Recommendation Systems ||

Krzysztof Dembczynski

Intelligent Decision Support Systems Laboratory (IDSS)
Poznan University of Technology, Poland

Software Development Technologies
Master studies, second semester
Academic year 2016/17 (winter course)

/25

Review of the previous lectures

Mining of massive datasets.
Evolution of database systems.
MapReduce.

Classification and regression.
Nearest neighbor search.

Recommendation systems:

» Content-based systems,
» Collaborative filtering: nearest-neighbor algorithms, matrix
factorization.

)

25

1 Matrix Factorization

2 Summary

Outline

25

1 Matrix Factorization

Outline

25

Utility matrix

e A utility matrix Y offers known information about the degree to
which a user likes an item.

5/25

Utility matrix

e A utility matrix Y offers known information about the degree to
which a user likes an item.

e Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

25

Utility matrix

e A utility matrix Y offers known information about the degree to
which a user likes an item.

e Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

e Example:
HP1 HP2 HP3 TW SW1 SW2 SWs3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

25

Utility matrix

A utility matrix Y offers known information about the degree to
which a user likes an item.

Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

Example:
HP1 HP2 HP3 TW SW1 SW2 SWs3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

It is not necessary to predict every blank entry in a utility matrix: it is
enough to discover some entries in each row that are likely to be high.

Matrix factorization

e One way of predicting the blank values in a utility matrix is to find
two long, thin matrices U and M, whose product is an approximation
to the given utility matrix.

e Since the matrix product UM gives values for all user-item pairs,
that value can be used to predict the value of a blank in the utility
matrix.

e The intuitive reason this method makes sense is that often there are a
relatively small number of issues (that number is the “thin” dimension
of U and M) that determine whether or not a user likes an item.

6/25

Matrix factorization

e Given matrix Y containing observed values with possible gaps
(denoted by y;; =?) build a model based on matrix factorization:

Y~Y =UM'

where Uisan I x K and M is a K x J matrix.

e For example, I is the number of users, J is the number of movies in
the movie recommender system, and K is number of features
describing users and movies.

25

Matrix factorization

e When U is fixed, each row is a linear problem in which rows of U are
features vectors and columns of M are linear classifiers.

4 7 5 1 2
Y:587:21><H§i’]
7 12 9 2 3

Matrix factorization

e When U is fixed, each row is a linear problem in which rows of U are
features vectors and columns of M are linear classifiers.

4 7 5 1 2
Y:587:21><H§i’]
7 12 9 2 3

e Matrix factorization is learning features that work well across all
classification problems.

Matrix factorization

e When U is fixed, each row is a linear problem in which rows of U are
features vectors and columns of M are linear classifiers.

4 7 5 1 2
Y:587:21><H§i’]
7 12 9 2 3

e Matrix factorization is learning features that work well across all
classification problems.

e The question is how to learn this features?

Rank-1 matrix factorization

e Consider the simplest case in which U =4 and M = m.

25

Rank-1 matrix factorization

e Consider the simplest case in which U =4 and M = m.

e The problem can be formulated from the learning perspective as:

(u,m)* = arg min Z 0(yij, uim;j)
Yij 77

25

Rank-1 matrix factorization

e Consider the simplest case in which U =4 and M = m.

e The problem can be formulated from the learning perspective as:

(u,m)* = arg min Z 0(yij, uim;j)
Yig 77
e Consider the squared-error loss:

L= Ceelyijsfij) = > (wij — 9i)*-

Yij#? Yig 77

25

Rank-1 matrix factorization

Consider the simplest case in which U = w and M = m.

The problem can be formulated from the learning perspective as:

(u,m)* = arg min Z 0(yij, uim;j)
Yij 77

Consider the squared-error loss:
L= lselyig: i) = Y (yij —)" -
Yij#? Yig 77

Unfortunately, the problem is not convex :(

25

Rank-1 matrix factorization

Consider the simplest case in which U = w and M = m.

The problem can be formulated from the learning perspective as:
(u,m)* = arg min Z 0(yij, uim;j)
Yij 77
Consider the squared-error loss:
L= lselyig: i) = Y (yij —)" -
Yig 7?7 Yij 77

Unfortunately, the problem is not convex :(

To solve the optimization problem one usually uses alternating least
squares.

25

Matrix factorization

e Approximation of Y by a rank-1 matrix is not sufficient.

10/25

Matrix factorization

e Approximation of Y by a rank-1 matrix is not sufficient.
e Possible extensions of the model:

10/25

Matrix factorization

e Approximation of Y by a rank-1 matrix is not sufficient.
e Possible extensions of the model:
» Use of a larger number of features,

10/25

Matrix factorization

e Approximation of Y by a rank-1 matrix is not sufficient.
e Possible extensions of the model:

» Use of a larger number of features,
» Regularization,

10/25

Matrix factorization

e Approximation of Y by a rank-1 matrix is not sufficient.
e Possible extensions of the model:

» Use of a larger number of features,
» Regularization,
» Large-scale learning algorithms.

10/25

Larger number of latent features

o Consider the case in which U and M contains up to K features:

Y=Y=UM"'

11/25

Larger number of latent features

e Consider the case in which U and M contains up to K features:
Y=Y=UM'

o For example:

I
ESTRS RN

0 =~
© J ot

1
=UM' = | 2
2

—_
\)
W = N

11/25

Larger number of latent features

o Consider the case in which U and M contains up to K features:
Y=Y=UM'

o For example:

A~

4 7
Y=|5 8
7

5 1 2
7l=uM"=|2 1 xﬁ 3 3]
12 9 2 3

e The prediction is now §;; = Zszl Uik Mj-

11/25

Larger number of latent features

Consider the case in which U and M contains up to K features:

Y=Y=UM'
For example:

A~

4 7
Y=|5 8
7

5 1 2
7l=UM"=|21 xﬁg’?’]
12 9 2 3
The prediction is now g;; = Zszl Uik Mj-

The problem can be formulated as:

K

(U,M)* = arg min Z E(yij,Zuikmjk).
(U,M) Yij 77 k=1

11/25

Larger number of latent features

¢ Optimization approaches:

12/25

Larger number of latent features

¢ Optimization approaches:

» A use of a coordinate descent approach, which is a straight-forward
extension of the algorithm for rank-1 matrix factorization,

12/25

Larger number of latent features

e Optimization approaches:
» A use of a coordinate descent approach, which is a straight-forward
extension of the algorithm for rank-1 matrix factorization,
» Treat the problem as a regular linear regression task and use standard
algorithms,

12/25

Larger number of latent features

¢ Optimization approaches:

» A use of a coordinate descent approach, which is a straight-forward
extension of the algorithm for rank-1 matrix factorization,

» Treat the problem as a regular linear regression task and use standard
algorithms,

» Stochastic gradient descent in a large-scale setting.

12 /25

Coordinate descent

e The coordinate descent algorithm updates a single element of matrix
U or matrix M in one iteration.

13 /25

Coordinate descent

e The coordinate descent algorithm updates a single element of matrix
U or matrix M in one iteration.

e All the other values of U and M are fixed.

13 /25

Coordinate descent

e The coordinate descent algorithm updates a single element of matrix
U or matrix M in one iteration.

e All the other values of U and M are fixed.

e The corresponding updates are the following:

Zj;y,-jﬁ Mjk (yij - Zk’;ék “ik’mjk’)
5)
Zj:ym;ﬁ? mjk

Uik =

Zi:yij;ﬁ? Uik (yij = Dbtk Uik’mjk’>

m . =
gk 2
Zi:yiji? Wik

13 /25

Optimization algorithm

e Ordering the optimization of the elements of U and M:

14 /25

Optimization algorithm

e Ordering the optimization of the elements of U and M:

» The simplest thing to do is pick an order, e.g., row-by-row, for the
elements of U and M, and visit them in round-robin fashion.

14 /25

Optimization algorithm

e Ordering the optimization of the elements of U and M:

» The simplest thing to do is pick an order, e.g., row-by-row, for the
elements of U and M, and visit them in round-robin fashion.
» Randomly pick the element to optimize.

14 /25

Optimization algorithm

e Ordering the optimization of the elements of U and M:
» The simplest thing to do is pick an order, e.g., row-by-row, for the
elements of U and M, and visit them in round-robin fashion.

» Randomly pick the element to optimize.
» The problem can also be solved by boosting-like approach:

14 /25

Optimization algorithm

e Ordering the optimization of the elements of U and M:
» The simplest thing to do is pick an order, e.g., row-by-row, for the
elements of U and M, and visit them in round-robin fashion.

» Randomly pick the element to optimize.
» The problem can also be solved by boosting-like approach:

o Compute a solution for k = 1,

14 /25

Optimization algorithm

e Ordering the optimization of the elements of U and M:
» The simplest thing to do is pick an order, e.g., row-by-row, for the
elements of U and M, and visit them in round-robin fashion.
» Randomly pick the element to optimize.
» The problem can also be solved by boosting-like approach:
o Compute a solution for k = 1,

o In each next iteration compute a solution for a consecutive k (up to K)
using the intermediate predictions of the form

i =3
ik! Mt

k=1

14 /25

Regularization

e To avoid overfitting the problem should be formulated with a kind of
regularization.

15/25

Regularization

e To avoid overfitting the problem should be formulated with a kind of
regularization.

e For example, we can penalize high values of w;;, and m ;.

15/25

Regularization

e To avoid overfitting the problem should be formulated with a kind of
regularization.

e For example, we can penalize high values of w;;, and m ;.

e |In other words, we shrink the values towards zero.

15/25

Regularization

To avoid overfitting the problem should be formulated with a kind of
regularization.

For example, we can penalize high values of w;;, and m ;.
In other words, we shrink the values towards zero.

This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

15/25

Regularization

To avoid overfitting the problem should be formulated with a kind of
regularization.

For example, we can penalize high values of w;;, and m ;.
In other words, we shrink the values towards zero.

This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

The regularized problem can be formulated as:

K 2
(U,M)* = arg min Z (yij — Z%k”%k) +A (Z ufk + m3k> .

(UM) 2 k=1 ik

15/25

Regularization

To avoid overfitting the problem should be formulated with a kind of
regularization.

For example, we can penalize high values of w;;, and m ;.
In other words, we shrink the values towards zero.

This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

The regularized problem can be formulated as:

K 2
(U,M)* = arg min Z (yij — Z%k”%k) +A (Z uzzk + m3k> .

(UM) 2 k=1 ik

Parameter A should be tuned empirically.

15/25

Regularization

e The updates in the coordinate descent algorithm become now:

16 /25

Regularization

e The updates in the coordinate descent algorithm become now:

Zj;yiﬁé? Mk (?Jij - Zk’;ﬁk “z‘k’mjk’)
5 :
Zjiyiﬂé? Mk +A

* —
Uik =

Zi:yiﬁé? Wik (yij — Dk uik'mjk,>
D iigsy 27 Ui + A '

* o

16 /25

Large-scale learning algorithms

e The traditional least squares algorithms can be inefficient in the
large-scale problems.

17/25

Large-scale learning algorithms

e The traditional least squares algorithms can be inefficient in the
large-scale problems.

e A good solution in this case is the stochastic gradient descent.

17/25

Large-scale learning algorithms

e The traditional least squares algorithms can be inefficient in the
large-scale problems.

e A good solution in this case is the stochastic gradient descent.

e The stochastic gradient updates are defined for a single training
example:

17/25

Large-scale learning algorithms

e The traditional least squares algorithms can be inefficient in the
large-scale problems.

e A good solution in this case is the stochastic gradient descent.

e The stochastic gradient updates are defined for a single training
example:

Wik < Wik + V(Yij — Yij)Mjk
Mk < Mjx + V(Y5 — Jij) Wik ,

where v is the learning rate and ;; = > wirm .

17/25

Large-scale learning algorithms

The traditional least squares algorithms can be inefficient in the
large-scale problems.

A good solution in this case is the stochastic gradient descent.

The stochastic gradient updates are defined for a single training
example:

Uik = ik + V(Y5 — Jij) Mk

Mk = My + V(Yi; — Jij) ik ,
where v is the learning rate and ;; = > wirm .

There is also a question about ordering the updates: the approaches
discussed earlier can be used here as well.

17/25

Large-scale learning algorithms

e The stochastic gradient descent can also be used with regularization.

18/25

Large-scale learning algorithms

e The stochastic gradient descent can also be used with regularization.

e The update has then the following form:

Wik — Wik + v((Yij — Tij)Mje — Mugr)
mg = Mgk + v((Yij — i) wik — A -

where)\ is the regularization parameter.

18 /25

Ending the attempt at optimization

e Updates of u;; and myy, are usually repeated until the error improves
(more than a given threshold).

19/25

Ending the attempt at optimization

e Updates of u;; and myy, are usually repeated until the error improves
(more than a given threshold).

e Try different setting in the experiments (different values A, v, etc.).

19/25

Ending the attempt at optimization

e Updates of u;; and myy, are usually repeated until the error improves
(more than a given threshold).

e Try different setting in the experiments (different values A, v, etc.).

e Start several times as there are no guarantees to find the global

minimum.

19/25

Ending the attempt at optimization

Updates of u;; and my, are usually repeated until the error improves
(more than a given threshold).

Try different setting in the experiments (different values \, v, etc.).

Start several times as there are no guarantees to find the global
minimum.
However, we should try to avoid overfitting:

19/25

Ending the attempt at optimization

Updates of u;; and my, are usually repeated until the error improves
(more than a given threshold).
Try different setting in the experiments (different values \, v, etc.).
Start several times as there are no guarantees to find the global
minimum.
However, we should try to avoid overfitting:

» Stop revising elements of U and M before the process has converged,

19/25

Ending the attempt at optimization

Updates of u;; and my, are usually repeated until the error improves
(more than a given threshold).

Try different setting in the experiments (different values \, v, etc.).
Start several times as there are no guarantees to find the global
minimum.

However, we should try to avoid overfitting:

» Stop revising elements of U and M before the process has converged,
» Average over different runs of the algorithm,

19/25

Ending the attempt at optimization

Updates of u;; and my, are usually repeated until the error improves
(more than a given threshold).

Try different setting in the experiments (different values \, v, etc.).
Start several times as there are no guarantees to find the global
minimum.

However, we should try to avoid overfitting:

» Stop revising elements of U and M before the process has converged,
» Average over different runs of the algorithm,
» Smaller steps in optimization algorithms,

19/25

Ending the attempt at optimization

Updates of u;; and my, are usually repeated until the error improves
(more than a given threshold).

Try different setting in the experiments (different values \, v, etc.).

Start several times as there are no guarantees to find the global

minimum.

However, we should try to avoid overfitting:
Stop revising elements of U and M before the process has converged,

>
>
>
>

Average over different runs of the algorithm,
Smaller steps in optimization algorithms,
Regularization.

19/25

Matrix factorization extensions

e Different loss functions.

20/25

Matrix factorization extensions

e Different loss functions.

e Visualization of features.

20/25

Matrix factorization extensions

e Different loss functions.
e Visualization of features.

e The use of regular features.

20 /25

Matrix factorization extensions

Different loss functions.
Visualization of features.
The use of regular features.

A quite general learning framework . . .

20 /25

Beyond matrix factorization

o Relational learning,

e Tensor factorization.

21/25

Beyond matrix factorization

ty) 4 5 -~ 7] 8 6
to(y) 10 14 .- 9 | 21 12
ur(z) wuz(z) x/y Y1y Ym | Ymt1 Ym+2
1 1 T 10 ? 1 ?
3 5 9 ? 0.1 0
7 0 T3 ? ? 1 ?
3 1 Ty -5 09- 1 ? ?
2 3 Tn+1
3 1 CEn+2

Outline

2 Summary

23 /25

Summary

e Recommender systems:
» Content-based systems,
» Collaborative filtering.
e Collaborative filtering
» Similarity-based,
» Clustering,
» Matrix factorization.

e Matrix factorization:

» Matrix factorization with more features,
» Regularization,
» Stochastic gradient optimization.

24 /25

Bibliography

® A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2011
http://www.mmds.org

25 /25

http://www.mmds.org

	Matrix Factorization
	Summary

