Processing of Massive Datasets

Krzysztof Dembczyński
Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, eighth semester
Academic year 2018/19 (summer semester)

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access:

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access: hashing and sorting (\rightarrow tree-based indexing).

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Data compression.

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Data compression.
- Approximate query processing.

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Data compression.
- Approximate query processing.
- Probabilistic data structures and algorithms.

Processing of massive data sets

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Summarization, materialization, and denormalization.
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Data compression.
- Approximate query processing.
- Probabilistic data structures and algorithms.
- Partitioning and sharding (Map-Reduce, distributed databases).

Outline

(1) Physical storage and data access
(2) Materialization
(3) Summary

Outline

(1) Physical storage and data access

2 Materialization

3 Summary

Physical storage

- How to store the data below:

Year	Products	Sales
2010	Mountain	5076
2010	Road	4005
2010	Touring	3560
2011	Mountain	6503
2011	Road	4503
2011	Touring	3445

Physical storage

- How to store the data below:

Sales	Products		
Year	Mountain	Road	Touring
2010	5076	4005	3560
2011	6503	4503	3445

Physical storage

- How to store the data below:

5	0	0	34	-1
0	0	0	13	0
-9	0	0	0	2
1	0	0	0	0
0	-1	0	0	2

Physical storage

- How to store the data below:

Row	Column	Value
1	1	5
1	4	34
1	5	-1
2	4	13
3	1	-9
3	5	2
4	1	1
5	2	-1
5	5	2

Physical storage

- Row-based,
- Column-based,
- Key-values stores,
- Multi-dimensional arrays,
- Dense vs. sparse structures,
- Relational OLAP vs. Multidimensional OLAP.

Physical storage

- The following table can be stored in different ways:

Year	Products	Sales
2010	Mountain	5076
2010	Road	4005
2010	Touring	3560
2011	Mountain	6503
2011	Road	4503
2011	Touring	3445

Physical storage

- Row-based storage:

001: 2010, Mountain, 5076, 002: 2010, Road, 4005, 003: 2010, Touring, 3560, 004: 2011, Mountain, 6503, 005: 2011, Road, 4503 006: 2011, Touring, 3445.

Physical storage

- Row-based storage:

001: 2010, Mountain, 5076, 002: 2010, Road, 4005, 003: 2010, Touring, 3560, 004: 2011, Mountain, 6503, 005: 2011, Road, 4503 006: 2011, Touring, 3445.

- Column-based storage:

Y: 2010, 2010, 2010, 2011, 2011, 2011, P: Mountain, Road, Touring, Mountain, Road, Touring, S: 5076, 5004, 3560, 6503, 4503, 3445.
or
Y: 2010: 001, 002, 003, 2011: 004, 005, 006, P: Mountain: 001, 004, Road: 002, 005, Touring: 003, 006, S: 5076: 001, 4005, 002, 3560: 003, 6503: 004, 4503: 005, 3445: 006

Physical storage

- Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011, 006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring, 004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076, 002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

Physical storage

- Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011, 006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring, 004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076, 002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

- Multidimensional array:

Y: 2010, 2011, P: Mountain, Road, Touring, S: 5076, 4005, 3560, 6503, 4503, 3445

Data access

- Hashing
- Sorting (\rightarrow tree-based indexing).

Hashing

- Hashing
- The basic idea behind dictionaries.
- Extensively used also in many other applications.
- Some of them will be covered in this lecture.

Hashing

- Dictionary:
- Can be implemented as a direct access table, i.e. a large array indexed by a natural key:
- Keys must be nonnegative integers.
- The range of keys can be enormous.
- There are two solutions for these problems: prehash and hash functions.

Hashing

- Prehash:
- Maps natural keys to integers
- Since keys are finite or at least countable, they can be mapped to integers.
- Implemented in many languages (hash or hashCode functions).
- In theory: $x=y \Leftrightarrow \operatorname{hash}(x)=\operatorname{hash}(y)$
- Keys should not change over time in a given application.

Hashing

- Prehash for complex objects:

Hashing

- Prehash for complex objects:
- In a sense, all data types have values that are composed of bits, and sequences of bits can always be interpreted as integers.

Hashing

- Prehash for complex objects:
- In a sense, all data types have values that are composed of bits, and sequences of bits can always be interpreted as integers.
- String \Rightarrow small integer: convert each character to its ASCII or Unicode equivalent and interpret as an integer; aggregate the integers together.

Hashing

- Prehash for complex objects:
- In a sense, all data types have values that are composed of bits, and sequences of bits can always be interpreted as integers.
- String \Rightarrow small integer: convert each character to its ASCII or Unicode equivalent and interpret as an integer; aggregate the integers together.
- String \Rightarrow large integer: group the string into a disjoint groups of consecutive integers; concatenate characters in the groups and treat them as single integers; aggregate the integers together.

Hashing

- Prehash for complex objects:
- In a sense, all data types have values that are composed of bits, and sequences of bits can always be interpreted as integers.
- String \Rightarrow small integer: convert each character to its ASCII or Unicode equivalent and interpret as an integer; aggregate the integers together.
- String \Rightarrow large integer: group the string into a disjoint groups of consecutive integers; concatenate characters in the groups and treat them as single integers; aggregate the integers together.
- Arrays \Rightarrow map each element of an array to integer; aggregate the integers or groups of them.

Hashing

- Prehash for complex objects:
- In a sense, all data types have values that are composed of bits, and sequences of bits can always be interpreted as integers.
- String \Rightarrow small integer: convert each character to its ASCII or Unicode equivalent and interpret as an integer; aggregate the integers together.
- String \Rightarrow large integer: group the string into a disjoint groups of consecutive integers; concatenate characters in the groups and treat them as single integers; aggregate the integers together.
- Arrays \Rightarrow map each element of an array to integer; aggregate the integers or groups of them.
- Tuples \Rightarrow map each element of a tuple to integer; aggregate the integers or groups of them.

```
S = s #lnitialize the state.
for k in range(0,m): #Scan the input data units:
    S = F(S, b[k]) #Combine data unit k into the state.
return S
```


Hashing

- Hashing:

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.
- Hash function: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.
- Hash function: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$
- Two keys $k_{i} \neq k_{j}$ collide if $h\left(k_{i}\right)=h\left(k_{j}\right)$

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.
- Hash function: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$
- Two keys $k_{i} \neq k_{j}$ collide if $h\left(k_{i}\right)=h\left(k_{j}\right)$
- We want to have good hashing functions (simple uniform hashing): each key is equally likely to be hashed to any slot of table independent of where other keys are hashed.

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.
- Hash function: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$
- Two keys $k_{i} \neq k_{j}$ collide if $h\left(k_{i}\right)=h\left(k_{j}\right)$
- We want to have good hashing functions (simple uniform hashing): each key is equally likely to be hashed to any slot of table independent of where other keys are hashed.
- With good hashing functions dictionaries work in $\mathcal{O}(n)$ time.

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.
- Hash function: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$
- Two keys $k_{i} \neq k_{j}$ collide if $h\left(k_{i}\right)=h\left(k_{j}\right)$
- We want to have good hashing functions (simple uniform hashing): each key is equally likely to be hashed to any slot of table independent of where other keys are hashed.
- With good hashing functions dictionaries work in $\mathcal{O}(n)$ time.
- Dictionaries to work well need additional elements (e.g., table resizing).

Hashing

- Hashing:
- Reduce universe \mathcal{U} of all integer keys (the result of prehash) down to reasonable size m for table.
- Ideally, the number of n elements to be stored equals m.
- Hash function: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$
- Two keys $k_{i} \neq k_{j}$ collide if $h\left(k_{i}\right)=h\left(k_{j}\right)$
- We want to have good hashing functions (simple uniform hashing): each key is equally likely to be hashed to any slot of table independent of where other keys are hashed.
- With good hashing functions dictionaries work in $\mathcal{O}(n)$ time.
- Dictionaries to work well need additional elements (e.g., table resizing).
- For the current lecture, we focus on good hashing functions (in many cases we will ignore or allow conflicts).

Hash functions

- Division method:

$$
h(k)=k \quad \bmod m,
$$

where m usually is a prime number. If it is power of 2 or 10 , then the hash are low bits or digits.

Hash functions

- Division method:

$$
h(k)=k \quad \bmod m,
$$

where m usually is a prime number. If it is power of 2 or 10 , then the hash are low bits or digits.

- Multiplication method:

$$
h(k)=\left[(a \cdot k) \quad \bmod 2^{w}\right] \gg(w-r),
$$

where a is random, k is w bits, and $m=2^{r}$

Hash functions

- Division method:

$$
h(k)=k \quad \bmod m,
$$

where m usually is a prime number. If it is power of 2 or 10 , then the hash are low bits or digits.

- Multiplication method:

$$
h(k)=\left[(a \cdot k) \quad \bmod 2^{w}\right] \gg(w-r),
$$

where a is random, k is w bits, and $m=2^{r}$

- Universal hashing:

$$
h(k)=\left[\begin{array}{lll}
a x+b & \bmod p
\end{array}\right] \quad \bmod m .
$$

where $p>|\mathcal{U}|$ is prime, $a \in\{1, \ldots, p-1\}$ and $b \in\{0, \ldots, p-1\}$.
This function satisfies

$$
P_{h \in H}\left(h\left(k_{1}\right)=h\left(k_{2}\right)\right) \leq \frac{1}{m},
$$

for each pair of keys $k_{1} \neq k_{2} \in\{\mathcal{U}\}$.

Sorting

- For sorted data we can:

Sorting

- For sorted data we can:
- Perform binary search:

```
\(\mathrm{l}, \mathrm{r}, \mathrm{m}=0\), len \((\mathrm{t})-1,-1\)
while \(1<=r\) :
    \(m=1+(r-1) / / 2\)
    if \(\mathrm{t}[\mathrm{m}]=\mathrm{v}\) :
        break
    elif \(t[m]<v\) :
        \(\mathrm{l}=\mathrm{m}+1\)
    else:
        \(r=m-1\)
return m
```


Sorting

- For sorted data we can:
- Perform binary search:

```
\(\mathrm{l}, \mathrm{r}, \mathrm{m}=0\), len \((\mathrm{t})-1,-1\)
while \(1<=r\) :
    \(m=1+(r-1) / / 2\)
    if \(\mathrm{t}[\mathrm{m}]=\mathrm{v}\) :
        break
    elif \(t[m]<v\) :
        \(l=m+1\)
    else:
        \(r=m-1\)
return m
```

- Speed-up operations such as group-by or join,

Sorting

- For sorted data we can:
- Perform binary search:

```
\(\mathrm{l}, \mathrm{r}, \mathrm{m}=0, \operatorname{len}(\mathrm{t})-1,-1\)
while \(1<=r\) :
    \(m=1+(r-1) / / 2\)
    if \(\mathrm{t}[\mathrm{m}]=\mathrm{v}\) :
        break
    elif \(t[m]<v\) :
        \(l=m+1\)
    else:
        \(r=m-1\)
return m
```

- Speed-up operations such as group-by or join,
- Build a tree-based index.

Grouping

- Group-by is usually performed in the following way:

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,
- Sort or re-hash within each bucket to resolve collisions.

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,
- Sort or re-hash within each bucket to resolve collisions.
- Aggregation functions

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,
- Sort or re-hash within each bucket to resolve collisions.
- Aggregation functions
- distributive: count(), sum, max, min,

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,
- Sort or re-hash within each bucket to resolve collisions.
- Aggregation functions
- distributive: count(), sum, max, min,
- algebraic: ave(), stdev, var,

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,
- Sort or re-hash within each bucket to resolve collisions.
- Aggregation functions
- distributive: count(), sum, max, min,
- algebraic: ave(), stdev, var,
- holistic: median, rank, mode, distinct count.

Grouping

- Group-by is usually performed in the following way:
- Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
- Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
- Sorting
- Sort by the grouping attributes,
- All tuples with same grouping attributes will appear together in sorted list.
- Hashing
- Hash by the grouping attributes,
- All tuples with same grouping attributes will hash to same bucket,
- Sort or re-hash within each bucket to resolve collisions.
- Aggregation functions
- distributive: count(), sum, max, min,
- algebraic: ave(), stdev, var,
- holistic: median, rank, mode, distinct count.
- Use intermediate results to compute more general group-bys (\Rightarrow Materialization).

Grouping

- Example: Grouping by sorting (Month, City):

Month	City	Sale
March	Poznań	105
March	Warszawa	135
March	Poznań	50
May	Warszawa	100
April	Poznań	150
April	Kraków	175
May	Poznań	70
May	Warszawa	75

Grouping

- Example: Grouping by sorting (Month, City):

Month	City	Sale	Month	City	Sale
March	Poznań	105	March	Poznań	105
March	Warszawa	135	March	Poznań	50
March	Poznań	50	March	Warszawa	135
May	Warszawa	100	April	Poznań	150
April	Poznań	150	April	Kraków	175
April	Kraków	175	May	Poznań	70
May	Poznań	70	May	Warszawa	75
May	Warszawa	75	May	Warszawa	100

Grouping

- Example: Grouping by sorting (Month, City):

Month	City	Sale		Month	City	Sale
March	Poznań	105		March	Poznań	105
March	Warszawa	135		March	Poznań	50
March	Poznań	50		March	Warszawa	135
May	Warszawa	100	\longrightarrow A	April	Poznań	150
April	Poznań	150		April	Kraków	175
April	Kraków	175		May	Poznań	70
May	Poznań	70		May	Warszawa	75
May	Warszawa	75		May	Warszawa	100
\downarrow						
	Month		City	Sale		
	March		Poznań	155		
	March		Warszawa	va 135		
	April		Poznań	150		
	April		Kraków	- 175		
	May		Poznań	70		
	May		Warszawa	va 175		

Indexes

- Indexes allow efficient search on some attributes due to the way they are organized.

Indexes

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).

Indexes

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).
- Index-only plans use small indexes in place of large relations.

Indexes

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).
- Index-only plans use small indexes in place of large relations.
- Query processing on indexes - without accessing base tables.

Indexes

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).
- Index-only plans use small indexes in place of large relations.
- Query processing on indexes - without accessing base tables.
- Indexes on two and more columns.

Indexes

- Inverted lists,
- Trees,
- Bitmap index,
- Bit-sliced index,
- Projection index,
- Join index.

Inverted list

- Inverted list stores a mapping from content (e.g., words) to its locations in a database (e.g., in documents):

```
document 1 }\longrightarrow\mathrm{ word 1, word 5, word 4, word 175, word 7
document 2 }\longrightarrow\mathrm{ word 54, word 1, word 4, word 6, word 71
document 3}\longrightarrow\mathrm{ word 5, word 175, word 11
```


Inverted list

- Inverted list stores a mapping from content (e.g., words) to its locations in a database (e.g., in documents):

$$
\begin{gathered}
\text { word } 1 \longrightarrow \text { document } 1 \text {, document } 2 \\
\ldots \\
\text { word } 4 \longrightarrow \text { document } 1 \text {, document } 2 \\
\text { word } 5 \longrightarrow \text { document } 1 \text {, document } 3 \\
\text { word } 6 \longrightarrow \text { document } 2, \ldots
\end{gathered}
$$

Bitmap index

- Bitmap indexes use bit arrays (commonly called "bitmaps") to encode values on a given attribute and answer queries by performing bitwise logical operations on these bitmaps.

Bitmap index

- Bitmap indexes use bit arrays (commonly called "bitmaps") to encode values on a given attribute and answer queries by performing bitwise logical operations on these bitmaps.

Customer	City	Car
C1	Detroit	Ford
C2	Chicago	Honda
C3	Detroit	Honda
C4	Poznań	Ford
C5	Paris	BMW
C6	Paris	Nissan

Bitmap index

- Bitmap indexes use bit arrays (commonly called "bitmaps") to encode values on a given attribute and answer queries by performing bitwise logical operations on these bitmaps.

		Customer	City	Car	
		C1	Detroit	Ford	
		C2	Chicago	Honda	
		C3	Detroit	Honda	
		C4	Poznań	Ford	
		C5	Paris	BMW	
		C6	Paris	Nissan	
			\downarrow		
Customer	Chicago Detroit Paris Poznań			Bitmap	Array of bytes
C1	0	10	0		
C2	1	00	0	Chicago	010000 (00)
C3	0	10	0	\rightarrow Detroit	101000 (00)
C4	0	00	1	Paris	010011 (00)
C5	0	$0 \quad 1$	0	Poznań	000100 (00)
C6	0	0	0		

Bitmap index

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),

Bitmap index

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,

Bitmap index

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,

Bitmap index

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,
- Works poorly for high cardinality domains since the number of bitmaps increases,

Bitmap index

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,
- Works poorly for high cardinality domains since the number of bitmaps increases,
- Difficult to maintain - need reorganization when relation sizes change (new bitmaps)

Bitmap index

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,
- Works poorly for high cardinality domains since the number of bitmaps increases,
- Difficult to maintain - need reorganization when relation sizes change (new bitmaps)
- Can be used with other index structures (e.g., tree-based indexes).

Bit-sliced index

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:

Bit-sliced index

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
- Efficient aggregation,

Bit-sliced index

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
- Efficient aggregation,
- Efficient range filtering.

Bit-sliced index

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
- Efficient aggregation,
- Efficient range filtering.
- Definition:

Bit-sliced index

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
- Efficient aggregation,
- Efficient range filtering.
- Definition:
- Assume, that values of attribute a are integer numbers coded by $n+1$ bits. In this case, attribute a can be stored as binary attributes $a_{0}, a_{1}, \ldots, a_{n}$, such that

$$
a=\sum_{i=0}^{n} 2^{i} a_{i}=a_{0}+2 a_{1}+2^{2} a_{2} \cdots+2^{n} a_{n}
$$

Each binary attribute a_{i} can be stored as bitmap index. Set of bitmap indexes of $a_{i}, i=0, \ldots, n$, is the bit-sliced index.

Bit-sliced index

- Example:

$\overline{\text { Amount }}$		Bitmap
13		0101
2		1101
6		0010
7		0110

Bit-sliced index:

- B4: 01000
- B3: 11011
- B2: 00111
- B1: 11001

Bit-sliced index

- Example:
- Computing the sum:

Amount			
5		Bit-sliced index:	Counting ones:
13		B4: 01000	1
2		B3: 11011	4
6		B2: 00111	3
7		B1: 11001	3
Sum: 33			

Final results: $1 \cdot 2^{3}+4 \cdot 2^{2}+3 \cdot 2^{1}+3 \cdot 2^{0}=8+16+6+3=33$

Bit-sliced index

- Example:
- Computing the sum:

Amount			
5		Bit-sliced index:	Counting ones:
13	B4: 01000	1	
2	B3: 11011	4	
6	B2: 00111	3	
7	B1: 11001	3	
Sum: 33			

Final results: $1 \cdot 2^{3}+4 \cdot 2^{2}+3 \cdot 2^{1}+3 \cdot 2^{0}=8+16+6+3=33$
Problem: How to efficiently count the number of ones in a bitmap?

Fast bitmap count

- Count the number of 1 's in a bitmap:

Fast bitmap count

- Count the number of 1's in a bitmap:
- Treat the bitmap as a byte array.
- Pre-compute lookup table with number of 1's in each byte.
- Cycle through bitmap one byte at a time, accumulating count using. lookup table

Fast bitmap count

- Count the number of 1 's in a bitmap:
- Treat the bitmap as a byte array.
- Pre-compute lookup table with number of 1's in each byte.
- Cycle through bitmap one byte at a time, accumulating count using. lookup table
- Pseudocode:

```
numSetBits[0] = 0;
numSetBits[1] = 1;
numSetBits[2] = 1;
numSetBits[3] = 2;
numSetBits[255] = 8;
count = 0;
for (int i = 0; i < n/8; i++)
    count += numSetBits[bitmap[i]];
```


Fast bitmap count

- Count the number of 1's in a bitmap:
- Treat the bitmap as a byte array.
- Pre-compute lookup table with number of 1's in each byte.
- Cycle through bitmap one byte at a time, accumulating count using. lookup table
- Pseudocode:

```
numSetBits[0] = 0;
numSetBits[1] = 1;
numSetBits[2] = 1;
numSetBits[3] = 2;
numSetBits[255] = 8;
count = 0;
for (int i = 0; i < n/8; i++)
    count += numSetBits[bitmap[i]];
```

- Treating bitmap as short int array \rightarrow even faster
- Lookup table has 65536 entries instead of 256.
- Bitmap of n bits \rightarrow only add $n / 16$ numbers.

Fast bitmap count

- Count the number of 1 's in a bitmap
- Use smartly properties of binary coding.
- Making count to be linear with the number of ones.

Fast bitmap count

- Count the number of 1 's in a bitmap
- Use smartly properties of binary coding.
- Making count to be linear with the number of ones.
- Pseudocode

```
word = bitmap[i];
count = 0;
while (word != 0)
    word &= (word - 1);
        count++;
```


Storing and accessing multidimensional cubes

- Dense and sparse dimensions
- Organize a multi-dimensional cube by properly setting dimension types.

Storing and accessing multidimensional cubes

- Dense and sparse dimensions
- Organize a multi-dimensional cube by properly setting dimension types.
- Example: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
- Date and measures are rather dense,
- Product and Localization are rather sparse.
- Two extreme data cube organizations are possible.

Storing and accessing multidimensional cubes

- Example: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
- Two extreme data cube organizations are possible.

	JAN			FEB			MAR		
	East	West	South	East	West	South	East	West	South
Prod. A		XXX	XXX		XXX	XXX		XXX	XXX
Rev. Prod. B	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. C	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. A		XXX	XXX		XXX	XXX		XXX	XXX
Exp. Prod. B	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. C	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. A		XXX	XXX		XXX	XXX		XXX	XXX
Net. Prod. B	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. C	XXX	XXX		XXX	XXX		XXX	XXX	

Storing and accessing multidimensional cubes

- Example: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
- Two extreme data cube organizations are possible.

	East				West			South	
	JAN	FEB	MAR	JAN	FEB	MAR	JAN	FEB	MAR
Rev.				XXX	XXX	XXX	XXX	XXX	XXX
Prod. A Exp.				XXX	XXX	XXX	XXX	XXX	XXX
Net.				XXX	XXX	XXX	XXX	XXX	XXX
Rev.	XXX	XXX	XXX	XXX	XXX	XXX			
Prod. B. Exp.	XXX	XXX	XXX	XXX	XXX	XXX			
Net.	XXX	XXX	XXX	XXX	XXX	XXX			
Rev.	XXX	XXX	XXX	XXX	XXX	XXX			
Prod. C. Exp.	XXX	XXX	XXX	XXX	XXX	XXX			
Net.	XXX	XXX	XXX	XXX	XXX	XXX			

Storing and accessing multidimensional cubes

- Example: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
- Two extreme data cube organizations are possible.
- The first organization is inefficient.
- The second organization allows to efficiently store the cube using 3×3 data chunks - some of the chunks are empty.

Storing and accessing multidimensional cubes

- Construct an index on sparse dimensions.

Storing and accessing multidimensional cubes

- Construct an index on sparse dimensions.
- Each leaf points to a multidimensional array that stores dense dimensions.

Storing and accessing multidimensional cubes

- Construct an index on sparse dimensions.
- Each leaf points to a multidimensional array that stores dense dimensions.
- The multidimensional arrays can be still compressed: bitmap compression, run-length encoding, etc.

Compression

- Example:
- A sparse array:

	Product	Mountain	Road	Touring
Day	$1 / 1 / 2010$			3
	$2 / 1 / 2011$		2	
	$3 / 1 / 2011$			5

can be stored as a sequence of non-missing values

$$
3,2,5
$$

Compression

- Example:
- A sparse array:

	Product	Mountain	Road	Touring
Day	$1 / 1 / 2010$			3
$2 / 1 / 2011$		2		
$3 / 1 / 2011$			5	

can be stored as a sequence of non-missing values

$$
3,2,5
$$

but we need add additional information about positions of these values:

Compression

- Example:
- A sparse array:

	Product	Mountain	Road	Touring
Day	$1 / 1 / 2010$			3
$2 / 1 / 2011$		2		
$3 / 1 / 2011$			5	

can be stored as a sequence of non-missing values

$$
3,2,5
$$

but we need add additional information about positions of these values:

- Indexes: 3,5,9
- Gaps: 2,1,3
- Bitmaps: 001010001
- Run-length codes: Null, Null, 3, Null, 2, Null $\times 3,5$
- Indexes and gaps can be further coded by prefix codes.

Outline

(1) Physical storage and data access

2 Materialization

3 Summary

Materialization

- Relational and multidimensional model with summarizations:

Year	Products	Sales
2010	Mountain	5076
2010	Road	4005
2010	Touring	3560
2011	Mountain	6503
2011	Road	4503
2011	Touring	3445
2010	$*$	12461
2011	$*$	14451
$*$	Mountain	11579
$*$	Road	6503
$*$	Touring	7005
$*$	$*$	27092

	Product	Mountain	Road	Touring	All
Year	2010	5076	4005	3560	12641
	2011	6503	4503	3445	14451
	All	11579	8508	7005	27092

Materialization

- Trade-off between query performance and load performance
- To improve performance of query processing:
- Precompute as much as possible
- Build additional data structures like indexes
- The costs of the above are:
- Disk space,
- Load time,
- Processing time of building and updating of data structures

Materialization

- Typical techniques:

Materialization

- Typical techniques:
- Materialized views or indexed views.

Materialization

- Typical techniques:
- Materialized views or indexed views.
- Subcubes or aggregations.

Materialization

- Typical techniques:
- Materialized views or indexed views.
- Subcubes or aggregations.
- Aggregates should be computed from previously computed aggregates, rather than from the base fact table.

Materialization

- Typical techniques:
- Materialized views or indexed views.
- Subcubes or aggregations.
- Aggregates should be computed from previously computed aggregates, rather than from the base fact table.
- The problem appears with maintenance of the materialized views: recomputation and incremental updating.

View vs. materialized views

- View is a derived relation defined in terms of base (stored) relations.
- Materialized view (or indexed view) is a view stored in a database that is updated from the original base tables from time to time.

Query re-write

- Query rewrite: transforms a given query expressed in terms of base tables or views into a statement accessing one or more materialized views (e.g., aggregates) that are defined on the detail tables.
- The transformation is transparent to the end user or application, requiring no intervention and no reference to the materialized view in the query.

Query re-write

- Example: Materialized views in SQL
- Materialized view V :

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2010
GROUP BY p.name, p.year_of_release;

- Materialized view V consists of:
- Join of the fact table with dimension table,
- Group by dimension attributes,
- Aggregation of measures included in fact table.

Query re-write

- Example: Materialized views in SQL

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011 GROUP BY p.name, p.year of release;

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011 GROUP BY p.name, p.year of release;

- Query rewrite

SELECT p.name, p.year_of_release, price FROM V
WHERE year of release > 2011;

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011 GROUP BY p.name, p.year of release;

- Query rewrite

SELECT p.name, p.year_of_release, price FROM V
WHERE year of release > 2011;

- The query re-write is possible since the exact match holds:

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011 GROUP BY p.name, p.year of release;

- Query rewrite

SELECT p.name, p.year_of_release, price FROM V
WHERE year of release > 2011;

- The query re-write is possible since the exact match holds:
- all the projected columns are also in V,

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011 GROUP BY p.name, p.year of release;

- Query rewrite

SELECT p.name, p.year_of_release, price FROM V WHERE year of release > 2011;

- The query re-write is possible since the exact match holds:
- all the projected columns are also in V,
- the same aggregate functions are used on all measures,

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011
GROUP BY p.name, p.year of release;

- Query rewrite

SELECT p.name, p.year_of_release, price FROM V WHERE year of release > 2011;

- The query re-write is possible since the exact match holds:
- all the projected columns are also in V,
- the same aggregate functions are used on all measures,
- all selection conditions in the query imply the selection conditions in V,

Query re-write

- Example: Materialized views in SQL
- Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p
WHERE s.product id = p.id AND p.year_of_release > 2011
GROUP BY p.name, p.year of release;

- Query rewrite

SELECT p.name, p.year_of_release, price FROM V
WHERE year of release > 2011;

- The query re-write is possible since the exact match holds:
- all the projected columns are also in V,
- the same aggregate functions are used on all measures,
- all selection conditions in the query imply the selection conditions in V,
- the attributes present in selection conditions that are strictly stronger than selection conditions defined in V, are also present in V.

Exercise

- There exists a materialized view denoted by V :

SELECT name, model, year, sum(price) as price, count(*) as card FROM Sales NATURAL JOIN Cars GROUP BY name, model, year;

How does the query re-write work for the query below?
SELECT name, model, avg(price)
FROM Sales NATURAL JOIN Cars
WHERE year > 2010 GROUP BY name, model;

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.
- Different aspects:

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.
- Different aspects:
- Immediate and delayed refresh.

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.
- Different aspects:
- Immediate and delayed refresh.
- Full refresh and view maintenance.

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.
- Different aspects:
- Immediate and delayed refresh.
- Full refresh and view maintenance.
- Maintainable and partially maintainable views.

Maintenance of materialized views

- Let V be the materialized view defined by a query Q over a set R of relations

$$
V=Q(R)
$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.
- Different aspects:
- Immediate and delayed refresh.
- Full refresh and view maintenance.
- Maintainable and partially maintainable views.
- Example: How to maintain the materialized view defined below?

$$
\mathrm{V}=\operatorname{SELECT} \min (\mathrm{A} . \mathrm{a}) \text { FROM A }
$$

Outline

1 Physical storage and data access

(2) Materialization
(3) Summary

Summary

- Physical storage and data access,
- Materialization, denormalization and summarization.

