Processing of massive data sets II

Krzysztof Dembczyński
Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, eighth semester
Academic year 2018/19 (summer semester)

Review of previous lectures

- Processing of massive datasets
- Evolution of database systems
- OLTP and OLAP systems
- ETL
- Dimensional modeling
- Data processing
- Physical storage and data access
- Materialization

Outline

(1) Data partitioning

2 MapReduce
(3) Algorithms in MapReduce

4 Summary

Motivation

- Computational burden \rightarrow divide and conquer

Motivation

- Computational burden \rightarrow divide and conquer
- Data partitioning

Motivation

- Computational burden \rightarrow divide and conquer
- Data partitioning
- Distributed systems

Outline

(1) Data partitioning

2 MapReduce

3 Algorithms in MapReduce

4 Summary

Data partitioning

- In general, partitioning divides data (e.g., tables and indexes) into smaller pieces, enabling these pieces to be managed and accessed at a finer level of granularity.

Data partitioning

- In general, partitioning divides data (e.g., tables and indexes) into smaller pieces, enabling these pieces to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables and datasets.

Data partitioning

- In general, partitioning divides data (e.g., tables and indexes) into smaller pieces, enabling these pieces to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables and datasets.
- Partitioning can provide benefits by improving manageability, performance, and availability.

Data partitioning

- In general, partitioning divides data (e.g., tables and indexes) into smaller pieces, enabling these pieces to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables and datasets.
- Partitioning can provide benefits by improving manageability, performance, and availability.
- Partitioning is transparent for database queries.

Data partitioning

- In general, partitioning divides data (e.g., tables and indexes) into smaller pieces, enabling these pieces to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables and datasets.
- Partitioning can provide benefits by improving manageability, performance, and availability.
- Partitioning is transparent for database queries.
- Horizontal vs. vertical vs. chunk partitioning.

Data partitioning

- Table or index is subdivided into smaller pieces.

Data partitioning

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.

Data partitioning

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.
- Each partition has its own name, and may have its own storage characteristics (e.g. table compression).

Data partitioning

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.
- Each partition has its own name, and may have its own storage characteristics (e.g. table compression).
- From the perspective of a database administrator, a partitioned object has multiple pieces which can be managed either collectively or individually.

Data partitioning

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.
- Each partition has its own name, and may have its own storage characteristics (e.g. table compression).
- From the perspective of a database administrator, a partitioned object has multiple pieces which can be managed either collectively or individually.
- From the perspective of the application, however, a partitioned table is identical to a non-partitioned table.

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
- Hash partitioning: Rows divided into partitions using a hash function

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
- Hash partitioning: Rows divided into partitions using a hash function
- Range partitioning: Each partition holds a range of attribute values

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
- Hash partitioning: Rows divided into partitions using a hash function
- Range partitioning: Each partition holds a range of attribute values
- List partitioning: Rows divided according to lists of values that describe the partition

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
- Hash partitioning: Rows divided into partitions using a hash function
- Range partitioning: Each partition holds a range of attribute values
- List partitioning: Rows divided according to lists of values that describe the partition
- Composite Partitioning: partitions data using the range method, and within each partition, subpartitions it using the hash or list method.

Data partitioning

- Example:

```
CREATE TABLE sales_list (
        salesman_id NUMBER(5),
        salesman_name VARCHAR2(30),
        sales_state VARCHAR2(20),
        sales_amount NUMBER(10),
        sales_date DATE)
        PARTITION BY LIST(sales_state)
        (
            PARTITION sales_west VALUES('California', 'Hawaii'),
            PARTITION sales_east VALUES ('New York', 'Virginia'),
            PARTITION sales_central VALUES('Texas', 'Illinois')
            PARTITION sales_other VALUES(DEFAULT)
        )
);
```


Data partitioning

- Example:
peopleDF
.write
.partitionBy("favorite_color")
.bucketBy(42, "name")
.saveAsTable("people-partitioned-bucketed")

Data partitioning and star schema

- Partition fact table:

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition, - Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,
- No communication needed for parallel joins.

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,
- No communication needed for parallel joins.
- One big dimension:

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,
- No communication needed for parallel joins.
- One big dimension:
- Sometimes one dimension table is quite big (e.g. customer),

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,
- No communication needed for parallel joins.
- One big dimension:
- Sometimes one dimension table is quite big (e.g. customer),
- Partition the big dimension table,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,
- No communication needed for parallel joins.
- One big dimension:
- Sometimes one dimension table is quite big (e.g. customer),
- Partition the big dimension table,
- Partition fact table on key of big dimension,

Data partitioning and star schema

- Partition fact table:
- Fact tables are big,
- Process queries in parallel for each partition,
- Divide the work among the nodes in the cluster,
- Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
- Dimension tables are small,
- Storing multiple copies of them is cheap,
- No communication needed for parallel joins.
- One big dimension:
- Sometimes one dimension table is quite big (e.g. customer),
- Partition the big dimension table,
- Partition fact table on key of big dimension,
- The join operation can be performed on smaller tables.

Data partitioning and star schema

- Reducing load time via partitioning:

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,
- Only indexes and aggregates for that partition need to be updated,

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,
- Only indexes and aggregates for that partition need to be updated,
- All other partitions remain unchanged.

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,
- Only indexes and aggregates for that partition need to be updated, - All other partitions remain unchanged.
- Expiring old data:

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,
- Only indexes and aggregates for that partition need to be updated, - All other partitions remain unchanged.
- Expiring old data:
- Often older data is less useful / relevant for data analysts,

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,
- Only indexes and aggregates for that partition need to be updated, - All other partitions remain unchanged.
- Expiring old data:
- Often older data is less useful / relevant for data analysts,
- To reduce database size, old data is often deleted,

Data partitioning and star schema

- Reducing load time via partitioning:
- Often fact tables are partitioned on date,
- Newly loaded records go into the last partition,
- Only indexes and aggregates for that partition need to be updated, - All other partitions remain unchanged.
- Expiring old data:
- Often older data is less useful / relevant for data analysts,
- To reduce database size, old data is often deleted,
- If data is partitioned on date, simply delete or compress the oldest partitions.

Partitioning and sorting

- External-memory sorting:

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do
- Perform k-way merge sort using the output buffer to store globally sorted data.

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do
- Perform k-way merge sort using the output buffer to store globally sorted data.
- Write output buffer to disk if it is filled.

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do
- Perform k-way merge sort using the output buffer to store globally sorted data.
- Write output buffer to disk if it is filled.
- If the i th input buffer is exhausted, read next portion from i th partition.

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do
- Perform k-way merge sort using the output buffer to store globally sorted data.
- Write output buffer to disk if it is filled.
- If the i th input buffer is exhausted, read next portion from i th partition.
- Remark that $k \geq \sqrt{n}$ (otherwise we need additional merge passes).

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do
- Perform k-way merge sort using the output buffer to store globally sorted data.
- Write output buffer to disk if it is filled.
- If the i th input buffer is exhausted, read next portion from i th partition.
- Remark that $k \geq \sqrt{n}$ (otherwise we need additional merge passes).
- External-memory sorting is used in merge-join of large data sets.

Partitioning and sorting

- External-memory sorting:
- Let data be of size n and main memory be of size $k+1$ units (k input and one output buffer).
- Partition data into n / k parts (does not have to be made explicitly).
- For each partition (each uses k memory units):
- Read to main memory
- Sort partition
- Write sorted partition to disk
- Read the first k / n of data from each sorted partition to main memory (use all k input buffers).
- Do
- Perform k-way merge sort using the output buffer to store globally sorted data.
- Write output buffer to disk if it is filled.
- If the i th input buffer is exhausted, read next portion from i th partition.
- Remark that $k \geq \sqrt{n}$ (otherwise we need additional merge passes).
- External-memory sorting is used in merge-join of large data sets.
- Similarly one can generalize hash-join to the so-called partitioned hash-join.

Outline

1 Data partitioning

2 MapReduce

3 Algorithms in MapReduce

4 Summary

MapReduce-based systems

- Traditional DBMS vs. NoSQL

MapReduce-based systems

- Traditional DBMS vs. NoSQL
- New emerging applications: search engines, social networks, online shopping, online advertising, recommender systems, etc.

MapReduce-based systems

- Traditional DBMS vs. NoSQL
- New emerging applications: search engines, social networks, online shopping, online advertising, recommender systems, etc.
- New computational challenges: WordCount, PageRank, etc.

MapReduce-based systems

- Traditional DBMS vs. NoSQL
- New emerging applications: search engines, social networks, online shopping, online advertising, recommender systems, etc.
- New computational challenges: WordCount, PageRank, etc.
- Computational burden \rightarrow distributed systems

MapReduce-based systems

- Traditional DBMS vs. NoSQL
- New emerging applications: search engines, social networks, online shopping, online advertising, recommender systems, etc.
- New computational challenges: WordCount, PageRank, etc.
- Computational burden \rightarrow distributed systems
- Scaling-out instead of scaling-up

MapReduce-based systems

- Traditional DBMS vs. NoSQL
- New emerging applications: search engines, social networks, online shopping, online advertising, recommender systems, etc.
- New computational challenges: WordCount, PageRank, etc.
- Computational burden \rightarrow distributed systems
- Scaling-out instead of scaling-up
- Move-code-to-data

MapReduce-based systems

- Accessible - run on large clusters of commodity machines or on cloud computing services such as AWS (Amazon Web Services).

MapReduce-based systems

- Accessible - run on large clusters of commodity machines or on cloud computing services such as AWS (Amazon Web Services).
- Robust - are intended to run on commodity hardware; designed with the assumption of frequent hardware malfunctions; they can gracefully handle most such failures.

MapReduce-based systems

- Accessible - run on large clusters of commodity machines or on cloud computing services such as AWS (Amazon Web Services).
- Robust - are intended to run on commodity hardware; designed with the assumption of frequent hardware malfunctions; they can gracefully handle most such failures.
- Scalable - scales linearly to handle larger data by adding more nodes to the cluster.

MapReduce-based systems

- Accessible - run on large clusters of commodity machines or on cloud computing services such as AWS (Amazon Web Services).
- Robust - are intended to run on commodity hardware; designed with the assumption of frequent hardware malfunctions; they can gracefully handle most such failures.
- Scalable - scales linearly to handle larger data by adding more nodes to the cluster.
- Simple - allow users to quickly write efficient parallel code.

MapReduce: Two simple procedures

- Word count: A basic operation for every search engine.
- Matrix-vector multiplication: A fundamental step in many algorithms, for example, in PageRank.

MapReduce: Two simple procedures

- Word count: A basic operation for every search engine.
- Matrix-vector multiplication: A fundamental step in many algorithms, for example, in PageRank.
- How to implement these procedures for efficient execution in a distributed system?

MapReduce: Two simple procedures

- Word count: A basic operation for every search engine.
- Matrix-vector multiplication: A fundamental step in many algorithms, for example, in PageRank.
- How to implement these procedures for efficient execution in a distributed system?
- How much can we gain by such implementation?

MapReduce: Two simple procedures

- Word count: A basic operation for every search engine.
- Matrix-vector multiplication: A fundamental step in many algorithms, for example, in PageRank.
- How to implement these procedures for efficient execution in a distributed system?
- How much can we gain by such implementation?
- Let us focus on the word count problem ...

Word count

- Count the number of times each word occurs in a set of documents:
Do as I say, not as I do.

Word	Count
as	2
do	2
i	2
not	1
say	1

Word count

- Let us write the procedure in pseudo-code for a single machine:

Word count

- Let us write the procedure in pseudo-code for a single machine:

```
define wordCount as Multiset;
for each document in documentSet {
    T = tokenize(document);
        for each token in T {
        wordCount[token]++;
        }
}
display(wordCount);
```


Word count

- Let us write the procedure in pseudo-code for many machines:

Word count

- Let us write the procedure in pseudo-code for many machines:
- First step:

```
define wordCount as Multiset;
for each document in documentSubset {
        T = tokenize(document);
        for each token in T {
        wordCount[token]++;
    }
}
sendToSecondPhase(wordCount);
```


Word count

- Let us write the procedure in pseudo-code for many machines:
- First step:

```
define wordCount as Multiset;
for each document in documentSubset {
    T = tokenize(document);
    for each token in T {
        wordCount[token]++;
    }
}
```

sendToSecondPhase (wordCount);

- Second step:

```
define totalWordCount as Multiset;
for each wordCount received from firstPhase {
    multisetAdd (totalWordCount, wordCount);
}
```

- Should be there one or many workers running the totalWordCount procedure?

Word count

- To make the procedure work properly across a cluster of distributed machines, we need to add a number of functionalities:

Word count

- To make the procedure work properly across a cluster of distributed machines, we need to add a number of functionalities:
- Store files over many processing machines (of phase one).

Word count

- To make the procedure work properly across a cluster of distributed machines, we need to add a number of functionalities:
- Store files over many processing machines (of phase one).
- Write a disk-based hash table permitting processing without being limited by RAM capacity.

Word count

- To make the procedure work properly across a cluster of distributed machines, we need to add a number of functionalities:
- Store files over many processing machines (of phase one).
- Write a disk-based hash table permitting processing without being limited by RAM capacity.
- Partition the intermediate data (that is, wordCount) from phase one.

Word count

- To make the procedure work properly across a cluster of distributed machines, we need to add a number of functionalities:
- Store files over many processing machines (of phase one).
- Write a disk-based hash table permitting processing without being limited by RAM capacity.
- Partition the intermediate data (that is, wordCount) from phase one.
- Shuffle the partitions to the appropriate machines in phase two.

Word count

- To make the procedure work properly across a cluster of distributed machines, we need to add a number of functionalities:
- Store files over many processing machines (of phase one).
- Write a disk-based hash table permitting processing without being limited by RAM capacity.
- Partition the intermediate data (that is, wordCount) from phase one.
- Shuffle the partitions to the appropriate machines in phase two.
- Ensure fault tolerance.

MapReduce

- MapReduce programs are executed in two main phases, called mapping and reducing:

MapReduce

- MapReduce programs are executed in two main phases, called mapping and reducing:
- Map: the map function is written to convert input elements to key-value pairs.

MapReduce

- MapReduce programs are executed in two main phases, called mapping and reducing:
- Map: the map function is written to convert input elements to key-value pairs.
- Reduce: the reduce function is written to take pairs consisting of a key and its list of associated values and combine those values in some way.

MapReduce

- The complete data flow:

	Input	Output
map	$(<\mathrm{k} 1$, v1>)	list(<k2, v2>)
reduce	$(<\mathrm{k} 2$, list $(<\mathrm{v} 2>))$	list(<k3, v3>)

MapReduce

Figure: The complete data flow

MapReduce

- The complete data flow:

MapReduce

- The complete data flow:
- The input is structured as a list of key-value pairs: list(<k1,v1>).

MapReduce

- The complete data flow:
- The input is structured as a list of key-value pairs: list(<k1,v1>).
- The list of key-value pairs is broken up and each individual key-value pair, <k1,v1>, is processed by calling the map function of the mapper (the key k 1 is often ignored by the mapper).

MapReduce

- The complete data flow:
- The input is structured as a list of key-value pairs: list(<k1,v1>).
- The list of key-value pairs is broken up and each individual key-value pair, <k1,v1>, is processed by calling the map function of the mapper (the key k 1 is often ignored by the mapper).
- The mapper transforms each <k1, v1> pair into a list of <k2, v2> pairs.

MapReduce

- The complete data flow:
- The input is structured as a list of key-value pairs: list (<k1,v1>).
- The list of key-value pairs is broken up and each individual key-value pair, $\langle\mathrm{k} 1, \mathrm{v} 1>$, is processed by calling the map function of the mapper (the key k 1 is often ignored by the mapper).
- The mapper transforms each <k1, v1> pair into a list of <k2, v2> pairs.
- The key-value pairs are processed in arbitrary order.

MapReduce

- The complete data flow:
- The input is structured as a list of key-value pairs: list (<k1,v1>).
- The list of key-value pairs is broken up and each individual key-value pair, $\langle\mathrm{k} 1, \mathrm{v} 1>$, is processed by calling the map function of the mapper (the key k 1 is often ignored by the mapper).
- The mapper transforms each <k1,v1> pair into a list of <k2, v2> pairs.
- The key-value pairs are processed in arbitrary order.
- The output of all the mappers are (conceptually) aggregated into one giant list of <k2, v2> pairs. All pairs sharing the same k2 are grouped together into a new aggregated key-value pair: <k2,list(v2)>.

MapReduce

- The complete data flow:
- The input is structured as a list of key-value pairs: list (<k1,v1>).
- The list of key-value pairs is broken up and each individual key-value pair, $\langle\mathrm{k} 1, \mathrm{v} 1>$, is processed by calling the map function of the mapper (the key k 1 is often ignored by the mapper).
- The mapper transforms each <k1,v1> pair into a list of <k2, v2> pairs.
- The key-value pairs are processed in arbitrary order.
- The output of all the mappers are (conceptually) aggregated into one giant list of <k2, v2> pairs. All pairs sharing the same k2 are grouped together into a new aggregated key-value pair: <k2,list(v2)>.
- The framework asks the reducer to process each one of these aggregated key-value pairs individually.

Combiner and partitioner

- Beside map and reduce there are two other important elements that can be implemented within the MapReduce framework to control the data flow.

Combiner and partitioner

- Beside map and reduce there are two other important elements that can be implemented within the MapReduce framework to control the data flow.
- Combiner - perform local aggregation (the reduce step) on the map node.

Combiner and partitioner

- Beside map and reduce there are two other important elements that can be implemented within the MapReduce framework to control the data flow.
- Combiner - perform local aggregation (the reduce step) on the map node.
- Partitioner - divide the key space of the map output and assign the key-value pairs to reducers.

WordCount in MapReduce

- Map:
- For a pair <k1,document> produce a sequence of pairs <token,1>, where token is a token/word found in the document.

```
map(String filename, String document) {
    List<String> T = tokenize(document);
    for each token in T {
        emit ((String)token, (Integer) 1);
    }
}
```


WordCount in MapReduce

- Reduce
- For a pair <word, list(1, 1, ..., 1)> sum up all ones appearing in the list and return <word, sum>, where sum is the sum of ones.

```
reduce(String token, List<Integer> values) {
    Integer sum = 0;
    for each value in values {
        sum = sum + value;
    }
    emit ((String)token, (Integer) sum);
}
```


Matrix-vector multiplication

- Let \boldsymbol{A} to be large $n \times m$ matrix, and \boldsymbol{x} a long vector of size m.
- The matrix-vector multiplication is defined as:

Matrix-vector multiplication

- Let \boldsymbol{A} to be large $n \times m$ matrix, and \boldsymbol{x} a long vector of size m.
- The matrix-vector multiplication is defined as:

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{v}
$$

where $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ and

$$
v_{i}=\sum_{j=1}^{m} a_{i j} x_{j} .
$$

Matrix-vector multiplication

- Let us first assume that m is large, but not so large that vector \boldsymbol{x} cannot fit in main memory, and be part of the input to every Map task.
- The matrix \boldsymbol{A} is stored with explicit coordinates, as a triple $\left(i, j, a_{i j}\right)$.
- We also assume the position of element x_{j} in the vector \boldsymbol{x} will be stored in the analogous way.

Matrix-vector multiplication

- Map:

Matrix-vector multiplication

- Map: Each map task will take the entire vector \boldsymbol{x} and a chunk of the matrix \boldsymbol{A}. From each matrix element $a_{i j}$ it produces the key-value pair $\left(i, a_{i j} x_{j}\right)$. Thus, all terms of the sum that make up the component v_{i} of the matrix-vector product will get the same key.

Matrix-vector multiplication

- Map: Each map task will take the entire vector \boldsymbol{x} and a chunk of the matrix \boldsymbol{A}. From each matrix element $a_{i j}$ it produces the key-value pair $\left(i, a_{i j} x_{j}\right)$. Thus, all terms of the sum that make up the component v_{i} of the matrix-vector product will get the same key.
- Reduce:

Matrix-vector multiplication

- Map: Each map task will take the entire vector \boldsymbol{x} and a chunk of the matrix \boldsymbol{A}. From each matrix element $a_{i j}$ it produces the key-value pair $\left(i, a_{i j} x_{j}\right)$. Thus, all terms of the sum that make up the component v_{i} of the matrix-vector product will get the same key.
- Reduce: A reduce task has simply to sum all the values associated with a given key i. The result will be a pair $\left(i, v_{i}\right)$ where:

$$
v_{i}=\sum_{j=1}^{m} a_{i j} x_{j} .
$$

Matrix-Vector multiplication with large vector x

Matrix-Vector multiplication with large vector x

- Divide the matrix into vertical stripes of equal width and divide the vector into an equal number of horizontal stripes, of the same height.

- The i th stripe of the matrix multiplies only components from the i th stripe of the vector.
- Thus, we can divide the matrix into one file for each stripe, and do the same for the vector.

Matrix-Vector multiplication with large vector x

- Each Map task is assigned a chunk from one the stripes of the matrix and gets the entire corresponding stripe of the vector.
- The Map and Reduce tasks can then act exactly as in the case where Map tasks get the entire vector.

Outline

(1) Data partitioning

2 MapReduce

3 Algorithms in MapReduce

4 Summary

Algorithms in MapReduce

- How to implement fundamental algorithms in MapReduce?
- Relational-Algebra Operations.
- Matrix multiplication.

Relational-algebra operations

Example (Relation Links)

From	To
url1	url2
url1	url3
url2	url3
url2	url4
\ldots	\ldots

Relational-algebra operations

- We assume that input and output are real relations (no duplicated rows)

Relational-algebra operations

- We assume that input and output are real relations (no duplicated rows)
- Operations:
- Selection
- Projection
- Union, intersection, and difference
- Natural join
- Grouping and aggregation

Relational-algebra operations

- We assume that input and output are real relations (no duplicated rows)
- Operations:
- Selection
- Projection
- Union, intersection, and difference
- Natural join
- Grouping and aggregation
- Notation:
- R, S - relation
- t, t^{\prime} - a tuple
- \mathcal{C} - a condition of selection
- A, B, C - subset of attributes
- a, b, c - attribute values for a given subset of attributes

Selection

- Operation: $\operatorname{Select}_{\mathcal{C}}(R)$

Selection

- Operation: $\operatorname{Select}_{\mathcal{C}}(R)$
- Map:

Selection

- Operation: $\operatorname{Select}_{\mathcal{C}}(R)$
- Map: For each tuple t in R, test if it satisfies \mathcal{C}. If so, produce the key-value pair (t, t). That is, both the key and value are t.
- Reduce:

Selection

- Operation: $\operatorname{Select}_{\mathcal{C}}(R)$
- Map: For each tuple t in R, test if it satisfies \mathcal{C}. If so, produce the key-value pair (t, t). That is, both the key and value are t.
- Reduce: The Reduce function is the identity. It simply passes each key-value pair to the output.

Selection

- Operation: $\operatorname{Select}_{\mathcal{C}}(R)$
- Map: For each tuple t in R, test if it satisfies \mathcal{C}. If so, produce the key-value pair (t, t). That is, both the key and value are t.
- Reduce: The Reduce function is the identity. It simply passes each key-value pair to the output.

	Input	Output
map	$\langle k 1, t\rangle$	list $(<t, t\rangle)$
reduce	$(<t$, list $(t)>)$	list $(\langle t, t\rangle)$

Projection

- Operation: Project $_{A}(R)$

Projection

- Operation: Project $_{A}(R)$
- Map:

Projection

- Operation: Project $_{A}(R)$
- Map: For each tuple t in R, construct a tuple t^{\prime} by eliminating from t those components whose attributes are not in A. Output the key-value pair $\left(t^{\prime}, t^{\prime}\right)$.
- Reduce:

Projection

- Operation: Project $_{A}(R)$
- Map: For each tuple t in R, construct a tuple t^{\prime} by eliminating from t those components whose attributes are not in A. Output the key-value pair $\left(t^{\prime}, t^{\prime}\right)$.
- Reduce: For each key t^{\prime} produced by any of the Map tasks, there will be one or more key-value pairs (t^{\prime}, t^{\prime}). The Reduce function turns $\left(t^{\prime},\left[t^{\prime}, t^{\prime}, \ldots, t^{\prime}\right]\right)$ into $\left(t^{\prime}, t^{\prime}\right)$, so it produces exactly one pair $\left(t^{\prime}, t^{\prime}\right)$ for this key t^{\prime}.

Projection

- Operation: Project $_{A}(R)$
- Map: For each tuple t in R, construct a tuple t^{\prime} by eliminating from t those components whose attributes are not in A. Output the key-value pair $\left(t^{\prime}, t^{\prime}\right)$.
- Reduce: For each key t^{\prime} produced by any of the Map tasks, there will be one or more key-value pairs (t^{\prime}, t^{\prime}). The Reduce function turns $\left(t^{\prime},\left[t^{\prime}, t^{\prime}, \ldots, t^{\prime}\right]\right)$ into $\left(t^{\prime}, t^{\prime}\right)$, so it produces exactly one pair $\left(t^{\prime}, t^{\prime}\right)$ for this key t^{\prime}.

	Input	Output
map	$\langle\mathrm{k} 1, \mathrm{t}\rangle$	list $\left(\left\langle\mathrm{t}^{\prime}, \mathrm{t}^{\prime}\right\rangle\right)$
reduce	$\left(\left\langle\mathrm{t}, \mathrm{list}\left(\mathrm{t}^{\prime}, \ldots, \mathrm{t}^{\prime}\right)\right\rangle\right)$	list $\left(\left\langle\mathrm{t}^{\prime}, \mathrm{t}^{\prime}\right\rangle\right)$

Union

- Operation: Union (R, S)

Union

- Operation: Union (R, S)
- Map:

Union

- Operation: Union (R, S)
- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- Reduce:

Union

- Operation: Union (R, S)
- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- Reduce: Associated with each key t there will be either one or two values. Produce output (t, t) in either case.

Union

- Operation: Union (R, S)
- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- Reduce: Associated with each key t there will be either one or two values. Produce output (t, t) in either case.

	Input	Output
map	$\langle k 1, t)\rangle$	list $(\langle t, t\rangle)$
reduce	$(\langle t$, list $(t)\rangle)$ or	list $(\langle t, t\rangle)$
	$(\langle t, \operatorname{list}(t, t)\rangle)$	

Intersection

- Operation: Intersection (R, S)

Intersection

- Operation: Intersection (R, S)
- Map:

Intersection

- Operation: Intersection (R, S)
- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- Reduce:

Intersection

- Operation: Intersection (R, S)
- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- Reduce: If key t has value list $[t, t]$, then produce (t, t). Otherwise, produce nothing.

Intersection

- Operation: Intersection (R, S)
- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- Reduce: If key t has value list $[t, t]$, then produce (t, t). Otherwise, produce nothing.

	Input	Output
map	$\langle k 1, t)\rangle$	list $(\langle t, t\rangle)$
reduce	$(\langle t$, list $(t)\rangle)$ or	list $(\langle t, t\rangle)$ if
	$(\langle t$, list $(t, t)\rangle)$	$(\langle t, \operatorname{list}(t, t)\rangle)$

Minus

- Operation: $\operatorname{Minus}(R, S)$

Minus

- Operation: $\operatorname{Minus}(R, S)$
- Map:

Minus

- Operation: $\operatorname{Minus}(R, S)$
- Map: For a tuple t in R, produce key-value pair $(t$, name $(R))$, and for a tuple t in S, produce key-value pair (t, name (S)).
- Reduce:

Minus

- Operation: $\operatorname{Minus}(R, S)$
- Map: For a tuple t in R, produce key-value pair $(t$, name $(R))$, and for a tuple t in S, produce key-value pair (t, name (S)).
- Reduce: For each key t, do the following.
(1) If the associated value list is [name (R)], then produce (t, t).

2 If the associated value list is anything else, which could only be [name (R), name $(S)]$, $[\operatorname{name}(S)$, name $(R)]$, or [name $(S)]$, produce nothing.

Minus

- Operation: $\operatorname{Minus}(R, S)$
- Map: For a tuple t in R, produce key-value pair $(t$, name $(R))$, and for a tuple t in S, produce key-value pair (t, name (S)).
- Reduce: For each key t, do the following.
(1) If the associated value list is [name (R)], then produce (t, t).

2 If the associated value list is anything else, which could only be [name (R), name $(S)]$, $[\operatorname{name}(S)$, name $(R)]$, or [name $(S)]$, produce nothing.

	Input	Output
map	<k1, (t, R) > or	list (<t,R>) or
	<k1, (t, S) > or	list (<t, S>)
reduce	(<t,list (R)>) or	list (<t, t>) if
	(<t,list (S)>) or	(<t,list (R)>)
	$\begin{aligned} & (<t, \operatorname{list}(R, S)>) \text { or } \\ & (<t, \operatorname{list}(S, R)>) \end{aligned}$	

Natural Join

- Operation: $\operatorname{Join}_{B}(R, S)$

Natural Join

- Operation: $\operatorname{Join}_{B}(R, S)$
- Assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.
- Map:

Natural Join

- Operation: $\operatorname{Join}_{B}(R, S)$
- Assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.
- Map: For each tuple (a, b) of R, produce the key-value pair ($b,(\operatorname{name}(R), a)$). For each tuple (b, c) of S, produce the key-value pair $(b,(\operatorname{name}(S), c))$.
- Reduce:

Natural Join

- Operation: $\operatorname{Join}_{B}(R, S)$
- Assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.
- Map: For each tuple (a, b) of R, produce the key-value pair ($b,(\operatorname{name}(R), a)$). For each tuple (b, c) of S, produce the key-value pair $(b,(\operatorname{name}(S), c))$.
- Reduce: Each key value b will be associated with a list of pairs that are either of the form (name $(R), a$) or (name $(S), c)$. Construct all pairs consisting of one with first component name (R) and the other with first component S, say (name $(R), a)$ and (name $(S), c)$. The output for key b is a list $(b,(a 1, b, c 1)),(b,(a 2, b, c 2)), \ldots$

Natural Join

- Operation: $\mathrm{Join}_{B}(R, S)$
- Assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.
- Map: For each tuple (a, b) of R, produce the key-value pair (b, (name $(R), a)$). For each tuple (b, c) of S, produce the key-value pair $(b,(\operatorname{name}(S), c))$.
- Reduce: Each key value b will be associated with a list of pairs that are either of the form (name $(R), a$) or (name $(S), c)$. Construct all pairs consisting of one with first component name (R) and the other with first component S, say (name $(R), a$) and (name $(S), c)$. The output for key b is a list $(b,(a 1, b, c 1)),(b,(a 2, b, c 2)), \ldots$

	Input	Output
map	$<\mathrm{k} 1,(\mathrm{t}, \mathrm{R})\rangle$ or	list $(\langle\mathrm{b},(\mathrm{a}, \mathrm{R})\rangle)$ or
	$<\mathrm{k} 1,(\mathrm{t}, \mathrm{S})\rangle$ or	list $(\langle\mathrm{b},(\mathrm{c}, \mathrm{S})\rangle)$
reduce	$<\mathrm{b}, \operatorname{list}((\mathrm{a} 1, \mathrm{R}), \ldots$,	list $(\langle\mathrm{b},(\mathrm{a} 1, \mathrm{~b}, \mathrm{c} 1)\rangle, \ldots)$

Grouping and Aggregation

- Operation: Aggregate $_{(\theta, A, B)}(R)$

Grouping and Aggregation

- Operation: Aggregate (θ, A, B) (R)
- Assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B by using function θ.
- Map:

Grouping and Aggregation

- Operation: Aggregate (θ, A, B) (R)
- Assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B by using function θ.
- Map: For each tuple (a, b, c) produce the key-value pair (a, b).
- Reduce:

Grouping and Aggregation

- Operation: Aggregate (θ, A, B) (R)
- Assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B by using function θ.
- Map: For each tuple (a, b, c) produce the key-value pair (a, b).
- Reduce: Each key a represents a group. Apply the aggregation operator θ to the list $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ of B-values associated with key a. The output is the pair (a, x), where x is the result of applying θ to the list. For example, if θ is SUM, then $x=b_{1}+b_{2}+\ldots+b_{n}$, and if θ is MAX, then x is the largest of $b_{1}, b_{2}, \ldots, b_{n}$.

Grouping and Aggregation

- Operation: Aggregate (θ, A, B) (R)
- Assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B by using function θ.
- Map: For each tuple (a, b, c) produce the key-value pair (a, b).
- Reduce: Each key a represents a group. Apply the aggregation operator θ to the list $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ of B-values associated with key a. The output is the pair (a, x), where x is the result of applying θ to the list. For example, if θ is SUM, then $x=b_{1}+b_{2}+\ldots+b_{n}$, and if θ is MAX, then x is the largest of $b_{1}, b_{2}, \ldots, b_{n}$.

	Input	Output
map	$<\mathrm{k} 1, \mathrm{t}\rangle$	list $(<\mathrm{a}, \mathrm{b}\rangle)$
reduce	$\langle\mathrm{a}, \operatorname{list}((\mathrm{b} 1, \mathrm{~b} 2, \ldots)\rangle$	list $(\langle\mathrm{a}, \mathrm{f}(\mathrm{b} 1, \mathrm{~b} 2, \ldots)\rangle)$

Matrix Multiplication

- If M is a matrix with element $m_{i j}$ in row i and column j, and N is a matrix with element $n_{j k}$ in row j and column k, then the product:

$$
P=M N
$$

is the matrix P with element $p_{i k}$ in row i and column k, where:

$$
p_{i k}=
$$

Matrix Multiplication

- If M is a matrix with element $m_{i j}$ in row i and column j, and N is a matrix with element $n_{j k}$ in row j and column k, then the product:

$$
P=M N
$$

is the matrix P with element $p_{i k}$ in row i and column k, where:

$$
p_{i k}=\sum_{j} m_{i j} n_{j k}
$$

Matrix Multiplication

- We can think of a matrix M and N as a relation with three attributes: the row number, the column number, and the value in that row and column, i.e.,:

$$
M(I, J, V) \quad \text { and } \quad N(J, K, W)
$$

with the following tuples, respectively:

$$
\left(i, j, m_{i j}\right) \quad \text { and } \quad\left(j, k, n_{j k}\right) .
$$

- In case of sparsity of M and N, this relational representation is very efficient in terms of space.
- The product $M N$ is almost a natural join followed by grouping and aggregation.

Matrix Multiplication

Matrix Multiplication

- Map:

Matrix Multiplication

- Map: Send each matrix element $m_{i j}$ to the key value pair:

$$
\left(j,\left(M, i, m_{i j}\right)\right) .
$$

Analogously, send each matrix element $n_{j k}$ to the key value pair:

$$
\left(j,\left(N, k, n_{j k}\right)\right) .
$$

- Reduce:

Matrix Multiplication

- Map: Send each matrix element $m_{i j}$ to the key value pair:

$$
\left(j,\left(M, i, m_{i j}\right)\right) .
$$

Analogously, send each matrix element $n_{j k}$ to the key value pair:

$$
\left(j,\left(N, k, n_{j k}\right)\right) .
$$

- Reduce: For each key j, examine its list of associated values. For each value that comes from M, say ($M, i, m_{i j}$), and each value that comes from N, say $\left(N, k, n_{j k}\right)$, produce the tuple

$$
\left(i, k, v=m_{i j} n_{j k}\right)
$$

The output of the Reduce function is a key j paired with the list of all the tuples of this form that we get from j :

$$
\left(j,\left[\left(i_{1}, k_{1}, v_{1}\right),\left(i_{2}, k_{2}, v_{2}\right), \ldots,\left(i_{p}, k_{p}, v_{p}\right)\right]\right) .
$$

Matrix Multiplication

Matrix Multiplication

- Map:

Matrix Multiplication

- Map: From the pairs that are output from the previous Reduce function produce p key-value pairs:

$$
\left(\left(i_{1}, k_{1}\right), v_{1}\right),\left(\left(i_{2}, k_{2}\right), v_{2}\right), \ldots,\left(\left(i_{p}, k_{p}\right), v_{p}\right)
$$

- Reduce:

Matrix Multiplication

- Map: From the pairs that are output from the previous Reduce function produce p key-value pairs:

$$
\left(\left(i_{1}, k_{1}\right), v_{1}\right),\left(\left(i_{2}, k_{2}\right), v_{2}\right), \ldots,\left(\left(i_{p}, k_{p}\right), v_{p}\right)
$$

- Reduce: For each key (i, k), produce the sum of the list of values associated with this key. The result is a pair

$$
((i, k), v),
$$

where v is the value of the element in row i and column k of the matrix

$$
P=M N
$$

Matrix Multiplication with One Map-Reduce Step

- Map:

Matrix Multiplication with One Map-Reduce Step

- Map: For each element $m_{i j}$ of M, produce a key-value pair

$$
\left((i, k),\left(M, j, m_{i j}\right)\right),
$$

for $k=1,2, \ldots$, up to the number of columns of N. Also, for each element $n_{j k}$ of N, produce a key-value pair

$$
\left((i, k),\left(N, j, n_{j k}\right)\right),
$$

for $i=1,2, \ldots$, up to the number of rows of M.

Matrix Multiplication with One Map-Reduce Step

- Reduce:

Matrix Multiplication with One Map-Reduce Step

- Reduce: Each key (i, k) will have an associated list with all the values

$$
\left(M, j, m_{i j}\right) \quad \text { and } \quad\left(N, j, n_{j k}\right),
$$

for all possible values of j. We connect the two values on the list that have the same value of j, for each j :

- We sort by j the values that begin with M and sort by j the values that begin with N, in separate lists,
- The j th values on each list must have their third components, $m_{i j}$ and $n_{j k}$ extracted and multiplied,
- Then, these products are summed and the result is paired with (i, k) in the output of the Reduce function.

Outline

1 Data partitioning

2 MapReduce

3 Algorithms in MapReduce

4 Summary

Summary

- Computational burden \rightarrow data partitioning, distributed systems.
- Data partitioning
- New data-intensive challenges like search engines.
- MapReduce: The overall idea and simple algorithms.
- Algorithms Using Map-Reduce

Bibliography

- J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press, 2014 http://infolab.stanford.edu/~ullman/mmds.html
- J.Lin and Ch. Dyer. Data-Intensive Text Processing with MapReduce. Morgan and Claypool Publishers, 2010 http://lintool.github.com/MapReduceAlgorithms/
- Ch. Lam. Hadoop in Action. Manning Publications Co., 2011

