S_{3}	S_{4}
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

- In this matrix, we can read off the values of minhash ($m h$) by scanning from the top until we come to a 1 .
- Thus, we see that $m h\left(S_{1}\right)=2(a), m h\left(S_{2}\right)=4(c), m h\left(S_{3}\right)=0(b)$, and $m h\left(S_{4}\right)=2(a)$.

Minhashing and Jaccard similarity

- There is a remarkable connection between minhashing and Jaccard similarity of the sets that are minhashed:

Minhashing and Jaccard similarity

- There is a remarkable connection between minhashing and Jaccard similarity of the sets that are minhashed:
- The probability that the minhash function for a random permutation of rows produces the same value for two sets equals the Jaccard similarity of those sets.

Minhashing and Jaccard similarity

- Let us consider two sets, i.e., two columns of the characteristic matrix.

Element	S_{1}	S_{4}
b	0	0
e	0	0
a	1	1
d	1	1
c	0	1

Minhashing and Jaccard similarity

- Let us consider two sets, i.e., two columns of the characteristic matrix.

Element	S_{1}	S_{4}
b	0	0
e	0	0
a	1	1
d	1	1
c	0	1

- The rows can be divided into three classes:

Minhashing and Jaccard similarity

- Let us consider two sets, i.e., two columns of the characteristic matrix.

Element	S_{1}	S_{4}
b	0	0
e	0	0
a	1	1
d	1	1
c	0	1

- The rows can be divided into three classes:
- Type X rows have 1 in both columns,

Minhashing and Jaccard similarity

- Let us consider two sets, i.e., two columns of the characteristic matrix.

Element	S_{1}	S_{4}
b	0	0
e	0	0
a	1	1
d	1	1
c	0	1

- The rows can be divided into three classes:
- Type X rows have 1 in both columns,
- Type Y rows have 1 in one of the columns and 0 in the other,

Minhashing and Jaccard similarity

- Let us consider two sets, i.e., two columns of the characteristic matrix.

Element	S_{1}	S_{4}
b	0	0
e	0	0
a	1	1
d	1	1
c	0	1

- The rows can be divided into three classes:
- Type X rows have 1 in both columns,
- Type Y rows have 1 in one of the columns and 0 in the other,
- Type Z rows have 0 in both columns.

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.
- The ratio of the numbers of type X and type Y rows determine both $S I M(S, T)$ and the probability that $m h(S)=m h(T)$.

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.
- The ratio of the numbers of type X and type Y rows determine both $S I M(S, T)$ and the probability that $m h(S)=m h(T)$.
- Let there be x rows of type X and y rows of type Y.

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.
- The ratio of the numbers of type X and type Y rows determine both $S I M(S, T)$ and the probability that $m h(S)=m h(T)$.
- Let there be x rows of type X and y rows of type Y.
- Then, the Jaccard similarity is:

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.
- The ratio of the numbers of type X and type Y rows determine both $S I M(S, T)$ and the probability that $m h(S)=m h(T)$.
- Let there be x rows of type X and y rows of type Y.
- Then, the Jaccard similarity is:

$$
S I M(S, T)=\frac{x}{x+y}
$$

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.
- The ratio of the numbers of type X and type Y rows determine both $S I M(S, T)$ and the probability that $m h(S)=m h(T)$.
- Let there be x rows of type X and y rows of type Y.
- Then, the Jaccard similarity is:

$$
S I M(S, T)=\frac{x}{x+y}
$$

- If we imagine the rows permuted randomly, and we proceed from the top, the probability that we shall meet a type X row before we meet a type Y row is

Minhashing and Jaccard similarity

- Since the matrix is sparse, most rows are of type Z.
- The ratio of the numbers of type X and type Y rows determine both $S I M(S, T)$ and the probability that $m h(S)=m h(T)$.
- Let there be x rows of type X and y rows of type Y.
- Then, the Jaccard similarity is:

$$
S I M(S, T)=\frac{x}{x+y}
$$

- If we imagine the rows permuted randomly, and we proceed from the top, the probability that we shall meet a type X row before we meet a type Y row is, as before,

$$
P(m h(S)=m h(T))=\frac{x}{x+y} .
$$

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:
- Pick at random some number n of permutations of the rows of M (let say, around 100 or 1000).

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:
- Pick at random some number n of permutations of the rows of M (let say, around 100 or 1000).
- Call the minhash functions determined by these permutations $m h_{1}$, $m h_{2}, \ldots, m h_{n}$.

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:
- Pick at random some number n of permutations of the rows of M (let say, around 100 or 1000).
- Call the minhash functions determined by these permutations $m h_{1}$, $m h_{2}, \ldots, m h_{n}$.
- From the column representing set S, construct the minhash signature for S, the vector $\left(m h_{1}(S), m h_{2}(S), \ldots, m h_{n}(S)\right)$ - represented as a column.

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:
- Pick at random some number n of permutations of the rows of M (let say, around 100 or 1000).
- Call the minhash functions determined by these permutations $m h_{1}$, $m h_{2}, \ldots, m h_{n}$.
- From the column representing set S, construct the minhash signature for S, the vector $\left(m h_{1}(S), m h_{2}(S), \ldots, m h_{n}(S)\right)$ - represented as a column.
- Thus, we can form from matrix M a signature matrix, in which the i-th column of M is replaced by the minhash signature for (the set of) the i-th column.

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:
- Pick at random some number n of permutations of the rows of M (let say, around 100 or 1000).
- Call the minhash functions determined by these permutations $m h_{1}$, $m h_{2}, \ldots, m h_{n}$.
- From the column representing set S, construct the minhash signature for S, the vector $\left(m h_{1}(S), m h_{2}(S), \ldots, m h_{n}(S)\right)$ - represented as a column.
- Thus, we can form from matrix M a signature matrix, in which the i-th column of M is replaced by the minhash signature for (the set of) the i-th column.
- The signature matrix has the same number of columns as M, but only n rows!

Minhash signatures

- For a given collection of sets represented by their characteristic matrix M, the signatures are produced in the following way:
- Pick at random some number n of permutations of the rows of M (let say, around 100 or 1000).
- Call the minhash functions determined by these permutations $m h_{1}$, $m h_{2}, \ldots, m h_{n}$.
- From the column representing set S, construct the minhash signature for S, the vector $\left(m h_{1}(S), m h_{2}(S), \ldots, m h_{n}(S)\right)$ - represented as a column.
- Thus, we can form from matrix M a signature matrix, in which the i-th column of M is replaced by the minhash signature for (the set of) the i-th column.
- The signature matrix has the same number of columns as M, but only n rows!
- Even if M is not represented explicitly (but as a sparse matrix by the location of its ones), it is normal for the signature matrix to be much smaller than M.

Computing minhash signatures

- Unfortunately, it is not feasible to permute a large characteristic matrix explicitly.

Computing minhash signatures

- Unfortunately, it is not feasible to permute a large characteristic matrix explicitly.
- Even picking a random permutation of millions or billions of rows is time-consuming.

Computing minhash signatures

- Unfortunately, it is not feasible to permute a large characteristic matrix explicitly.
- Even picking a random permutation of millions or billions of rows is time-consuming.
- Fortunately, it is possible to simulate the effect of a random permutation by a random hash function that maps row numbers to as many buckets as there are rows.

Computing minhash signatures

- A hash function that maps integers $0,1, \ldots, k-1$ to bucket numbers 0 through $k-1$ typically will map some pairs of integers to the same bucket and leave other buckets unfilled.

Computing minhash signatures

- A hash function that maps integers $0,1, \ldots, k-1$ to bucket numbers 0 through $k-1$ typically will map some pairs of integers to the same bucket and leave other buckets unfilled.
- This difference is unimportant as long as k is large and there are not too many collisions.

Computing minhash signatures

- A hash function that maps integers $0,1, \ldots, k-1$ to bucket numbers 0 through $k-1$ typically will map some pairs of integers to the same bucket and leave other buckets unfilled.
- This difference is unimportant as long as k is large and there are not too many collisions.
- We can maintain the fiction that our hash function h permutes row r to position $h(r)$ in the permuted order.

Computing minhash signatures

- Instead of picking n random permutations of rows, we pick n randomly chosen hash functions $h_{1}, h_{2}, \ldots, h_{n}$ on the rows.

Computing minhash signatures

- Instead of picking n random permutations of rows, we pick n randomly chosen hash functions $h_{1}, h_{2}, \ldots, h_{n}$ on the rows.
- We construct the signature matrix by considering each row in their given order.

Computing minhash signatures

- Instead of picking n random permutations of rows, we pick n randomly chosen hash functions $h_{1}, h_{2}, \ldots, h_{n}$ on the rows.
- We construct the signature matrix by considering each row in their given order.
- Let $S I G(i, c)$ be the element of the signature matrix for the i-th hash function and column c defined by

$$
S I G(i, c)=\min \left\{h_{i}(r): \text { for such } r \text { that } c \text { has } 1 \text { in row } r\right\}
$$

Computing minhash signatures

- Example:
- Let us consider two hash functions h_{1} and h_{2} :

Computing minhash signatures

- Example:
- Let us consider two hash functions h_{1} and h_{2} :

$h_{1}(r)=r+1 \bmod 5$	$h_{2}(r)=3 r+1 \bmod 5$					
Row	S_{1}	S_{2}	S_{3}	S_{4}	$h_{1}(r)$	$h_{2}(r)$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Computing minhash signatures

- Example:
- The signature matrix is:

	S_{1}	S_{2}	S_{3}	S_{4}
$\operatorname{SIG}(1, c)$				
$\operatorname{SIG}(2, c)$				

Computing minhash signatures

- Example:
- The signature matrix is:

	S_{1}	S_{2}	S_{3}	S_{4}
$\operatorname{SIG}(1, c)$	1	3	0	1
$\operatorname{SIG}(2, c)$	0	2	0	0

- We can estimate the Jaccard similarities of the underlying sets from this signature matrix:

Computing minhash signatures

- Example:
- The signature matrix is:

	S_{1}	S_{2}	S_{3}	S_{4}
$S I G(1, c)$	1	3	0	1
$S I G(2, c)$	0	2	0	0

- We can estimate the Jaccard similarities of the underlying sets from this signature matrix:

$$
S I M\left(S_{1}, S_{2}\right)=0 \quad S I M\left(S_{1}, S_{3}\right)=1 / 2 \quad S I M\left(S_{1}, S_{4}\right)=1
$$

Computing minhash signatures

- Example:
- The signature matrix is:

	S_{1}	S_{2}	S_{3}	S_{4}
$\operatorname{SIG}(1, c)$	1	3	0	1
$\operatorname{SIG}(2, c)$	0	2	0	0

- We can estimate the Jaccard similarities of the underlying sets from this signature matrix:

$$
S I M\left(S_{1}, S_{2}\right)=0 \quad S I M\left(S_{1}, S_{3}\right)=1 / 2 \quad S I M\left(S_{1}, S_{4}\right)=1
$$

while the true similarities are:

$$
S I M\left(S_{1}, S_{2}\right)=0 \quad S I M\left(S_{1}, S_{3}\right)=1 / 4 \quad S I M\left(S_{1}, S_{4}\right)=2 / 3
$$

Outline

1 Motivation

2 Shingling of Documents

3 Similarity-Preserving Summaries of Sets
4. Summary

Summary

- Similarity of documents.
- Jaccard similarity.
- Minhash technique.

Bibliography

- J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press, 2014

