Recommendation Systems II

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies Master studies, second semester Academic year 2016/17 (winter course)

Review of the previous lectures

- Mining of massive datasets.
- Evolution of database systems.
- MapReduce.
- Classification and regression.
- Nearest neighbor search.
- Recommendation systems:
 - ► Content-based systems,
 - Collaborative filtering: nearest-neighbor algorithms, matrix factorization.

Outline

Matrix Factorization

2 Summary

Outline

Matrix Factorization

2 Summary

ullet A utility matrix Y offers known information about the degree to which a user likes an item.

- A utility matrix **Y** offers known information about the degree to which a user likes an item.
- Most entries are unknown, and the essential problem of recommending items to users is predicting the values of the unknown entries based on the values of the known entries.

- A utility matrix **Y** offers known information about the degree to which a user likes an item.
- Most entries are unknown, and the essential problem of recommending items to users is predicting the values of the unknown entries based on the values of the known entries.

• Example:

	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
C				2	4	5	
D		3					3

- A utility matrix Y offers known information about the degree to which a user likes an item.
- Most entries are unknown, and the essential problem of recommending items to users is predicting the values of the unknown entries based on the values of the known entries.

• Example:

	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
C				2	4	5	
D		3					3

• It is not necessary to predict every blank entry in a utility matrix: it is enough to discover some entries in each row that are likely to be high.

- ullet One way of predicting the blank values in a utility matrix is to find two long, thin matrices U and M, whose product is an approximation to the given utility matrix.
- Since the matrix product $\mathbf{U}\mathbf{M}^{\top}$ gives values for all user-item pairs, that value can be used to predict the value of a blank in the utility matrix.
- ullet The intuitive reason this method makes sense is that often there are a relatively small number of issues (that number is the "thin" dimension of U and M) that determine whether or not a user likes an item.

• Given matrix \mathbf{Y} containing observed values with possible gaps (denoted by $y_{ij} = ?$) build a model based on matrix factorization:

$$\mathbf{Y} \approx \mathbf{Y}' = \mathbf{U}\mathbf{M}^{\top}$$

where **U** is an $I \times K$ and \mathbf{M}^{\top} is a $K \times J$ matrix.

ullet For example, I is the number of users, J is the number of movies in the movie recommender system, and K is number of features describing users and movies.

ullet When ${f U}$ is fixed, each row is a linear problem in which rows of ${f U}$ are features vectors and columns of ${f M}$ are linear classifiers.

$$\hat{\mathbf{Y}} = \begin{bmatrix} 4 & 7 & 5 \\ 5 & 8 & 7 \\ 7 & 12 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

ullet When ${f U}$ is fixed, each row is a linear problem in which rows of ${f U}$ are features vectors and columns of ${f M}$ are linear classifiers.

$$\hat{\mathbf{Y}} = \begin{bmatrix} 4 & 7 & 5 \\ 5 & 8 & 7 \\ 7 & 12 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

 Matrix factorization is learning features that work well across all classification problems.

ullet When ${f U}$ is fixed, each row is a linear problem in which rows of ${f U}$ are features vectors and columns of ${f M}$ are linear classifiers.

$$\hat{\mathbf{Y}} = \begin{bmatrix} 4 & 7 & 5 \\ 5 & 8 & 7 \\ 7 & 12 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

- Matrix factorization is learning features that work well across all classification problems.
- The question is how to learn this features?

ullet Consider the simplest case in which $\mathbf{U}=u$ and $\mathbf{M}=m$.

- Consider the simplest case in which U = u and M = m.
- The problem can be formulated from the learning perspective as:

$$(\boldsymbol{u}, \boldsymbol{m})^* = \arg\min \sum_{y_{ij} \neq ?} \ell(y_{ij}, u_i m_j)$$

- Consider the simplest case in which U = u and M = m.
- The problem can be formulated from the learning perspective as:

$$(\boldsymbol{u}, \boldsymbol{m})^* = \arg\min \sum_{y_{ij} \neq ?} \ell(y_{ij}, u_i m_j)$$

Consider the squared-error loss:

$$L = \sum_{y_{ij} \neq ?} \ell_{se}(y_{ij}, \hat{y}_{ij}) = \sum_{y_{ij} \neq ?} (y_{ij} - \hat{y}_{ij})^2.$$

- Consider the simplest case in which U = u and M = m.
- The problem can be formulated from the learning perspective as:

$$(\boldsymbol{u}, \boldsymbol{m})^* = \arg\min \sum_{y_{ij} \neq ?} \ell(y_{ij}, u_i m_j)$$

• Consider the squared-error loss:

$$L = \sum_{y_{ij} \neq ?} \ell_{se}(y_{ij}, \hat{y}_{ij}) = \sum_{y_{ij} \neq ?} (y_{ij} - \hat{y}_{ij})^2.$$

• Unfortunately, the problem is not convex :(

- Consider the simplest case in which U = u and M = m.
- The problem can be formulated from the learning perspective as:

$$(\boldsymbol{u}, \boldsymbol{m})^* = \arg\min \sum_{y_{ij} \neq ?} \ell(y_{ij}, u_i m_j)$$

• Consider the squared-error loss:

$$L = \sum_{y_{ij} \neq ?} \ell_{se}(y_{ij}, \hat{y}_{ij}) = \sum_{y_{ij} \neq ?} (y_{ij} - \hat{y}_{ij})^2.$$

- Unfortunately, the problem is not convex :(
- To solve the optimization problem one usually uses alternating least squares.

ullet Approximation of Y by a rank-1 matrix is not sufficient.

- Approximation of Y by a rank-1 matrix is not sufficient.
- Possible extensions of the model:

- Approximation of Y by a rank-1 matrix is not sufficient.
- Possible extensions of the model:
 - ▶ Use of a larger number of features,

- Approximation of Y by a rank-1 matrix is not sufficient.
- Possible extensions of the model:
 - Use of a larger number of features,
 - ► Regularization,

- Approximation of Y by a rank-1 matrix is not sufficient.
- Possible extensions of the model:
 - ▶ Use of a larger number of features,
 - ► Regularization,
 - ► Large-scale learning algorithms.

ullet Consider the case in which ${f U}$ and ${f M}$ contains up to K features:

$$\mathbf{Y} = \hat{\mathbf{Y}} = \mathbf{U}\mathbf{M}^\top$$

ullet Consider the case in which ${f U}$ and ${f M}$ contains up to K features:

$$\mathbf{Y} = \hat{\mathbf{Y}} = \mathbf{U}\mathbf{M}^{\top}$$

• For example:

$$\hat{\mathbf{Y}} = \begin{bmatrix} 4 & 7 & 5 \\ 5 & 8 & 7 \\ 7 & 12 & 9 \end{bmatrix} = \mathbf{U}\mathbf{M}^{\top} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

ullet Consider the case in which ${f U}$ and ${f M}$ contains up to K features:

$$\mathbf{Y} = \hat{\mathbf{Y}} = \mathbf{U}\mathbf{M}^{\top}$$

• For example:

$$\hat{\mathbf{Y}} = \begin{bmatrix} 4 & 7 & 5 \\ 5 & 8 & 7 \\ 7 & 12 & 9 \end{bmatrix} = \mathbf{U}\mathbf{M}^{\top} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

• The prediction is now $\hat{y}_{ij} = \sum_{k=1}^{K} u_{ik} m_{jk}$.

ullet Consider the case in which ${f U}$ and ${f M}$ contains up to K features:

$$\mathbf{Y} = \hat{\mathbf{Y}} = \mathbf{U}\mathbf{M}^{\top}$$

• For example:

$$\hat{\mathbf{Y}} = \begin{bmatrix} 4 & 7 & 5 \\ 5 & 8 & 7 \\ 7 & 12 & 9 \end{bmatrix} = \mathbf{U}\mathbf{M}^{\top} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

- The prediction is now $\hat{y}_{ij} = \sum_{k=1}^{K} u_{ik} m_{jk}$.
- The problem can be formulated as:

$$(\mathbf{U}, \mathbf{M})^* = \underset{(\mathbf{U}, \mathbf{M})}{\operatorname{arg min}} \sum_{y_{ij} \neq ?} \ell(y_{ij}, \sum_{k=1}^K u_{ik} m_{jk}).$$

• Optimization approaches:

- Optimization approaches:
 - ► A use of a coordinate descent approach, which is a straight-forward extension of the algorithm for rank-1 matrix factorization,

- Optimization approaches:
 - ► A use of a coordinate descent approach, which is a straight-forward extension of the algorithm for rank-1 matrix factorization,
 - ► Treat the problem as a regular linear regression task and use standard algorithms,

- Optimization approaches:
 - ► A use of a coordinate descent approach, which is a straight-forward extension of the algorithm for rank-1 matrix factorization,
 - ► Treat the problem as a regular linear regression task and use standard algorithms,
 - ► Stochastic gradient descent in a large-scale setting.

Coordinate descent

ullet The coordinate descent algorithm updates a single element of matrix ${f U}$ or matrix ${f M}$ in one iteration.

Coordinate descent

- ullet The coordinate descent algorithm updates a single element of matrix U or matrix M in one iteration.
- All the other values of U and M are fixed.

Coordinate descent

- ullet The coordinate descent algorithm updates a single element of matrix ${f U}$ or matrix ${f M}$ in one iteration.
- All the other values of U and M are fixed.
- The corresponding updates are the following:

$$u_{ik}^* = \frac{\sum_{j:y_{ij}\neq?} m_{jk} \left(y_{ij} - \sum_{k'\neq k} u_{ik'} m_{jk'} \right)}{\sum_{j:y_{ij}\neq?} m_{jk}^2}.$$

$$m_{jk}^* = \frac{\sum_{i:y_{ij}\neq?} u_{ik} \left(y_{ij} - \sum_{k'\neq k} u_{ik'} m_{jk'} \right)}{\sum_{i:y_{ij}\neq?} u_{ik}^2}.$$

Optimization algorithm

ullet Ordering the optimization of the elements of U and M:

Optimization algorithm

- ullet Ordering the optimization of the elements of U and M:
 - ▶ The simplest thing to do is pick an order, e.g., row-by-row, for the elements of U and M, and visit them in round-robin fashion.

- ullet Ordering the optimization of the elements of ${f U}$ and ${f M}$:
 - ▶ The simplest thing to do is pick an order, e.g., row-by-row, for the elements of U and M, and visit them in round-robin fashion.
 - ► Randomly pick the element to optimize.

- ullet Ordering the optimization of the elements of ${f U}$ and ${f M}$:
 - ▶ The simplest thing to do is pick an order, e.g., row-by-row, for the elements of U and M, and visit them in round-robin fashion.
 - ► Randomly pick the element to optimize.
 - ► The problem can also be solved by boosting-like approach:

- ullet Ordering the optimization of the elements of ${f U}$ and ${f M}$:
 - ▶ The simplest thing to do is pick an order, e.g., row-by-row, for the elements of U and M, and visit them in round-robin fashion.
 - ► Randomly pick the element to optimize.
 - ► The problem can also be solved by boosting-like approach:
 - Compute a solution for k = 1,

- ullet Ordering the optimization of the elements of U and M:
 - ▶ The simplest thing to do is pick an order, e.g., row-by-row, for the elements of U and M, and visit them in round-robin fashion.
 - ► Randomly pick the element to optimize.
 - ► The problem can also be solved by boosting-like approach:
 - Compute a solution for k = 1,
 - In each next iteration compute a solution for a consecutive k (up to K)
 using the intermediate predictions of the form

$$\hat{y}_{ij}^{(k)} = \sum_{k'=1}^{k-1} u_{ik'} m_{jk'} .$$

• To avoid overfitting the problem should be formulated with a kind of regularization.

- To avoid overfitting the problem should be formulated with a kind of regularization.
- For example, we can penalize high values of u_{ik} and m_{ik} .

- To avoid overfitting the problem should be formulated with a kind of regularization.
- For example, we can penalize high values of u_{ik} and m_{jk} .
- In other words, we shrink the values towards zero.

- To avoid overfitting the problem should be formulated with a kind of regularization.
- For example, we can penalize high values of u_{ik} and m_{jk} .
- In other words, we shrink the values towards zero.
- ullet This makes only sense if we first normalize the values of ${f Y}$ in a way that the average value is around 0.

- To avoid overfitting the problem should be formulated with a kind of regularization.
- For example, we can penalize high values of u_{ik} and m_{jk} .
- In other words, we shrink the values towards zero.
- This makes only sense if we first normalize the values of ${\bf Y}$ in a way that the average value is around 0.
- The regularized problem can be formulated as:

$$(\mathbf{U}, \mathbf{M})^* = \underset{(\mathbf{U}, \mathbf{M})}{\min} \sum_{y_{ij} \neq ?} \left(y_{ij} - \sum_{k=1}^K u_{ik} m_{jk} \right)^2 + \lambda \left(\sum_{ik} u_{ik}^2 + m_{jk}^2 \right).$$

- To avoid overfitting the problem should be formulated with a kind of regularization.
- For example, we can penalize high values of u_{ik} and m_{ik} .
- In other words, we shrink the values towards zero.
- This makes only sense if we first normalize the values of ${\bf Y}$ in a way that the average value is around 0.
- The regularized problem can be formulated as:

$$(\mathbf{U}, \mathbf{M})^* = \underset{(\mathbf{U}, \mathbf{M})}{\operatorname{arg min}} \sum_{y_{ij} \neq ?} \left(y_{ij} - \sum_{k=1}^K u_{ik} m_{jk} \right)^2 + \lambda \left(\sum_{ik} u_{ik}^2 + m_{jk}^2 \right).$$

• Parameter λ should be tuned empirically.

• The updates in the coordinate descent algorithm become now:

• The updates in the coordinate descent algorithm become now:

$$u_{ik}^* = \frac{\sum_{j:y_{ij}\neq?} m_{jk} \left(y_{ij} - \sum_{k'\neq k} u_{ik'} m_{jk'} \right)}{\sum_{j:y_{ij}\neq?} m_{jk}^2 + \lambda}.$$

$$m_{jk}^* = \frac{\sum_{i:y_{ij}\neq?} u_{ik} \left(y_{ij} - \sum_{k'\neq k} u_{ik'} m_{jk'} \right)}{\sum_{i:y_{ij}\neq?} u_{ik}^2 + \lambda}.$$

• The traditional least squares algorithms can be inefficient in the large-scale problems.

- The traditional least squares algorithms can be inefficient in the large-scale problems.
- A good solution in this case is the stochastic gradient descent.

- The traditional least squares algorithms can be inefficient in the large-scale problems.
- A good solution in this case is the stochastic gradient descent.
- The stochastic gradient updates are defined for a single training example:

- The traditional least squares algorithms can be inefficient in the large-scale problems.
- A good solution in this case is the stochastic gradient descent.
- The stochastic gradient updates are defined for a single training example:

$$u_{ik} \leftarrow u_{ik} + \nu(y_{ij} - \hat{y}_{ij})m_{jk},$$

$$m_{jk} \leftarrow m_{jk} + \nu(y_{ij} - \hat{y}_{ij})u_{ik},$$

where ν is the learning rate and $\hat{y}_{ij} = \sum_k u_{ik} m_{jk}$.

- The traditional least squares algorithms can be inefficient in the large-scale problems.
- A good solution in this case is the stochastic gradient descent.
- The stochastic gradient updates are defined for a single training example:

$$u_{ik} \leftarrow u_{ik} + \nu(y_{ij} - \hat{y}_{ij}) m_{jk},$$

$$m_{jk} \leftarrow m_{jk} + \nu(y_{ij} - \hat{y}_{ij}) u_{ik},$$

where ν is the learning rate and $\hat{y}_{ij} = \sum_k u_{ik} m_{jk}$.

• There is also a question about ordering the updates: the approaches discussed earlier can be used here as well.

• The stochastic gradient descent can also be used with regularization.

- The stochastic gradient descent can also be used with regularization.
- The update has then the following form:

$$u_{ik} \leftarrow u_{ik} + \nu((y_{ij} - \hat{y}_{ij})m_{jk} - \lambda u_{ik}),$$

$$m_{jk} \leftarrow m_{jk} + \nu((y_{ij} - \hat{y}_{ij})u_{ik} - \lambda m_{jk}).$$

where λ is the regularization parameter.

• Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).
- Start several times as there are no guarantees to find the global minimum.

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).
- Start several times as there are no guarantees to find the global minimum.
- However, we should try to avoid overfitting:

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).
- Start several times as there are no guarantees to find the global minimum.
- However, we should try to avoid overfitting:
 - lacktriangle Stop revising elements of U and M before the process has converged,

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).
- Start several times as there are no guarantees to find the global minimum.
- However, we should try to avoid overfitting:
 - ► Stop revising elements of U and M before the process has converged,
 - ► Average over different runs of the algorithm,

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).
- Start several times as there are no guarantees to find the global minimum.
- However, we should try to avoid overfitting:
 - ► Stop revising elements of U and M before the process has converged,
 - ► Average over different runs of the algorithm,
 - ► Smaller steps in optimization algorithms,

- Updates of u_{ik} and m_{jk} are usually repeated until the error improves (more than a given threshold).
- Try different setting in the experiments (different values λ , ν , etc.).
- Start several times as there are no guarantees to find the global minimum.
- However, we should try to avoid overfitting:
 - ► Stop revising elements of U and M before the process has converged,
 - ► Average over different runs of the algorithm,
 - ► Smaller steps in optimization algorithms,
 - Regularization.

• Different loss functions.

- Different loss functions.
- Visualization of features.

- Different loss functions.
- Visualization of features.
- The use of regular features.

- Different loss functions.
- Visualization of features.
- The use of regular features.
- A quite general learning framework . . .

Beyond matrix factorization

- Relational learning,
- Tensor factorization.

Beyond matrix factorization

		$t_1(y) \\ t_2(y)$	4 10	5 ··· 7 14 ··· 9	8 21	6 12
$u_1(x)$	$u_2(x)$	x/y	y_1	$y_2 \cdots y_m$	y_{m+1}	y_{m+2}
1	1	x_1	10	? … 1	?	?
3	5	x_2	?	0.1 · · · 0		?
7	0	x_3	?	? … 1	?	?
3	1	x_n	-5	0.9 · · · 1	?	?
2	3	x_{n+1}	?	? ?	?	?
3	1	x_{n+2}	?	? ?	?	?

Outline

1 Matrix Factorization

2 Summary

Summary

- Recommender systems:
 - ► Content-based systems,
 - ► Collaborative filtering.
- Collaborative filtering
 - ► Similarity-based,
 - ► Clustering,
 - ► Matrix factorization.
- Matrix factorization:
 - Matrix factorization with more features,
 - ► Regularization,
 - ► Stochastic gradient optimization.

Bibliography

A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.
 Cambridge University Press, 2011
 http://www.mmds.org