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Motivation

o Exploratory data analysis: original data can be too big to compute
the results for unpredictable queries.

o Data streams: fast rate of incoming data that cannot be entirely
stored and analyze offline.

e Possible solution: fast, approximate answers based on small synopsis
of database
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Approximate query processing

o Example: Compute average salary:

» Approximate answer: 65000 £ 2000 (with 95% confidence)
» Return answer in 5 seconds

» Exact answer: 65792.27

» Return answer in 30 minutes

e Example: How many users have visited a given Web site in a given
month:

» Efficient computation of the distinct count.
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Synopsis data structure

e Synopsis data structure: any data structures that are substantively
smaller than their base dataset.
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Sampling

e Simplest data synopsis = uniform random sample
» Evaluate query over random sample of the data
» Extrapolate from random sample to estimate overall result
» Large body of knowledge from statistics: unbiased/biased estimators,
variance of estimates, confidence intervals.
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Sampling — confidence interval

o Confidence intervals for true average u:
PXi<pu<X,)=1—-«a

where X; and X, are random variables indicating the left and the
right endpoints of the interval, and 1 — « is the confidence level
(usually, « is close to zero, e.g., a = 0.05).
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Sampling — confidence interval

o Let R be the original relation with the average i, S the sample with
n elements, and the confidence level 90%.

e Central limit theorem:

» The confidence interval is defined through:

> gs S gs
P(X—-166—=<u<X4+165—=)=0.9
< Jn kAT \/ﬁ>

where X is the average computed over the sample, og is the standard
deviation of the values in S and 1.65 is the 0.95-quantile (since
1 — «/2) of the standardized normal distribution.

» This confidence interval holds for n — oo (in practice, when n > 30)
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Sampling

e Two basic approaches to sampling
» On-demand sampling:

o Generate sample when query is asked
o Unfortunately can be quite slow (even more costly then scanning the
whole relation)

» Pre-computed samples:

o Generate samples of big tables in advance
o Store the pre-computed samples separately
o Query re-write for using sample tables

e Non-uniform (stratified) sampling

11 /46



Sampling in data streams

e A problem to solve: sample a fraction r from a stream.
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Sampling in data streams

A problem to solve: sample a fraction r from a stream.

Solution: Generate a random number and make a decision based on
it about accepting or rejecting a given item.

Example: Store only 1/10th of the stream; generate an integer from
0 to 9 and accept an item if the random number is, say, 0.

Instead of generating random numbers, we can use hash functions
(applied to a key attribute of the item) to select the sample, for
example, by hashing items to ten buckets and choosing the items only
from the first bucket.

We have to be very careful how we sample the data (i.e., select the
key for the hash function).
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Sampling in data streams

o Example: In the web traffic application we want to estimate the
fraction of the typical user’s queries that were repeated over the past
month.
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Sampling in data streams

o Example: In the web traffic application we want to estimate the
fraction of the typical user’s queries that were repeated over the past
month.

» The approach presented above will fail for this query!!!
» Suppose a user has issued s search queries one time and d search
queries twice, and no search queries more than twice.
» The correct answer is: d/(s+ d).
» What is the answer if computed on 10% of queries in the sample?
® The expected number of queries issued once: s/10
® The expected number of queries issued twice that also appear twice in
the sample: d/100.
® The expected number of queries issued twice that appear once in the
sample: 18d/100.
e The estimate is thus: d/(d + 18d + 10s).
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Sampling in data streams

e To solve the above problem we would change the sampling method,
for example, by selecting 10% of users.
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¢ One way of selecting users is the following:

vV vy VvYy

maintain a list of users

for each new query check whether a user is already in the list;
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Sampling in data streams

e To solve the above problem we would change the sampling method,
for example, by selecting 10% of users.

¢ One way of selecting users is the following:

maintain a list of users

for each new query check whether a user is already in the list;

if yes, store the query,

else, generate a random number to decide, whether to store or not the

user.

vV vy VvYy

e To improve the method use hash functions (for the same user it gives
the same value) and store queries for the users in a given range of
hash values that corresponds to the desired fraction.
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Sampling from infinite streams

e How to sample s elements from an infinite stream with equal
probability?
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Sampling from infinite streams

How to sample s elements from an infinite stream with equal
probability?
The answer is: Reservoir sampling

» Take s first elements from the stream
» For each next ith element do the following:

o Accept the ith element with probability s/i.
e |f the element is accepted then remove one of the previously drawn
elements, with equal probability 1/s.

Is the probability of choosing any element equal?

In other words, is the probability of each element being selected equal
s/i in each iteration?
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Sampling from infinite streams

e The proof is by induction:

>

>

The new element is chosen with s/i as we would like to have.
By inductive hypothesis, the probability of drawing each previous
element is s/(i — 1).

Recall that in case of accepting the new element, an old one is
discarded with probability 1/s.

The probability of each previous element to be selected is then:
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Filtering

e Checking whether a given item does not belong to a given set.

e Example: Filtering of spam email addresses
» Suppose we have a set S of one billion allowed email addresses — those
that we will allow through because we believe them not to be spam.
» The problem is to quickly verify whether an email address is spam or
not.

e Standard approaches:
» Bitmap of all items (too big, hard to implement if the domain changes)
» List (or array) of elements in a set (slow performance, storage is also

costly).
» Efficient implementation of a set, e.g., hash-based (much more
efficient, but no improvement in space complexity).
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n-element set S = {s1, s2,...,5,} from a very large universe U,
|U| = u, with u > n.

e A Bloom filter is a space-efficient probabilistic data structure for set
membership.

» To maximize space efficiency, correctness is sacrificed: if a given key is
not in the set, then a Bloom filter may give the wrong answer (this is
called a false positive), but the probability of such a wrong answer can
be made small.

» The more elements that are added to the set, the larger the probability
of false positives.
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Bloom filter

e An empty Bloom filter is a bitarray of m (m > n, say m = 8n) bits,
all set to 0.

(0Jofofofofofofofofo]o]

e There must also be & different hash functions defined, each of which
maps or hashes some set element to one of the m array positions with
a uniform random distribution.
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e To add an element, feed it to each of the k hash functions to get k
array positions. Set the bits at all these positions to 1.

e To query for an element (test whether it is in the set), feed it to each
of the k£ hash functions to get k array positions.

» If any of the bits at these positions are 0, the element is definitely not
in the set — if it were, then all the bits would have been set to 1 when
it was inserted.

» If all are 1, then either the element is in the set, or the bits have by
chance been set to 1 during the insertion of other elements, resulting in

a false positive.
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» hi(x) =2 mod 11
» ha(z) = (20 4+ 3) mod 11
» hs(z) = (3x+5) mod 11
e Add to the filter the following numbers: 7, 11, 25:
> h1(7) = 7, hg(?) = 6, h3(7) =4
[ofoJofofrfof1[1]of0f0]
4 hl(ll) =0, hg(ll) =3, hg(ll) =5
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Bloom filter

e Consider a Bloom filter with m =11 and k = 3:
» hi(x) =2 mod 11
» ha(z) = (20 4+ 3) mod 11
» hs(z) = (3x+5) mod 11

e Add to the filter the following numbers: 7, 11, 25:
> h1(7):7, h2(7)26, h3(7):4
[ofoJofofrfof1[1]of0f0]
4 h1(11):0, h2(11)=3, h3(11)25
[1]ofof1frf1J1[1]of0f0]
> h1(25) =3, ha(25) =9, h3(25) =3
[1]ofofifrf1f1f1]of1]0]
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Bloom filter

e For the Bloom filter:

[1]ofofuf11f1f1]0]

1

[0]

check whether 5 and 15 is in the set:
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Bloom filter

e For the Bloom filter:
(1]ofof1f1f1]1[1]0[1]0]
check whether 5 and 15 is in the set:
> 11(5) = 5, ha(5) = 2, ha(5) =9
(0[of1]ofof[1]0]0f0[1]0]

There is no 5 in the set.
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Bloom filter

e For the Bloom filter:
(1]ofof1f1f1]1[1]0[1]0]
check whether 5 and 15 is in the set:
> 11(5) = 5, ha(5) = 2, ha(5) =9
(0[of1]ofof[1]0]0f0[1]0]

There is no 5 in the set.
» hi(15) =4, hao(15) =0, h3(15) =6

[1]ofoJof1fof1]0f0[0]0O]
There might be 15 in the set (false positive in this case)
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Probability of false positives

e The probability that one hash fails to set a given bit is:
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Probability of false positives

e The probability that one hash fails to set a given bit is:

1
1— —
m

e Hence, after all n elements have been inserted into the Bloom filter,
the probability that a specific bit is still 0 is

(=)

assuming that the hash functions are independent and perfectly
random.
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e Since:

(

1- =
T

Probability of false positive

X
> ~e ', we have: <

1
1-— —
m

)

i
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Probability of false positive

e Since:

1\* 1 m
<1 — ) ~e ', we have: <1 — > ~e
x m

e The probability of a false positive is the probability that a specific set
of k bits are 1, which is

(1 = (1— ;)kny ~ (1 —e*%")k

i
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Probability of false positive

e For a ratio m/n =8 and k =1 we get

Nk
(1 _ e—%) —1—e1/8-01175
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Probability of false positive

e For a ratio m/n =8 and k =1 we get

kn

k
(1-e ) =1-e5=01175
e For k = 2 we can get:

Nk 2
(1 _ e—%) - (1 _ e—Q/S) — 0.0489
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Optimizing the number of hash functions

e Suppose we are given the ratio 7 and want to optimize the number k&
of hash functions to minimize the false positive rate.
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of hash functions to minimize the false positive rate.

e Note that more hash functions increase the precision but also the
number of 1s in the filter, thus making false positives both less and
more likely at the same time.
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Optimizing the number of hash functions

e Suppose we are given the ratio 7 and want to optimize the number k&
of hash functions to minimize the false positive rate.

e Note that more hash functions increase the precision but also the
number of 1s in the filter, thus making false positives both less and
more likely at the same time.

e Formally, the problem can be stated as:

o\ k

. _kn

k™ = arg min (1—6 m)
keNt
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Optimizing the number of hash functions

e The solution is: m
E* = (In2)—
n

28/
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Optimizing the number of hash functions

e The solution is: m
E* = (In2)—
n

e For the optimal value of k, the false positive rate is:

(1-52)" = (1-etmomm) ™%

1\ m2)2 N
= (2> = (0.6185) "
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Optimizing the number of hash functions

e The solution is: m
E* = (In2)—
n

e For the optimal value of k, the false positive rate is:

(1_67’“;")’“* _ (1—@*(1112%%)(1112)%

1\ m2)2 N
= (2> = (0.6185) "

e Already m = 8n reduces the chance of error to roughly 2%, and
m = 10n to less than 1%.

46



Optimizing Bloom filters

e The optimal number of hash functions can also be expressed in terms
of false positive rate e.
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Optimizing Bloom filters

e The optimal number of hash functions can also be expressed in terms
of false positive rate e.

e Remark that: . X
<1)(1n2)n <1>k

€ = — el —

2 2

K = logy(1/¢)

so, we get:
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Optimizing Bloom filters

e The optimal number of hash functions can also be expressed in terms
of false positive rate e.

e Remark that: . X
<1)(1n2)n <1>k

€ = —_ = —_

2 2

K = logy(1/¢)

e The required space in turn can be given as

so, we get:

% = (In2)"'logy(1/€) = 1.441og,(1/e)
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Outline

3 Counting distinct elements
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Distinct Count of Elements

e A quite simple instruction in SQL:
SELECT COUNT (DISTINCT A) FROM R
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Distinct Count of Elements

o A quite simple instruction in SQL:
SELECT COUNT (DISTINCT A) FROM R

e Standard approach:
» Sorting: requires O(nlogn) operations and O(n) space,
» Hashing: requires O(n) operations and O(n) space,
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Distinct Count of Elements

o A quite simple instruction in SQL:
SELECT COUNT (DISTINCT A) FROM R

e Standard approach:
» Sorting: requires O(nlogn) operations and O(n) space,
» Hashing: requires O(n) operations and O(n) space,
» Sampling: we need to be careful with the estimate.

31/46



Distinct count of elements

e Other linear space solutions:

» Bloom filter
» Linear counting
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Distinct count of elements

e Bloom filter for distinct count:
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Distinct count of elements

e Bloom filter for distinct count:
» For each element test whether it is already present in the Bloom filter.
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Distinct count of elements

e Bloom filter for distinct count:

» For each element test whether it is already present in the Bloom filter.
» If the item is not present in the filter, then insert it into the filter, and
increase the current count of distinct elements.
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» For each element test whether it is already present in the Bloom filter.
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increase the current count of distinct elements.

e Because of the one-sided error nature of the Bloom filter

» The distinct count never overestimates the true count,
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33 /46



Distinct count of elements

e Bloom filter for distinct count:

» For each element test whether it is already present in the Bloom filter.
» If the item is not present in the filter, then insert it into the filter, and
increase the current count of distinct elements.

e Because of the one-sided error nature of the Bloom filter
» The distinct count never overestimates the true count,
» But may underestimate due to collisions.

e To ensure a small constant rate of undercounting, the size of the
Bloom filter has to be proportional to the cardinality being estimated.
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Distinct count of elements

Bloom filter for distinct count:
» For each element test whether it is already present in the Bloom filter.
» If the item is not present in the filter, then insert it into the filter, and
increase the current count of distinct elements.
Because of the one-sided error nature of the Bloom filter
» The distinct count never overestimates the true count,
» But may underestimate due to collisions.
To ensure a small constant rate of undercounting, the size of the
Bloom filter has to be proportional to the cardinality being estimated.

Due to the compactness of the Bloom filter bit vector, this requires
less space than storing the full representation of the set, but only by
constant factors.
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Distinct count of elements

e Linear counting:
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Distinct count of elements

e Linear counting:

» Can be seen as a Bloom filter with a single hash function.
» The number of distinct items is estimated based on the fraction of bits
in the filter which remain as 0
» If this fraction is z, then the number of distinct items is estimated as
1

mln—,
z

where m is the number of bits in the filter.
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Distinct count of elements

e Linear counting:

>

>

Can be seen as a Bloom filter with a single hash function.
The number of distinct items is estimated based on the fraction of bits
in the filter which remain as 0
If this fraction is z, then the number of distinct items is estimated as
1
mln—,
z
where m is the number of bits in the filter.
For an accurate estimation, the m is required to be proportional to the
number of distinct items.
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Analysis of linear counting

e The probability of a bit b; to be set to 0 after n insertion is:

PO =0) = <1 - ;)n ~ exp (-%) .
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Analysis of linear counting

e The probability of a bit b; to be set to 0 after n insertion is:

PO =0) = <1 - ;)n ~ exp (-%) .

o Let U, be the random variable being a sum of 0 bits after n insertions:

m

Up =) [b} =0]

i=1
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Analysis of linear counting

e The probability of a bit b; to be set to 0 after n insertion is:

PO =0) = <1 - ;)n ~ exp (-%) .

o Let U, be the random variable being a sum of 0 bits after n insertions:

U, = f:[[b? = 0]

i=1

e The expectation of U, is given by:

ZP (b =0) = mexp( ;)
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Analysis of linear counting

e Since z = U, /m, we have:

n
(2) = exp -
and we can obtain:

n=-mlnE(z) = mlnm
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Analysis of linear counting

e Since z = U, /m, we have:
E(z) = exp (—%)
and we can obtain:
n=-mlnE(z) = mlnm

e Plugging-in the observed variables we get:

n=mln-—.
z
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Analysis of linear counting

o Bloom filter and linear counting need a priori knowledge of the
cardinality being estimated.
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Analysis of linear counting

o Bloom filter and linear counting need a priori knowledge of the
cardinality being estimated.

o If the filter size is underestimated, then the filter will saturate (be
almost entirely full of 1s), and the estimation will be useless.

e On the other hand, if the filter is mostly empty then the estimate will
be very accurate, but the unused space will be wasted.
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How to generalize linear counting to k hash functions?
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Analysis of linear counting

Bloom filter and linear counting need a priori knowledge of the
cardinality being estimated.

If the filter size is underestimated, then the filter will saturate (be
almost entirely full of 1s), and the estimation will be useless.

On the other hand, if the filter is mostly empty then the estimate will
be very accurate, but the unused space will be wasted.

How to generalize linear counting to k hash functions?

1
ﬁzmlnf.

k =z
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Distinct count of elements

e The Flajolet-Martin algorithm:
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Distinct count of elements

e The Flajolet-Martin algorithm:

Also based on hashing.

» Needs several repetition to get a good estimate.

» The size of the data synopsis is double logarithmic in the largest

possible cardinality being estimated.
The idea: the more different elements in the data, the more different

hash-values we shall see:
® As we see more different hash-values, it becomes more likely that one
of these values will be unusual.

v
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Distinct count of elements

e The Flajolet-Martin algorithm:
Also based on hashing.
Needs several repetition to get a good estimate.
The size of the data synopsis is double logarithmic in the largest
possible cardinality being estimated.
The idea: the more different elements in the data, the more different
hash-values we shall see:
® As we see more different hash-values, it becomes more likely that one

of these values will be unusual.
e For example, the unusual property can be the value ends in many 0's
(although many other options exist).

vYyy

\{
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The Flajolet-Martin algorithm

e Whenever we apply a hash function h to an element a, the bit string
h(a) will end in some number of 0's, possibly none.
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e Whenever we apply a hash function h to an element a, the bit string
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o Call this number the tail length for ¢ and h.
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The Flajolet-Martin algorithm

e Whenever we apply a hash function h to an element a, the bit string
h(a) will end in some number of 0's, possibly none.

o Call this number the tail length for ¢ and h.

o Let R be the maximum tail length of any a seen so far in the stream.
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The Flajolet-Martin algorithm

Whenever we apply a hash function h to an element a, the bit string
h(a) will end in some number of 0's, possibly none.

Call this number the tail length for @ and h.
Let R be the maximum tail length of any a seen so far in the stream.

The FM estimate: We will use 2 to estimate the number of distinct
elements seen in the stream.
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
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e For each h(a) we take its binary representation and count the tail
length.
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:
» h(2) =10b,r =1,R =1,count =21 =2
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.
e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:
» h(2) =10b,r =1,R =1,count =21 =2
» h(16) = 10000b,7 = 4, R = 4, count = 2* = 16
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.
e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:
» h(2) =10b,r =1,R =1,count =21 =2
» h(16) = 10000b,r = 4, R = 4, count = 2* = 16
» h(5) =101b,r = 0, R = 4, count = 2* = 16
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:

h(2) = 10b,r = 1, R = 1, count = 2! =2

16) = 10000b, 7 = 4, R = 4, count = 2* = 16

5) = 101b,7 = 0, R = 4, count = 2* = 16

9) = 1001b,7 = 0, R = 4, count = 2* = 16
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:

h(2) = 10b,r = 1,R = 1, count = 21 =2
h(16) = 10000b,7 = 4, R = 4, count = 2* = 16

h(5) = 101b,r =0, R = 4, count—24—16

h(9) = 1001b,7 = 0, R = 4, count = 2* = 16

h(11) = 1011b,7 = 0, R = 4, count = 2* = 16

\4

vVvyyvyy
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.
e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:
» h(2) =10b,r =1,R = 1,count = 21 =2
16) = 10000b, 7 = 4, R = 4, count = 2* = 16
) =101b,r =0, R = 4, count—24—16
9) = 1001b,7 = 0, R = 4, count = 2* = 16
11) = 1011b,7 = 0, R = 4, count = 2* = 16
193) = 11000001b,7 = 0, R = 4, count = 2* = 16

vV vy vy VvYy
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):
h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.
e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:
» h(2) =10b,r =1,R = 1,count = 21 =2
16) = 10000b, 7 = 4, R = 4, count = 2* = 16
) =101b,r =0, R = 4, count—24—16
9) = 1001b,7 = 0, R = 4, count = 2* = 16
11) = 1011b,7 = 0, R = 4, count = 2* = 16
193) = 11000001b,7 = 0, R = 4, count = 2* = 16
5) =101b,7 =0, R =4, count—24—16
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):

h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:

>

vV vy vy VY VY VvYYy

h(2) = 10b,r = 1,R = 1, count = 21 =2
16) = 10000b, 7 = 4, R = 4, count = 2* = 16
) =101b,7 = 0, R = 4, count = 2* = 16
9) = 1001b,7 = 0, R = 4, count = 2* = 16
11) = 1011b,7 = 0, R = 4, count = 2* = 16
193) = 11000001b,7 = 0, R = 4, count = 2* = 16
5) = 101b,r = 0, R = 4, count = 2* = 16
1

h(
h(5)
h(
h(
h(
h(
h(150) = 100101106, 7 = 1, R = 4, count = 2* = 16
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):

h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:

>

vV VY VY VY VY VvYVvYY

h(2) = 10b,r = 1,R = 1, count = 21 =2

16) = 10000b, 7 = 4, R = 4, count = 2* = 16

) =101b,7 = 0, R = 4, count = 2* = 16

) = 1001b,7 = 0, R = 4, count = 2* = 16

1) = 1011b,7 = 0, R = 4, count = 2* = 16
93) = 11000001b,r = 0, R = 4, count = 2* = 16
) =101b,7 = 0, R = 4, count = 2* = 16

0) = 100101100, 7 = 1, R = 4, count = 2* = 16

A
h(5)
h(9
h(1
h(1
h(5
h(15
h(96) = 1100000b, r = 5, R = 5count = 2° = 32
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The Flajolet-Martin algorithm

e Consider a 32-bit hash function (not perfect, but good for an
example):

h(a) =a mod 2%2.

e For each h(a) we take its binary representation and count the tail
length.

e The sequence of data is: 2, 16, 5, 9, 11, 192, 5, 150, 96:

>

vV VY VY VY VY VvYVvYY

h(2) = 10b,r = 1,R = 1, count = 21 =2
16) = 10000b, 7 = 4, R = 4, count = 2* = 16

) =101b,r =0, R = 4, count—24—16
9) = 1001b,7 = 0, R = 4, count = 2* = 16
11) = 1011b,7 = 0, R = 4, count = 2* = 16
193) = 11000001b,7 = 0, R = 4, count = 2* = 16
5) =101b,7 =0, R =4, count—24—16
150) = 10010110, 7 = 1, R = 4, count = 2* = 16
h(96) = 11000000, 7 = 5, R = 5count = 2° = 32

h(
h(5)
h(
h(
h(
h(
h(

e The estimate is 32
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The Flajolet-Martin algorithm?
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o A BITM AP interpretation:

! https://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
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o A BITM AP interpretation:
» Suppose the probability of mapping item i to table BITM AP[r] is
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o A BITM AP interpretation:
» Suppose the probability of mapping item i to table BITM AP[r] is
1

PRl
» If there are n distinct items, then BIT M AP[0] is accessed
approximately n/2 times, BIT M AP[1] is accessed approximately n/4

times and so on.
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o A BITM AP interpretation:
» Suppose the probability of mapping item i to table BITM AP[r] is
1
r+1
> |2f there are n distinct items, then BIT M APJ0] is accessed
approximately n/2 times, BIT M AP[1] is accessed approximately n/4
times and so on.
» If r > log, n, then BITM AP[r] is almost certainly 0, and if
r < logy n, then BITM AP|r] is almost certainly 1.

! https://en.wikipedia.org/wiki/Flajolet-Martin_algorithm

41 /46


https://en.wikipedia.org/wiki/Flajolet-Martin_algorithm

The Flajolet-Martin algorithm?
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o A BITM AP interpretation:

>

Suppose the probability of mapping item 4 to table BITM AP]r] is
1
r+1
|2f there are n distinct items, then BIT M APJ0] is accessed
approximately n/2 times, BIT M AP[1] is accessed approximately n/4
times and so on.
If » > logyn, then BITM APIr] is almost certainly 0, and if
r < logy n, then BITM AP|r] is almost certainly 1.
If r ~ log, n, then BITM AP]r] can be expected to be either 1 or 0.

1

https://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
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Analysis of the Flajolet-Martin algorithm

e We will say that the algorithm is correct if

ol

n<n<cn

e The question is what is the probability that the FM algorithm is
correct.

e It can be shown that this probability is at least 1 — %
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Combining FM estimates

e Taking the average can be not a good solution (overestimation)

e Median is almost ok, but it is always a power of 2.
e Solution: Combination of the two above

» Group hash function into groups, and take their average,
» Then, take the median of the averages
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Outline

4 Summary
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Summary

o Approximate Query Processing
Data synopsis,

Sampling,

Bloom filters,

Counting distinct elements.
Many other techniques exist:

vvy vy Vvyy

e Histograms
e Compression via wavelet decomposition
e Sketches based on random projection
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