
Recommendation Systems II

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, second semester

Academic year 2016/17 (winter course)

1 / 25

Review of the previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• MapReduce.

• Classification and regression.

• Nearest neighbor search.

• Recommendation systems:
I Content-based systems,
I Collaborative filtering: nearest-neighbor algorithms, matrix

factorization.

2 / 25

Outline

1 Matrix Factorization

2 Summary

3 / 25

Outline

1 Matrix Factorization

2 Summary

4 / 25

Utility matrix

• A utility matrix Y offers known information about the degree to
which a user likes an item.

• Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

• Example:

HP1 HP2 HP3 TW SW1 SW2 SW3

A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

• It is not necessary to predict every blank entry in a utility matrix: it is
enough to discover some entries in each row that are likely to be high.

5 / 25

Utility matrix

• A utility matrix Y offers known information about the degree to
which a user likes an item.

• Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

• Example:

HP1 HP2 HP3 TW SW1 SW2 SW3

A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

• It is not necessary to predict every blank entry in a utility matrix: it is
enough to discover some entries in each row that are likely to be high.

5 / 25

Utility matrix

• A utility matrix Y offers known information about the degree to
which a user likes an item.

• Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

• Example:

HP1 HP2 HP3 TW SW1 SW2 SW3

A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

• It is not necessary to predict every blank entry in a utility matrix: it is
enough to discover some entries in each row that are likely to be high.

5 / 25

Utility matrix

• A utility matrix Y offers known information about the degree to
which a user likes an item.

• Most entries are unknown, and the essential problem of
recommending items to users is predicting the values of the unknown
entries based on the values of the known entries.

• Example:

HP1 HP2 HP3 TW SW1 SW2 SW3

A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

• It is not necessary to predict every blank entry in a utility matrix: it is
enough to discover some entries in each row that are likely to be high.

5 / 25

Matrix factorization

• One way of predicting the blank values in a utility matrix is to find
two long, thin matrices U and M, whose product is an approximation
to the given utility matrix.

• Since the matrix product UM> gives values for all user-item pairs,
that value can be used to predict the value of a blank in the utility
matrix.

• The intuitive reason this method makes sense is that often there are a
relatively small number of issues (that number is the “thin” dimension
of U and M) that determine whether or not a user likes an item.

6 / 25

Matrix factorization

• Given matrix Y containing observed values with possible gaps
(denoted by yij =?) build a model based on matrix factorization:

Y ≈ Y′ = UM>

where U is an I ×K and M> is a K × J matrix.

• For example, I is the number of users, J is the number of movies in
the movie recommender system, and K is number of features
describing users and movies.

7 / 25

Matrix factorization

• When U is fixed, each row is a linear problem in which rows of U are
features vectors and columns of M are linear classifiers.

Ŷ =

 4 7 5
5 8 7
7 12 9

 =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• Matrix factorization is learning features that work well across all
classification problems.

• The question is how to learn this features?

8 / 25

Matrix factorization

• When U is fixed, each row is a linear problem in which rows of U are
features vectors and columns of M are linear classifiers.

Ŷ =

 4 7 5
5 8 7
7 12 9

 =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• Matrix factorization is learning features that work well across all
classification problems.

• The question is how to learn this features?

8 / 25

Matrix factorization

• When U is fixed, each row is a linear problem in which rows of U are
features vectors and columns of M are linear classifiers.

Ŷ =

 4 7 5
5 8 7
7 12 9

 =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• Matrix factorization is learning features that work well across all
classification problems.

• The question is how to learn this features?

8 / 25

Rank-1 matrix factorization

• Consider the simplest case in which U = u and M = m.

• The problem can be formulated from the learning perspective as:

(u,m)∗ = argmin
∑
yij 6=?

`(yij , uimj)

• Consider the squared-error loss:

L =
∑
yij 6=?

`se(yij , ŷij) =
∑
yij 6=?

(yij − ŷij)2 .

• Unfortunately, the problem is not convex :(

• To solve the optimization problem one usually uses alternating least
squares.

9 / 25

Rank-1 matrix factorization

• Consider the simplest case in which U = u and M = m.

• The problem can be formulated from the learning perspective as:

(u,m)∗ = argmin
∑
yij 6=?

`(yij , uimj)

• Consider the squared-error loss:

L =
∑
yij 6=?

`se(yij , ŷij) =
∑
yij 6=?

(yij − ŷij)2 .

• Unfortunately, the problem is not convex :(

• To solve the optimization problem one usually uses alternating least
squares.

9 / 25

Rank-1 matrix factorization

• Consider the simplest case in which U = u and M = m.

• The problem can be formulated from the learning perspective as:

(u,m)∗ = argmin
∑
yij 6=?

`(yij , uimj)

• Consider the squared-error loss:

L =
∑
yij 6=?

`se(yij , ŷij) =
∑
yij 6=?

(yij − ŷij)2 .

• Unfortunately, the problem is not convex :(

• To solve the optimization problem one usually uses alternating least
squares.

9 / 25

Rank-1 matrix factorization

• Consider the simplest case in which U = u and M = m.

• The problem can be formulated from the learning perspective as:

(u,m)∗ = argmin
∑
yij 6=?

`(yij , uimj)

• Consider the squared-error loss:

L =
∑
yij 6=?

`se(yij , ŷij) =
∑
yij 6=?

(yij − ŷij)2 .

• Unfortunately, the problem is not convex :(

• To solve the optimization problem one usually uses alternating least
squares.

9 / 25

Rank-1 matrix factorization

• Consider the simplest case in which U = u and M = m.

• The problem can be formulated from the learning perspective as:

(u,m)∗ = argmin
∑
yij 6=?

`(yij , uimj)

• Consider the squared-error loss:

L =
∑
yij 6=?

`se(yij , ŷij) =
∑
yij 6=?

(yij − ŷij)2 .

• Unfortunately, the problem is not convex :(

• To solve the optimization problem one usually uses alternating least
squares.

9 / 25

Matrix factorization

• Approximation of Y by a rank-1 matrix is not sufficient.

• Possible extensions of the model:

I Use of a larger number of features,
I Regularization,
I Large-scale learning algorithms.

10 / 25

Matrix factorization

• Approximation of Y by a rank-1 matrix is not sufficient.

• Possible extensions of the model:

I Use of a larger number of features,
I Regularization,
I Large-scale learning algorithms.

10 / 25

Matrix factorization

• Approximation of Y by a rank-1 matrix is not sufficient.

• Possible extensions of the model:
I Use of a larger number of features,

I Regularization,
I Large-scale learning algorithms.

10 / 25

Matrix factorization

• Approximation of Y by a rank-1 matrix is not sufficient.

• Possible extensions of the model:
I Use of a larger number of features,
I Regularization,

I Large-scale learning algorithms.

10 / 25

Matrix factorization

• Approximation of Y by a rank-1 matrix is not sufficient.

• Possible extensions of the model:
I Use of a larger number of features,
I Regularization,
I Large-scale learning algorithms.

10 / 25

Larger number of latent features

• Consider the case in which U and M contains up to K features:

Y = Ŷ = UM>

• For example:

Ŷ =

 4 7 5
5 8 7
7 12 9

 = UM> =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• The prediction is now ŷij =
∑K

k=1 uikmjk.

• The problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

`(yij ,
K∑
k=1

uikmjk) .

11 / 25

Larger number of latent features

• Consider the case in which U and M contains up to K features:

Y = Ŷ = UM>

• For example:

Ŷ =

 4 7 5
5 8 7
7 12 9

 = UM> =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• The prediction is now ŷij =
∑K

k=1 uikmjk.

• The problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

`(yij ,
K∑
k=1

uikmjk) .

11 / 25

Larger number of latent features

• Consider the case in which U and M contains up to K features:

Y = Ŷ = UM>

• For example:

Ŷ =

 4 7 5
5 8 7
7 12 9

 = UM> =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• The prediction is now ŷij =
∑K

k=1 uikmjk.

• The problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

`(yij ,
K∑
k=1

uikmjk) .

11 / 25

Larger number of latent features

• Consider the case in which U and M contains up to K features:

Y = Ŷ = UM>

• For example:

Ŷ =

 4 7 5
5 8 7
7 12 9

 = UM> =

 1 2
2 1
2 3

× [2 3 3
1 2 1

]

• The prediction is now ŷij =
∑K

k=1 uikmjk.

• The problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

`(yij ,
K∑
k=1

uikmjk) .

11 / 25

Larger number of latent features

• Optimization approaches:

I A use of a coordinate descent approach, which is a straight-forward
extension of the algorithm for rank-1 matrix factorization,

I Treat the problem as a regular linear regression task and use standard
algorithms,

I Stochastic gradient descent in a large-scale setting.

12 / 25

Larger number of latent features

• Optimization approaches:
I A use of a coordinate descent approach, which is a straight-forward

extension of the algorithm for rank-1 matrix factorization,

I Treat the problem as a regular linear regression task and use standard
algorithms,

I Stochastic gradient descent in a large-scale setting.

12 / 25

Larger number of latent features

• Optimization approaches:
I A use of a coordinate descent approach, which is a straight-forward

extension of the algorithm for rank-1 matrix factorization,
I Treat the problem as a regular linear regression task and use standard

algorithms,

I Stochastic gradient descent in a large-scale setting.

12 / 25

Larger number of latent features

• Optimization approaches:
I A use of a coordinate descent approach, which is a straight-forward

extension of the algorithm for rank-1 matrix factorization,
I Treat the problem as a regular linear regression task and use standard

algorithms,
I Stochastic gradient descent in a large-scale setting.

12 / 25

Coordinate descent

• The coordinate descent algorithm updates a single element of matrix
U or matrix M in one iteration.

• All the other values of U and M are fixed.

• The corresponding updates are the following:

u∗ik =

∑
j:yij 6=?mjk

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

j:yij 6=?m
2
jk

.

m∗jk =

∑
i:yij 6=? uik

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

i:yij 6=? u
2
ik

.

13 / 25

Coordinate descent

• The coordinate descent algorithm updates a single element of matrix
U or matrix M in one iteration.

• All the other values of U and M are fixed.

• The corresponding updates are the following:

u∗ik =

∑
j:yij 6=?mjk

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

j:yij 6=?m
2
jk

.

m∗jk =

∑
i:yij 6=? uik

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

i:yij 6=? u
2
ik

.

13 / 25

Coordinate descent

• The coordinate descent algorithm updates a single element of matrix
U or matrix M in one iteration.

• All the other values of U and M are fixed.

• The corresponding updates are the following:

u∗ik =

∑
j:yij 6=?mjk

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

j:yij 6=?m
2
jk

.

m∗jk =

∑
i:yij 6=? uik

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

i:yij 6=? u
2
ik

.

13 / 25

Optimization algorithm

• Ordering the optimization of the elements of U and M:

I The simplest thing to do is pick an order, e.g., row-by-row, for the
elements of U and M, and visit them in round-robin fashion.

I Randomly pick the element to optimize.
I The problem can also be solved by boosting-like approach:

• Compute a solution for k = 1,
• In each next iteration compute a solution for a consecutive k (up to K)

using the intermediate predictions of the form

ŷ
(k)
ij =

k−1∑
k′=1

uik′mjk′ .

14 / 25

Optimization algorithm

• Ordering the optimization of the elements of U and M:
I The simplest thing to do is pick an order, e.g., row-by-row, for the

elements of U and M, and visit them in round-robin fashion.

I Randomly pick the element to optimize.
I The problem can also be solved by boosting-like approach:

• Compute a solution for k = 1,
• In each next iteration compute a solution for a consecutive k (up to K)

using the intermediate predictions of the form

ŷ
(k)
ij =

k−1∑
k′=1

uik′mjk′ .

14 / 25

Optimization algorithm

• Ordering the optimization of the elements of U and M:
I The simplest thing to do is pick an order, e.g., row-by-row, for the

elements of U and M, and visit them in round-robin fashion.
I Randomly pick the element to optimize.

I The problem can also be solved by boosting-like approach:

• Compute a solution for k = 1,
• In each next iteration compute a solution for a consecutive k (up to K)

using the intermediate predictions of the form

ŷ
(k)
ij =

k−1∑
k′=1

uik′mjk′ .

14 / 25

Optimization algorithm

• Ordering the optimization of the elements of U and M:
I The simplest thing to do is pick an order, e.g., row-by-row, for the

elements of U and M, and visit them in round-robin fashion.
I Randomly pick the element to optimize.
I The problem can also be solved by boosting-like approach:

• Compute a solution for k = 1,
• In each next iteration compute a solution for a consecutive k (up to K)

using the intermediate predictions of the form

ŷ
(k)
ij =

k−1∑
k′=1

uik′mjk′ .

14 / 25

Optimization algorithm

• Ordering the optimization of the elements of U and M:
I The simplest thing to do is pick an order, e.g., row-by-row, for the

elements of U and M, and visit them in round-robin fashion.
I Randomly pick the element to optimize.
I The problem can also be solved by boosting-like approach:

• Compute a solution for k = 1,

• In each next iteration compute a solution for a consecutive k (up to K)
using the intermediate predictions of the form

ŷ
(k)
ij =

k−1∑
k′=1

uik′mjk′ .

14 / 25

Optimization algorithm

• Ordering the optimization of the elements of U and M:
I The simplest thing to do is pick an order, e.g., row-by-row, for the

elements of U and M, and visit them in round-robin fashion.
I Randomly pick the element to optimize.
I The problem can also be solved by boosting-like approach:

• Compute a solution for k = 1,
• In each next iteration compute a solution for a consecutive k (up to K)

using the intermediate predictions of the form

ŷ
(k)
ij =

k−1∑
k′=1

uik′mjk′ .

14 / 25

Regularization

• To avoid overfitting the problem should be formulated with a kind of
regularization.

• For example, we can penalize high values of uik and mjk.

• In other words, we shrink the values towards zero.

• This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

• The regularized problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

(
yij −

K∑
k=1

uikmjk

)2

+λ

(∑
ik

u2ik +m2
jk

)
.

• Parameter λ should be tuned empirically.

15 / 25

Regularization

• To avoid overfitting the problem should be formulated with a kind of
regularization.

• For example, we can penalize high values of uik and mjk.

• In other words, we shrink the values towards zero.

• This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

• The regularized problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

(
yij −

K∑
k=1

uikmjk

)2

+λ

(∑
ik

u2ik +m2
jk

)
.

• Parameter λ should be tuned empirically.

15 / 25

Regularization

• To avoid overfitting the problem should be formulated with a kind of
regularization.

• For example, we can penalize high values of uik and mjk.

• In other words, we shrink the values towards zero.

• This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

• The regularized problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

(
yij −

K∑
k=1

uikmjk

)2

+λ

(∑
ik

u2ik +m2
jk

)
.

• Parameter λ should be tuned empirically.

15 / 25

Regularization

• To avoid overfitting the problem should be formulated with a kind of
regularization.

• For example, we can penalize high values of uik and mjk.

• In other words, we shrink the values towards zero.

• This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

• The regularized problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

(
yij −

K∑
k=1

uikmjk

)2

+λ

(∑
ik

u2ik +m2
jk

)
.

• Parameter λ should be tuned empirically.

15 / 25

Regularization

• To avoid overfitting the problem should be formulated with a kind of
regularization.

• For example, we can penalize high values of uik and mjk.

• In other words, we shrink the values towards zero.

• This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

• The regularized problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

(
yij −

K∑
k=1

uikmjk

)2

+λ

(∑
ik

u2ik +m2
jk

)
.

• Parameter λ should be tuned empirically.

15 / 25

Regularization

• To avoid overfitting the problem should be formulated with a kind of
regularization.

• For example, we can penalize high values of uik and mjk.

• In other words, we shrink the values towards zero.

• This makes only sense if we first normalize the values of Y in a way
that the average value is around 0.

• The regularized problem can be formulated as:

(U,M)∗ = argmin
(U,M)

∑
yij 6=?

(
yij −

K∑
k=1

uikmjk

)2

+λ

(∑
ik

u2ik +m2
jk

)
.

• Parameter λ should be tuned empirically.

15 / 25

Regularization

• The updates in the coordinate descent algorithm become now:

u∗ik =

∑
j:yij 6=?mjk

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

j:yij 6=?m
2
jk + λ

.

m∗jk =

∑
i:yij 6=? uik

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

i:yij 6=? u
2
ik + λ

.

16 / 25

Regularization

• The updates in the coordinate descent algorithm become now:

u∗ik =

∑
j:yij 6=?mjk

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

j:yij 6=?m
2
jk + λ

.

m∗jk =

∑
i:yij 6=? uik

(
yij −

∑
k′ 6=k uik′mjk′

)
∑

i:yij 6=? u
2
ik + λ

.

16 / 25

Large-scale learning algorithms

• The traditional least squares algorithms can be inefficient in the
large-scale problems.

• A good solution in this case is the stochastic gradient descent.

• The stochastic gradient updates are defined for a single training
example:

uik ← uik + ν(yij − ŷij)mjk ,

mjk ← mjk + ν(yij − ŷij)uik ,

where ν is the learning rate and ŷij =
∑

k uikmjk.

• There is also a question about ordering the updates: the approaches
discussed earlier can be used here as well.

17 / 25

Large-scale learning algorithms

• The traditional least squares algorithms can be inefficient in the
large-scale problems.

• A good solution in this case is the stochastic gradient descent.

• The stochastic gradient updates are defined for a single training
example:

uik ← uik + ν(yij − ŷij)mjk ,

mjk ← mjk + ν(yij − ŷij)uik ,

where ν is the learning rate and ŷij =
∑

k uikmjk.

• There is also a question about ordering the updates: the approaches
discussed earlier can be used here as well.

17 / 25

Large-scale learning algorithms

• The traditional least squares algorithms can be inefficient in the
large-scale problems.

• A good solution in this case is the stochastic gradient descent.

• The stochastic gradient updates are defined for a single training
example:

uik ← uik + ν(yij − ŷij)mjk ,

mjk ← mjk + ν(yij − ŷij)uik ,

where ν is the learning rate and ŷij =
∑

k uikmjk.

• There is also a question about ordering the updates: the approaches
discussed earlier can be used here as well.

17 / 25

Large-scale learning algorithms

• The traditional least squares algorithms can be inefficient in the
large-scale problems.

• A good solution in this case is the stochastic gradient descent.

• The stochastic gradient updates are defined for a single training
example:

uik ← uik + ν(yij − ŷij)mjk ,

mjk ← mjk + ν(yij − ŷij)uik ,

where ν is the learning rate and ŷij =
∑

k uikmjk.

• There is also a question about ordering the updates: the approaches
discussed earlier can be used here as well.

17 / 25

Large-scale learning algorithms

• The traditional least squares algorithms can be inefficient in the
large-scale problems.

• A good solution in this case is the stochastic gradient descent.

• The stochastic gradient updates are defined for a single training
example:

uik ← uik + ν(yij − ŷij)mjk ,

mjk ← mjk + ν(yij − ŷij)uik ,

where ν is the learning rate and ŷij =
∑

k uikmjk.

• There is also a question about ordering the updates: the approaches
discussed earlier can be used here as well.

17 / 25

Large-scale learning algorithms

• The stochastic gradient descent can also be used with regularization.

• The update has then the following form:

uik ← uik + ν((yij − ŷij)mjk − λuik) ,
mjk ← mjk + ν((yij − ŷij)uik − λmjk) .

where λ is the regularization parameter.

18 / 25

Large-scale learning algorithms

• The stochastic gradient descent can also be used with regularization.

• The update has then the following form:

uik ← uik + ν((yij − ŷij)mjk − λuik) ,
mjk ← mjk + ν((yij − ŷij)uik − λmjk) .

where λ is the regularization parameter.

18 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:

I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:

I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:

I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:

I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:
I Stop revising elements of U and M before the process has converged,

I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:
I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,

I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:
I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,

I Regularization.

19 / 25

Ending the attempt at optimization

• Updates of uik and mjk are usually repeated until the error improves
(more than a given threshold).

• Try different setting in the experiments (different values λ, ν, etc.).

• Start several times as there are no guarantees to find the global
minimum.

• However, we should try to avoid overfitting:
I Stop revising elements of U and M before the process has converged,
I Average over different runs of the algorithm,
I Smaller steps in optimization algorithms,
I Regularization.

19 / 25

Matrix factorization extensions

• Different loss functions.

• Visualization of features.

• The use of regular features.

• A quite general learning framework . . .

20 / 25

Matrix factorization extensions

• Different loss functions.

• Visualization of features.

• The use of regular features.

• A quite general learning framework . . .

20 / 25

Matrix factorization extensions

• Different loss functions.

• Visualization of features.

• The use of regular features.

• A quite general learning framework . . .

20 / 25

Matrix factorization extensions

• Different loss functions.

• Visualization of features.

• The use of regular features.

• A quite general learning framework . . .

20 / 25

Beyond matrix factorization

• Relational learning,

• Tensor factorization.

21 / 25

Beyond matrix factorization

t1(y) 4 5 · · · 7 8 6
t2(y) 10 14 · · · 9 21 12

u1(x) u2(x) x/y y1 y2 · · · ym ym+1 ym+2

1 1 x1 10 ? · · · 1 ? ?
3 5 x2 ? 0.1 · · · 0 ?
7 0 x3 ? ? · · · 1 ? ?
· ·
3 1 xn -5 0.9 · · · 1 ? ?

2 3 xn+1 ? ? · · · ? ? ?
3 1 xn+2 ? ? · · · ? ? ?

22 / 25

Outline

1 Matrix Factorization

2 Summary

23 / 25

Summary

• Recommender systems:
I Content-based systems,
I Collaborative filtering.

• Collaborative filtering
I Similarity-based,
I Clustering,
I Matrix factorization.

• Matrix factorization:
I Matrix factorization with more features,
I Regularization,
I Stochastic gradient optimization.

24 / 25

Bibliography

• A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2011
http://www.mmds.org

25 / 25

http://www.mmds.org

	Matrix Factorization
	Summary

