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Review of the previous lectures

• Processing of massive datasets

• Evolution of database systems

• OLTP and OLAP systems

• ETL

• Dimensional modeling

• Data processing

• MapReduce in Spark
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Motivation

• Exploratory data analysis: original data can be too big to compute
the results for unpredictable queries.

• Data streams: fast rate of incoming data that cannot be entirely
stored and analyze offline.

• Possible solution: fast, approximate answers based on small synopsis
of database
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Approximate query processing

• Example: Compute average salary:

I Approximate answer: 65000± 2000 (with 95% confidence)
I Return answer in 5 seconds
I Exact answer: 65792.27
I Return answer in 30 minutes

• Example: How many users have visited a given Web site in a given
month:

I Efficient computation of the distinct count.
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Synopsis data structure

• Synopsis data structure: any data structures that are substantively
smaller than their base dataset.
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Outline

1 Sampling

2 Filtering

3 Counting distinct elements

4 Summary
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Sampling

• Simplest data synopsis = uniform random sample
I Evaluate query over random sample of the data
I Extrapolate from random sample to estimate overall result
I Large body of knowledge from statistics: unbiased/biased estimators,

variance of estimates, confidence intervals.
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Sampling – confidence interval

• Confidence intervals for true average µ:

P (Xl ≤ µ ≤ Xr) = 1− α

where Xl and Xr are random variables indicating the left and the
right endpoints of the interval, and 1− α is the confidence level
(usually, α is close to zero, e.g., α = 0.05).
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Sampling – confidence interval

• Let R be the original relation with the average µ, S the sample with
n elements, and the confidence level 90%.

• Central limit theorem:
I The confidence interval is defined through:

P

(
X̄ − 1.65

σS√
n
≤ µ ≤ X̄ + 1.65

σS√
n

)
= 0.9

where X̄ is the average computed over the sample, σS is the standard
deviation of the values in S and 1.65 is the 0.95-quantile (since
1− α/2) of the standardized normal distribution.

I This confidence interval holds for n→∞ (in practice, when n > 30)
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Sampling

• Two basic approaches to sampling

I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:

• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:

• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked

• Unfortunately can be quite slow (even more costly then scanning the
whole relation)

I Pre-computed samples:

• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:

• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:

• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:
• Generate samples of big tables in advance

• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:
• Generate samples of big tables in advance
• Store the pre-computed samples separately

• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:
• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling

• Two basic approaches to sampling
I On-demand sampling:

• Generate sample when query is asked
• Unfortunately can be quite slow (even more costly then scanning the

whole relation)

I Pre-computed samples:
• Generate samples of big tables in advance
• Store the pre-computed samples separately
• Query re-write for using sample tables

• Non-uniform (stratified) sampling

11 / 46



Sampling in data streams

• A problem to solve: sample a fraction r from a stream.

• Solution: Generate a random number and make a decision based on
it about accepting or rejecting a given item.

• Example: Store only 1/10th of the stream; generate an integer from
0 to 9 and accept an item if the random number is, say, 0.

• Instead of generating random numbers, we can use hash functions
(applied to a key attribute of the item) to select the sample, for
example, by hashing items to ten buckets and choosing the items only
from the first bucket.

• We have to be very careful how we sample the data (i.e., select the
key for the hash function).
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Sampling in data streams

• Example: In the web traffic application we want to estimate the
fraction of the typical user’s queries that were repeated over the past
month.

I The approach presented above will fail for this query!!!
I Suppose a user has issued s search queries one time and d search

queries twice, and no search queries more than twice.
I The correct answer is: d/(s+ d).
I What is the answer if computed on 10% of queries in the sample?

• The expected number of queries issued once: s/10
• The expected number of queries issued twice that also appear twice in

the sample: d/100.
• The expected number of queries issued twice that appear once in the

sample: 18d/100.
• The estimate is thus: d/(d+ 18d+ 10s).
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Sampling in data streams

• To solve the above problem we would change the sampling method,
for example, by selecting 10% of users.

• One way of selecting users is the following:

I maintain a list of users
I for each new query check whether a user is already in the list;
I if yes, store the query,
I else, generate a random number to decide, whether to store or not the

user.

• To improve the method use hash functions (for the same user it gives
the same value) and store queries for the users in a given range of
hash values that corresponds to the desired fraction.
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Sampling from infinite streams

• How to sample s elements from an infinite stream with equal
probability?

• The answer is: Reservoir sampling

I Take s first elements from the stream
I For each next ith element do the following:

• Accept the ith element with probability s/i.
• If the element is accepted then remove one of the previously drawn

elements, with equal probability 1/s.

• Is the probability of choosing any element equal?

• In other words, is the probability of each element being selected equal
s/i in each iteration?
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Sampling from infinite streams

• The proof is by induction:

I The new element is chosen with s/i as we would like to have.
I By inductive hypothesis, the probability of drawing each previous

element is s/(i− 1).
I Recall that in case of accepting the new element, an old one is

discarded with probability 1/s.
I The probability of each previous element to be selected is then:(
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Filtering

• Checking whether a given item does not belong to a given set.

• Example: Filtering of spam email addresses

I Suppose we have a set S of one billion allowed email addresses — those
that we will allow through because we believe them not to be spam.

I The problem is to quickly verify whether an email address is spam or
not.

• Standard approaches:

I Bitmap of all items (too big, hard to implement if the domain changes)
I List (or array) of elements in a set (slow performance, storage is also

costly).
I Efficient implementation of a set, e.g., hash-based (much more

efficient, but no improvement in space complexity).
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Bloom filter

• The problem can be defined as:

I Find a representation that allows efficient membership queries of the
n-element set S = {s1, s2, . . . , sn} from a very large universe U ,
|U | = u, with u� n.

• A Bloom filter is a space-efficient probabilistic data structure for set
membership.

I To maximize space efficiency, correctness is sacrificed: if a given key is
not in the set, then a Bloom filter may give the wrong answer (this is
called a false positive), but the probability of such a wrong answer can
be made small.

I The more elements that are added to the set, the larger the probability
of false positives.
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Bloom filter

• An empty Bloom filter is a bitarray of m (m > n, say m = 8n) bits,
all set to 0.

0 0 0 0 0 0 0 0 0 0 0

• There must also be k different hash functions defined, each of which
maps or hashes some set element to one of the m array positions with
a uniform random distribution.
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Bloom filter

• To add an element, feed it to each of the k hash functions to get k
array positions. Set the bits at all these positions to 1.

0 1 0 1 0 1 0 0 0 0 0

• To query for an element (test whether it is in the set), feed it to each
of the k hash functions to get k array positions.

I If any of the bits at these positions are 0, the element is definitely not
in the set – if it were, then all the bits would have been set to 1 when
it was inserted.

I If all are 1, then either the element is in the set, or the bits have by
chance been set to 1 during the insertion of other elements, resulting in
a false positive.
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Bloom filter

• Consider a Bloom filter with m = 11 and k = 3:

I h1(x) = x mod 11
I h2(x) = (2x+ 3) mod 11
I h3(x) = (3x+ 5) mod 11

• Add to the filter the following numbers: 7, 11, 25:

I h1(7) = 7, h2(7) = 6, h3(7) = 4

0 0 0 0 1 0 1 1 0 0 0

I h1(11) = 0, h2(11) = 3, h3(11) = 5

1 0 0 1 1 1 1 1 0 0 0

I h1(25) = 3, h2(25) = 9, h3(25) = 3

1 0 0 1 1 1 1 1 0 1 0
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Bloom filter

• For the Bloom filter:

1 0 0 1 1 1 1 1 0 1 0

check whether 5 and 15 is in the set:

I h1(5) = 5, h2(5) = 2, h3(5) = 9

0 0 1 0 0 1 0 0 0 1 0

There is no 5 in the set.
I h1(15) = 4, h2(15) = 0, h3(15) = 6

1 0 0 0 1 0 1 0 0 0 0

There might be 15 in the set (false positive in this case)
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Probability of false positives

• The probability that one hash fails to set a given bit is:

1− 1

m

• Hence, after all n elements have been inserted into the Bloom filter,
the probability that a specific bit is still 0 is(

1− 1

m

)kn

assuming that the hash functions are independent and perfectly
random.
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Probability of false positive

• Since: (
1− 1

x

)x

≈ e−1, we have:

(
1− 1

m

)m(kn)
m

≈ e−
kn
m

• The probability of a false positive is the probability that a specific set
of k bits are 1, which is(

1−
(

1− 1

m

)kn
)k

≈
(

1− e−
kn
m

)k
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Probability of false positive

• For a ratio m/n = 8 and k = 1 we get(
1− e−

kn
m

)k
= 1− e−1/8 = 0.1175

• For k = 2 we can get:(
1− e−

kn
m

)k
=
(

1− e−2/8
)2

= 0.0489
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Optimizing the number of hash functions

• Suppose we are given the ratio m
n and want to optimize the number k

of hash functions to minimize the false positive rate.

• Note that more hash functions increase the precision but also the
number of 1s in the filter, thus making false positives both less and
more likely at the same time.

• Formally, the problem can be stated as:

k∗ = arg min
k∈N+

(
1− e−

kn
m

)k
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more likely at the same time.

• Formally, the problem can be stated as:

k∗ = arg min
k∈N+
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Optimizing the number of hash functions

• The solution is:
k∗ = (ln 2)

m

n

• For the optimal value of k, the false positive rate is:

(
1− e−

k∗n
m

)k∗
=

(
1− e−(ln 2)m

n
n
m

)(ln 2)m
n

=

(
1

2

)(ln 2)m
n

= (0.6185)
m
n

• Already m = 8n reduces the chance of error to roughly 2%, and
m = 10n to less than 1%.
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Optimizing Bloom filters

• The optimal number of hash functions can also be expressed in terms
of false positive rate ε.

• Remark that:

ε =

(
1

2

)(ln 2)m
n

=

(
1

2

)k∗

so, we get:
k∗ = log2(1/ε)

• The required space in turn can be given as

m

n
= (ln 2)−1 log2(1/ε) = 1.44 log2(1/ε)
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Distinct Count of Elements

• A quite simple instruction in SQL:

SELECT COUNT (DISTINCT A) FROM R

• Standard approach:

I Sorting: requires O(n log n) operations and O(n) space,
I Hashing: requires O(n) operations and O(n) space,
I Sampling: we need to be careful with the estimate.
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Distinct count of elements

• Other linear space solutions:
I Bloom filter
I Linear counting
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Distinct count of elements

• Bloom filter for distinct count:

I For each element test whether it is already present in the Bloom filter.
I If the item is not present in the filter, then insert it into the filter, and

increase the current count of distinct elements.

• Because of the one-sided error nature of the Bloom filter

I The distinct count never overestimates the true count,
I But may underestimate due to collisions.

• To ensure a small constant rate of undercounting, the size of the
Bloom filter has to be proportional to the cardinality being estimated.

• Due to the compactness of the Bloom filter bit vector, this requires
less space than storing the full representation of the set, but only by
constant factors.
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Distinct count of elements

• Linear counting:

I Can be seen as a Bloom filter with a single hash function.
I The number of distinct items is estimated based on the fraction of bits

in the filter which remain as 0
I If this fraction is z, then the number of distinct items is estimated as

m ln
1

z
,

where m is the number of bits in the filter.
I For an accurate estimation, the m is required to be proportional to the

number of distinct items.
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Analysis of linear counting

• The probability of a bit bi to be set to 0 after n insertion is:

P (bni = 0) =

(
1− 1

m

)n

' exp
(
− n
m

)
.

• Let Un be the random variable being a sum of 0 bits after n insertions:

Un =

m∑
i=1

Jbni = 0K

• The expectation of Un is given by:

E(Un) =
m∑
i=1

P (bni = 0) = m exp
(
− n
m

)
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Analysis of linear counting

• Since z = Un/m, we have:

E(z) = exp
(
− n
m

)
and we can obtain:

n = −m lnE(z) = m ln
1

E(z)

• Plugging-in the observed variables we get:

n̂ = m ln
1

z
.
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Analysis of linear counting

• Bloom filter and linear counting need a priori knowledge of the
cardinality being estimated.

• If the filter size is underestimated, then the filter will saturate (be
almost entirely full of 1s), and the estimation will be useless.

• On the other hand, if the filter is mostly empty then the estimate will
be very accurate, but the unused space will be wasted.

• How to generalize linear counting to k hash functions?

n̂ =
m

k
ln

1

z
.
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Distinct count of elements

• The Flajolet-Martin algorithm:

I Also based on hashing.
I Needs several repetition to get a good estimate.
I The size of the data synopsis is double logarithmic in the largest

possible cardinality being estimated.
I The idea: the more different elements in the data, the more different

hash-values we shall see:

• As we see more different hash-values, it becomes more likely that one
of these values will be unusual.

• For example, the unusual property can be the value ends in many 0’s
(although many other options exist).
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The Flajolet-Martin algorithm

• Whenever we apply a hash function h to an element a, the bit string
h(a) will end in some number of 0’s, possibly none.

• Call this number the tail length for a and h.

• Let R be the maximum tail length of any a seen so far in the stream.

• The FM estimate: We will use 2R to estimate the number of distinct
elements seen in the stream.
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The Flajolet-Martin algorithm

• Consider a 32-bit hash function (not perfect, but good for an
example):

h(a) = a mod 232 .

• For each h(a) we take its binary representation and count the tail
length.

• The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:

I h(2) = 10b, r = 1, R = 1, count = 21 = 2
I h(16) = 10000b, r = 4, R = 4, count = 24 = 16
I h(5) = 101b, r = 0, R = 4, count = 24 = 16
I h(9) = 1001b, r = 0, R = 4, count = 24 = 16
I h(11) = 1011b, r = 0, R = 4, count = 24 = 16
I h(193) = 11000001b, r = 0, R = 4, count = 24 = 16
I h(5) = 101b, r = 0, R = 4, count = 24 = 16
I h(150) = 10010110b, r = 1, R = 4, count = 24 = 16
I h(96) = 1100000b, r = 5, R = 5count = 25 = 32

• The estimate is 32
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I h(9) = 1001b, r = 0, R = 4, count = 24 = 16
I h(11) = 1011b, r = 0, R = 4, count = 24 = 16
I h(193) = 11000001b, r = 0, R = 4, count = 24 = 16
I h(5) = 101b, r = 0, R = 4, count = 24 = 16
I h(150) = 10010110b, r = 1, R = 4, count = 24 = 16
I h(96) = 1100000b, r = 5, R = 5count = 25 = 32

• The estimate is 32
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The Flajolet-Martin algorithm1
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• A BITMAP interpretation:

I Suppose the probability of mapping item i to table BITMAP [r] is
1

2r+1

I If there are n distinct items, then BITMAP [0] is accessed
approximately n/2 times, BITMAP [1] is accessed approximately n/4
times and so on.

I If r � log2 n, then BITMAP [r] is almost certainly 0, and if
r � log2 n, then BITMAP [r] is almost certainly 1.

I If r ' log2 n, then BITMAP [r] can be expected to be either 1 or 0.

1
https://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
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Analysis of the Flajolet-Martin algorithm

• We will say that the algorithm is correct if

1

c
n ≤ n̂ ≤ cn

• The question is what is the probability that the FM algorithm is
correct.

• It can be shown that this probability is at least 1− 3
c .
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Combining FM estimates

• Taking the average can be not a good solution (overestimation)

• Median is almost ok, but it is always a power of 2.

• Solution: Combination of the two above

I Group hash function into groups, and take their average,
I Then, take the median of the averages
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Outline

1 Sampling

2 Filtering

3 Counting distinct elements

4 Summary
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Summary

• Approximate Query Processing
I Data synopsis,
I Sampling,
I Bloom filters,
I Counting distinct elements.
I Many other techniques exist:

• Histograms
• Compression via wavelet decomposition
• Sketches based on random projection
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