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Review of previous lectures

• Processing of massive datasets

• Evolution of database systems

• OLTP and OLAP systems

• ETL

• Dimensional modeling

• Data processing
I Physical storage and data access
I Materialization
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Motivation

• Computational burden → divide and conquer

I Data partitioning
I Distributed systems
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Data partitioning

• In general, partitioning divides data (e.g., tables and indexes) into
smaller pieces, enabling these pieces to be managed and accessed at a
finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables and datasets.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.
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Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.
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Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:

I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition
I Composite Partitioning: partitions data using the range method, and

within each partition, subpartitions it using the hash or list method.
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Data partitioning

• Example:

CREATE TABLE sales list (

salesman id NUMBER(5),

salesman name VARCHAR2(30),

sales state VARCHAR2(20),

sales amount NUMBER(10),

sales date DATE)

PARTITION BY LIST(sales state)

(

PARTITION sales west VALUES(’California’, ’Hawaii’),

PARTITION sales east VALUES (’New York’, ’Virginia’),

PARTITION sales central VALUES(’Texas’, ’Illinois’)

PARTITION sales other VALUES(DEFAULT)

)

);
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Data partitioning

• Example:

peopleDF

.write

.partitionBy("favorite color")

.bucketBy(42, "name")

.saveAsTable("people-partitioned-bucketed")
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Data partitioning and star schema

• Partition fact table:

I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins.

• One big dimension:

I Sometimes one dimension table is quite big (e.g. customer),
I Partition the big dimension table,
I Partition fact table on key of big dimension,
I The join operation can be performed on smaller tables.
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Data partitioning and star schema

• Reducing load time via partitioning:

I Often fact tables are partitioned on date,
I Newly loaded records go into the last partition,
I Only indexes and aggregates for that partition need to be updated,
I All other partitions remain unchanged.

• Expiring old data:

I Often older data is less useful / relevant for data analysts,
I To reduce database size, old data is often deleted,
I If data is partitioned on date, simply delete or compress the oldest

partitions.
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Partitioning and sorting

• External-memory sorting:

I Let data be of size n and main memory be of size k + 1 units (k input
and one output buffer).

I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.
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MapReduce-based systems

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• Computational burden → distributed systems

I Scaling-out instead of scaling-up
I Move-code-to-data
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MapReduce-based systems

• Accessible – run on large clusters of commodity machines or on cloud
computing services such as AWS (Amazon Web Services).

• Robust – are intended to run on commodity hardware; designed with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

• Scalable – scales linearly to handle larger data by adding more nodes
to the cluster.

• Simple – allow users to quickly write efficient parallel code.
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MapReduce: Two simple procedures

• Word count: A basic operation for every search engine.

• Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

• How to implement these procedures for efficient execution in a
distributed system?

• How much can we gain by such implementation?

• Let us focus on the word count problem . . .
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Word count

• Count the number of times each word occurs in a set of documents:

Do as I say, not as I do.

Word Count

as 2
do 2
i 2

not 1
say 1
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Word count

• Let us write the procedure in pseudo-code for a single machine:

d e f i n e wordCount as M u l t i s e t ;

f o r each document i n documentSet {
T = t o k e n i z e ( document ) ;

f o r each token i n T {
wordCount [ token ]++;

}

}

d i s p l a y ( wordCount ) ;
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Word count

• Let us write the procedure in pseudo-code for many machines:

I First step:

d e f i n e wordCount as M u l t i s e t ;

f o r each document i n documentSubset {
T = t o k e n i z e ( document ) ;
f o r each token i n T {

wordCount [ token ]++;
}

}

sendToSecondPhase ( wordCount ) ;

I Second step:

d e f i n e tota lWordCount as M u l t i s e t ;

f o r each wordCount r e c e i v e d from f i r s t P h a s e {
m u l t i s e t A d d ( totalWordCount , wordCount ) ;

}

• Should be there one or many workers running the totalWordCount

procedure?
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Word count

• To make the procedure work properly across a cluster of distributed
machines, we need to add a number of functionalities:

I Store files over many processing machines (of phase one).
I Write a disk-based hash table permitting processing without being

limited by RAM capacity.
I Partition the intermediate data (that is, wordCount) from phase one.
I Shuffle the partitions to the appropriate machines in phase two.
I Ensure fault tolerance.
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MapReduce

• MapReduce programs are executed in two main phases, called
mapping and reducing:

I Map: the map function is written to convert input elements to
key-value pairs.

I Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.
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MapReduce

• The complete data flow:

Input Output

map (<k1, v1>) list(<k2, v2>)

reduce (<k2, list(<v2>)) list(<k3, v3>)
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MapReduce

Figure: The complete data flow
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MapReduce

• The complete data flow:

I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.
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Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.

26 / 53



Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.

26 / 53



Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.

26 / 53



WordCount in MapReduce

• Map:
I For a pair <k1,document> produce a sequence of pairs <token,1>,

where token is a token/word found in the document.

map( S t r i n g f i l e n a m e , S t r i n g document ) {
L i s t<S t r i n g> T = t o k e n i z e ( document ) ;

f o r each token i n T {
emit ( ( S t r i n g ) token , ( I n t e g e r ) 1 ) ;

}

}
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WordCount in MapReduce

• Reduce
I For a pair <word, list(1, 1, ..., 1)> sum up all ones appearing

in the list and return <word, sum>, where sum is the sum of ones.

r e d u c e ( S t r i n g token , L i s t<I n t e g e r> v a l u e s ) {
I n t e g e r sum = 0 ;

f o r each v a l u e i n v a l u e s {
sum = sum + v a l u e ;

}

emit ( ( S t r i n g ) token , ( I n t e g e r ) sum ) ;
}
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Matrix-vector multiplication

• Let A to be large n×m matrix, and x a long vector of size m.

• The matrix-vector multiplication is defined as:

Ax = v,

where v = (v1, . . . , vn) and

vi =
m∑
j=1

aijxj .
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Matrix-vector multiplication

• Let us first assume that m is large, but not so large that vector x
cannot fit in main memory, and be part of the input to every Map
task.

• The matrix A is stored with explicit coordinates, as a triple (i, j, aij).

• We also assume the position of element xj in the vector x will be
stored in the analogous way.
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Matrix-vector multiplication

• Map:

Each map task will take the entire vector x and a chunk of the
matrix A. From each matrix element aij it produces the key-value
pair (i, aijxj). Thus, all terms of the sum that make up the
component vi of the matrix-vector product will get the same key.

• Reduce: A reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, vi) where:

vi =

m∑
j=1

aijxj .
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Matrix-Vector multiplication with large vector x

• Divide the matrix into vertical stripes of equal width and divide the
vector into an equal number of horizontal stripes, of the same height.

×

• The ith stripe of the matrix multiplies only components from the ith
stripe of the vector.

• Thus, we can divide the matrix into one file for each stripe, and do
the same for the vector.
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Matrix-Vector multiplication with large vector x

• Each Map task is assigned a chunk from one the stripes of the matrix
and gets the entire corresponding stripe of the vector.

• The Map and Reduce tasks can then act exactly as in the case where
Map tasks get the entire vector.
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Algorithms in MapReduce

• How to implement fundamental algorithms in MapReduce?
I Relational-Algebra Operations.
I Matrix multiplication.
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Relational-algebra operations

Example (Relation Links)

From To

url1 url2

url1 url3

url2 url3

url2 url4

. . . . . .
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Relational-algebra operations

• We assume that input and output are real relations (no duplicated
rows)

• Operations:
I Selection
I Projection
I Union, intersection, and difference
I Natural join
I Grouping and aggregation

• Notation:
I R, S - relation
I t, t′ - a tuple
I C - a condition of selection
I A, B, C - subset of attributes
I a, b, c - attribute values for a given subset of attributes
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Selection

• Operation: SelectC(R)

• Map: For each tuple t in R, test if it satisfies C. If so, produce the
key-value pair (t, t). That is, both the key and value are t.

• Reduce: The Reduce function is the identity. It simply passes each
key-value pair to the output.

Input Output

map <k1,t> list(<t,t>)

reduce (<t,list(t)>) list(<t,t>)
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Projection

• Operation: ProjectA(R)

• Map: For each tuple t in R, construct a tuple t′ by eliminating from t
those components whose attributes are not in A. Output the
key-value pair (t′, t′).

• Reduce: For each key t′ produced by any of the Map tasks, there will
be one or more key-value pairs (t′, t′). The Reduce function turns
(t′, [t′, t′, . . . , t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for
this key t′.

Input Output

map <k1,t> list(<t’,t’>)

reduce (<t’,list(t’,...,t’)>) list(<t’,t’>)
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Union

• Operation: Union(R,S)

• Map: Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce: Associated with each key t there will be either one or two
values. Produce output (t, t) in either case.

Input Output

map <k1,t)> list(<t,t>)

reduce (<t,list(t)>) or list(<t,t>)

(<t,list(t,t)>)
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Intersection

• Operation: Intersection(R,S)

• Map: Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce: If key t has value list [t, t], then produce (t, t). Otherwise,
produce nothing.

Input Output

map <k1,t)> list(<t,t>)

reduce (<t,list(t)>) or list(<t,t>) if
(<t,list(t,t)>) (<t,list(t,t)>)
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Minus

• Operation: Minus(R,S)

• Map: For a tuple t in R, produce key-value pair (t, name(R)), and for
a tuple t in S, produce key-value pair (t, name(S)).

• Reduce: For each key t, do the following.
1 If the associated value list is [name(R)], then produce (t, t).
2 If the associated value list is anything else, which could only be

[name(R), name(S)], [name(S), name(R)], or [name(S)], produce
nothing.

Input Output

map <k1,(t,R)> or list(<t,R>) or
<k1,(t,S)> or list(<t,S>)

reduce (<t,list(R)>) or list(<t,t>) if
(<t,list(S)>) or (<t,list(R)>)

(<t,list(R,S)>) or
(<t,list(S,R)>)
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Natural Join

• Operation: JoinB(R,S)

• Assume that we join relation R(A,B) with relation S(B,C) that
share the same attribute B.

• Map: For each tuple (a, b) of R, produce the key-value pair
(b, (name(R), a)). For each tuple (b, c) of S, produce the key-value
pair (b, (name(S), c)).

• Reduce: Each key value b will be associated with a list of pairs that
are either of the form (name(R), a) or (name(S), c). Construct all
pairs consisting of one with first component name(R) and the other
with first component S, say (name(R), a) and (name(S), c). The
output for key b is a list (b, (a1, b, c1)), (b, (a2, b, c2)), . . ..

Input Output

map <k1,(t,R)> or list(<b,(a,R)>) or
<k1,(t,S)> or list(<b,(c,S)>)

reduce <b,list((a1,R), ..., list(<b,(a1,b,c1)>,...)

(c1,S),...)>
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Grouping and Aggregation

• Operation: Aggregate(θ,A,B)(R)

• Assume that we group a relation R(A,B,C) by attributes A and
aggregate values of B by using function θ.

• Map: For each tuple (a, b, c) produce the key-value pair (a, b).

• Reduce: Each key a represents a group. Apply the aggregation
operator θ to the list [b1, b2, . . . , bn] of B-values associated with key
a. The output is the pair (a, x), where x is the result of applying θ to
the list. For example, if θ is SUM, then x = b1 + b2 + . . .+ bn, and if θ
is MAX, then x is the largest of b1, b2,. . . , bn.

Input Output

map <k1,t> list(<a,b>)

reduce <a,list((b1,b2,...)> list(<a,f(b1,b2,...)>)

44 / 53
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Matrix Multiplication

• If M is a matrix with element mij in row i and column j, and N is a
matrix with element njk in row j and column k, then the product:

P =MN

is the matrix P with element pik in row i and column k, where:

pik =

∑
j

mijnjk
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Matrix Multiplication

• We can think of a matrix M and N as a relation with three
attributes: the row number, the column number, and the value in
that row and column, i.e.,:

M(I, J, V ) and N(J,K,W )

with the following tuples, respectively:

(i, j,mij) and (j, k, njk).

• In case of sparsity of M and N , this relational representation is very
efficient in terms of space.

• The product MN is almost a natural join followed by grouping and
aggregation.
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Matrix Multiplication

• Map: Send each matrix element mij to the key value pair:

(j, (M, i,mij)) .

Analogously, send each matrix element njk to the key value pair:

(j, (N, k, njk)) .

• Reduce: For each key j, examine its list of associated values. For
each value that comes from M , say (M, i,mij), and each value that
comes from N , say (N, k, njk), produce the tuple

(i, k, v = mijnjk),

The output of the Reduce function is a key j paired with the list of all
the tuples of this form that we get from j:

(j, [(i1, k1, v1), (i2, k2, v2), . . . , (ip, kp, vp)]) .
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Matrix Multiplication

• Map: From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((i1, k1), v1) , ((i2, k2), v2) , . . . , ((ip, kp), vp) .

• Reduce: For each key (i, k), produce the sum of the list of values
associated with this key. The result is a pair

((i, k), v) ,

where v is the value of the element in row i and column k of the
matrix

P =MN.
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Matrix Multiplication with One Map-Reduce Step

• Map:

For each element mij of M , produce a key-value pair

((i, k), (M, j,mij)) ,

for k = 1, 2, . . ., up to the number of columns of N .
Also, for each element njk of N , produce a key-value pair

((i, k), (N, j, njk)) ,

for i = 1, 2, . . ., up to the number of rows of M .
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Matrix Multiplication with One Map-Reduce Step

• Reduce:

Each key (i, k) will have an associated list with all the values

(M, j,mij) and (N, j, njk),

for all possible values of j. We connect the two values on the list that
have the same value of j, for each j:

I We sort by j the values that begin with M and sort by j the values
that begin with N , in separate lists,

I The jth values on each list must have their third components, mij and
njk extracted and multiplied,

I Then, these products are summed and the result is paired with (i, k) in
the output of the Reduce function.
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Outline

1 Data partitioning

2 MapReduce

3 Algorithms in MapReduce

4 Summary

51 / 53



Summary

• Computational burden → data partitioning, distributed systems.

• Data partitioning

• New data-intensive challenges like search engines.

• MapReduce: The overall idea and simple algorithms.

• Algorithms Using Map-Reduce
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