Multi-dimensional Index Structures

Krzysztof Dembczyński
Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, second semester
Academic year 2017/18 (winter course)
Review of the previous lectures

- Mining of massive datasets
- Classification and regression
- Evolution of database systems
- MapReduce
1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 Summary
Multi-dimensional structures

- Conventional index structures are one dimensional and are not suitable for multi-dimensional search queries.
Multi-dimensional structures

• Typical applications:
Multi-dimensional structures

• Typical applications:
Multi-dimensional structures

- Typical applications:
 - Computer vision: find the most similar picture.
 - Learning: decision trees, rules, nearest neighbors.
 - Recommender systems: find the most similar users/items.
 - Similarity of documents: plagiarism, mirror pages, articles from the same source.
Multi-dimensional structures

- Typical applications:
 - Computer vision: find the most similar picture.
 - Learning: decision trees, rules, nearest neighbors.
Multi-dimensional structures

• Typical applications:
 ▶ Computer vision: find the most similar picture.
 ▶ Learning: decision trees, rules, nearest neighbors.
 ▶ Recommender systems: find the most similar users/items.
Multi-dimensional structures

• Typical applications:
 ▶ Computer vision: find the most similar picture.
 ▶ Learning: decision trees, rules, nearest neighbors.
 ▶ Recommender systems: find the most similar users/items.
 ▶ Similarity of documents: plagiarism, mirror pages, articles from the same source.
Multi-dimensional structures

• Typical applications:
 ▶ Computer vision: find the most similar picture.
 ▶ Learning: decision trees, rules, nearest neighbors.
 ▶ Recommender systems: find the most similar users/items.
 ▶ Similarity of documents: plagiarism, mirror pages, articles from the same source.
 ▶ . . .
Multi-dimensional structures

- Typical types of multi-dimensional queries:
 - Partial match queries: for specified values for one or more dimensions find all points matching those values in those dimensions:
 - where salary = 5000 and age = 30
 - Range queries: for specified ranges for one or more dimensions find all the points within those ranges:
 - where salary between 3500 and 5000 and age between 25 and 35
 - Nearest-neighbor queries: find the closest one or more points to a given point.
 - Where-am-I queries: for a given point, where this point is located (in which shape).
Multi-dimensional structures

• Typical types of multi-dimensional queries:
 ▶ Partial match queries: for specified values for one or more dimensions find all points matching those values in those dimensions:
 where salary = 5000 and age = 30
• Typical types of multi-dimensional queries:
 ▶ Partial match queries: for specified values for one or more dimensions find all points matching those values in those dimensions:

 where salary = 5000 and age = 30
 ▶ Range queries: for specified ranges for one or more dimensions find all the points within those ranges:

 where salary between 3500 and 5000
 and age between 25 and 35
Multi-dimensional structures

• Typical types of multi-dimensional queries:
 ▶ Partial match queries: for specified values for one or more dimensions find all points matching those values in those dimensions:

 where salary = 5000 and age = 30
 ▶ Range queries: for specified ranges for one or more dimensions find all the points within those ranges:

 where salary between 3500 and 5000
 and age between 25 and 35
 ▶ Nearest-neighbor queries: find the closest one or more points to a given point.
Multi-dimensional structures

- Typical types of multi-dimensional queries:
 - Partial match queries: for specified values for one or more dimensions find all points matching those values in those dimensions:
 \[
 \text{where salary = 5000 and age = 30}
 \]
 - Range queries: for specified ranges for one or more dimensions find all the points within those ranges:
 \[
 \text{where salary between 3500 and 5000 and age between 25 and 35}
 \]
 - Nearest-neighbor queries: find the closest one or more points to a given point.
 - Where-am-I queries: for a given point, where this point is located (in which shape).
Multi-dimensional queries with conventional indexes

- Consider a range query:

 where salary between 3500 and 5000
 and age between 25 and 35

- To answer the query:
 ▶ Scan along either index at once,
 ▶ Intersect the elements returned by indexes

- This approach produces many false hits on each index!
Nearest neighbor queries

- **Brute force search:**

 - Given a query point \(q \)
 - Scan through each of \(n \) data points in database

 Computational complexity for 1-NN query: \(O(n) \).

 Computational complexity for k-NN query: \(O(n \log k) \).

- With large databases linear complexity can be too costly.

- Can we do better?
Nearest neighbor queries

- Brute force search:
 - Given a query point q scan through each of n data points in database
Nearest neighbor queries

- Brute force search:
 - Given a query point q scan through each of n data points in database
 - Computational complexity for 1-NN query:
Nearest neighbor queries

- Brute force search:
 - Given a query point q scan through each of n data points in database
 - Computational complexity for 1-NN query: $O(n)$.
Nearest neighbor queries

- Brute force search:
 - Given a query point \(q \) scan through each of \(n \) data points in database
 - Computational complexity for 1-NN query: \(O(n) \).
 - Computational complexity for k-NN query:
Nearest neighbor queries

- Brute force search:
 - Given a query point q scan through each of n data points in database
 - Computational complexity for 1-NN query: $O(n)$.
 - Computational complexity for k-NN query: $O(n \log k)$!
Nearest neighbor queries

• Brute force search:
 ▶ Given a query point \(q \) scan through each of \(n \) data points in database
 ▶ Computational complexity for 1-NN query: \(\mathcal{O}(n) \).
 ▶ Computational complexity for k-NN query: \(\mathcal{O}(n \log k) \)!

• With large databases linear complexity can be too costly.
Nearest neighbor queries

• Brute force search:
 ▶ Given a query point q scan through each of n data points in database
 ▶ Computational complexity for 1-NN query: $O(n)$.
 ▶ Computational complexity for k-NN query: $O(n \log k)$!

• With large databases linear complexity can be too costly.

• Can we do better?
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.

![Diagram of a scatter plot with age on the y-axis and salary on the x-axis, highlighting a point within a range.](attachment:image.png)
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.
- There are two situations we need to take into account:

```plaintext
<table>
<thead>
<tr>
<th>age</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>
```
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.
- There are two situations we need to take into account:
 - There is no point within the selected range.
 - The closest point within the range might not be the closest point overall.
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.
- There are two situations we need to take into account:
 - There is no point within the selected range.
 - The closest point within the range might not be the closest point overall.
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.
- There are two situations we need to take into account:
 - There is no point within the selected range.
 - The closest point within the range might not be the closest point overall.
Nearest neighbor queries

- To solve the nearest neighbor search one can ask the range query and select the point closest to the target within that range.
- There are two situations we need to take into account:
 - There is no point within the selected range.
 - The closest point within the range might not be the closest point overall.
Nearest neighbor queries

• A general technique for finding the nearest neighbor:

1. Estimate the range in which the nearest point is likely to be found.
2. Execute the corresponding range query.
3. If no points are found within that range, repeat with a larger range, until at least one point will be found.
4. Consider whether there is the possibility that a closer point exists outside the range used. If so, increase appropriately the range once more and retrieve all points in the larger range to check.
Nearest neighbor queries

- A general technique for finding the nearest neighbor:
 - Estimate the range in which the nearest point is likely to be found.
Nearest neighbor queries

• A general technique for finding the nearest neighbor:
 ▶ Estimate the range in which the nearest point is likely to be found.
 ▶ Execute the corresponding range query.
Nearest neighbor queries

- A general technique for finding the nearest neighbor:
 ▶ Estimate the range in which the nearest point is likely to be found.
 ▶ Execute the corresponding range query.
 ▶ If no points are found within that range, repeat with a larger range, until at least one point will be found.
• A general technique for finding the nearest neighbor:
 ▶ Estimate the range in which the nearest point is likely to be found.
 ▶ Execute the corresponding range query.
 ▶ If no points are found within that range, repeat with a larger range, until at least one point will be found.
 ▶ Consider, whether there is the possibility that a closer point exists outside the range used. If so, increase appropriately the range once more and retrieve all points in the larger range to check.
Multidimensional index structures

- Hash-table-like approaches
- Tree-like approaches
Outline

1. Motivation
2. Hash Structures for Multidimensional data
3. Tree Structures for Multidimensional Data
4. Summary
• The space of points partitioned in a grid.
Grid files

- The space of points partitioned in a grid.
- In each dimension, grid lines partition the space into stripes.
Grid files

- The space of points partitioned in a grid.
- In each dimension, grid lines partition the space into stripes.
- The number of grid lines in different dimensions may vary.

![Graph showing the relationship between age and salary with data points scattered across the grid]

- Salary
- Age
Grid files

- The space of points partitioned in a grid.
- In each dimension, grid lines partition the space into stripes.
- The number of grid lines in different dimensions may vary.
- Spacings between adjacent grid lines may also vary.

![Scatter plot of age vs salary](scatter_plot.png)
Grid files

- The space of points partitioned in a grid.
- In each dimension, grid lines partition the space into stripes.
- The number of grid lines in different dimensions may vary.
- Spacings between adjacent grid lines may also vary.
- Each region corresponds to a bucket.

![Diagram](image)
Grid files

• Lookup in Grid Files:
 - Look at each component of a point and determine the position of the point in the grid for that dimension.
 - The positions of the point in each of the dimensions together determine the bucket.

• Insertion into Grid Files:
 - Follow the procedure for lookup of the record and place the new record to that bucket.
 - If there is no room in the bucket:
 • Add overflow blocks to the buckets, as needed, or
 • Reorganize the structure by adding or moving the grid lines.
• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
 ▶ The positions of the point in each of the dimensions together determine the bucket.
Grid files

• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
 ▶ The positions of the point in each of the dimensions together determine the bucket.

• Insertion into Grid Files:
Grid files

• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
 ▶ The positions of the point in each of the dimensions together determine the bucket.

• Insertion into Grid Files:
 ▶ Follow the procedure for lookup of the record and place the new record to that bucket
Grid files

• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
 ▶ The positions of the point in each of the dimensions together determine the bucket.

• Insertion into Grid Files:
 ▶ Follow the procedure for lookup of the record and place the new record to that bucket.
 ▶ If there is no room in the bucket:
Grid files

• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
 ▶ The positions of the point in each of the dimensions together determine the bucket.

• Insertion into Grid Files:
 ▶ Follow the procedure for lookup of the record and place the new record to that bucket.
 ▶ If there is no room in the bucket:
 • Add overflow blocks to the buckets, as needed, or
• Lookup in Grid Files:
 ▶ Look at each component of a point and determine the position of the point in the grid for that dimension.
 ▶ The positions of the point in each of the dimensions together determine the bucket.

• Insertion into Grid Files:
 ▶ Follow the procedure for lookup of the record and place the new record to that bucket
 ▶ If there is no room in the bucket:
 • Add overflow blocks to the buckets, as needed, or
 • Reorganize the structure by adding or moving the grid lines.
Accessing buckets of a grid file

- For each dimension with large number of stripes create an index over the partition values.
Accessing buckets of a grid file

- For each dimension with large number of stripes create an index over the partition values.
- Given a value v in some coordinate, search for the corresponding partition values (the lower end) and get one component of the address of the corresponding bucket.
Accessing buckets of a grid file

• For each dimension with large number of stripes create an index over the partition values.

• Given a value \(v \) in some coordinate, search for the corresponding partition values (the lower end) and get one component of the address of the corresponding bucket.

• Given all components of the address from each dimension, find where in the matrix (grid file) the pointer to the bucket falls.
Accessing buckets of a grid file

- For each dimension with large number of stripes create an index over the partition values.
- Given a value v in some coordinate, search for the corresponding partition values (the lower end) and get one component of the address of the corresponding bucket.
- Given all components of the address from each dimension, find where in the matrix (grid file) the pointer to the bucket falls.
- If the matrix is sparse treat it as a relation whose attributes are corners of the nonempty buckets and a final attribute representing the pointer to the bucket.
• Partial-match queries: We need to look at all the buckets in dimension not specified in the query
Grid files

- Range queries: We need to look at all the buckets that cover the rectangular region defined by the query.
Grid files

- Nearest-neighbor queries:

 ▶ Start with the bucket in which the point belongs.
 ▶ If there is no point, check the adjacent buckets, for example, by spiral search; otherwise, find the nearest point to be a candidate.
 ▶ Check points in the adjacent buckets if the distance between the query point and the border of its bucket is less than the distance from the candidate.
Grid files

- Nearest-neighbor queries:
 - Start with the bucket in which the point belongs.
Grid files

- Nearest-neighbor queries:
 - Start with the bucket in which the point belongs.
 - If there is no point, check the adjacent buckets, for example, by spiral search; otherwise, find the nearest point to be a candidate.
Grid files

- Nearest-neighbor queries:
 - Start with the bucket in which the point belongs.
 - If there is no point, check the adjacent buckets, for example, by spiral search; otherwise, find the nearest point to be a candidate.
 - Check points in the adjacent buckets if the distance between the query point and the border of its bucket is less than the distance from the candidate.
• Hash functions can take a list of values as arguments, although typically there is only one argument.
Partitioned hash functions

- Hash functions can take a list of values as arguments, although typically there is only one argument.
- For example, one can compute

\[h(a, b), \]

where \(a \) is an integer value and \(b \) is a character-string value, by adding the value of \(a \) to the value of the ASCII code for each character of \(b \), dividing by the number of buckets, and taking the remainder.
Partitioned hash functions

• Hash functions can take a list of values as arguments, although typically there is only one argument.

• For example, one can compute

\[h(a, b), \]

where \(a \) is an integer value and \(b \) is a character-string value, by adding the value of \(a \) to the value of the ASCII code for each character of \(b \), dividing by the number of buckets, and taking the remainder.

• This is, however, useful only in the queries that specify values for both \(a \) and \(b \).
Partitioned hash functions

- Partitioned hash function h is a list of hash functions

\[(h_1, h_2, \ldots, h_n),\]

such that h_i applies to a value for the i-th attribute and produces a sequence of k_i bits.
Partitioned hash functions

- Partitioned hash function h is a list of hash functions

 $$(h_1, h_2, \ldots, h_n),$$

 such that h_i applies to a value for the i-th attribute and produces a sequence of k_i bits.

- The bucket in which to place a point with values (v_1, v_2, \ldots, v_n) for the n attributes is computed by concatenating the bit sequences:

 $$h_1(v_1)h_2(v_2)\cdots h_n(v_n)$$
Partitioned hash functions

- Partitioned hash function h is a list of hash functions
 \[(h_1, h_2, \ldots, h_n), \]
 such that h_i applies to a value for the i-th attribute and produces a sequence of k_i bits.
- The bucket in which to place a point with values (v_1, v_2, \ldots, v_n) for the n attributes is computed by concatenating the bit sequences:
 \[h_1(v_1)h_2(v_2)\cdots h_n(v_n) \]
- The length of the hash is
 \[\sum_{i=1}^{n} k_i = k \]
• **Example:** A hash table with 10-bit bucket number (1024 buckets)
Example: A hash table with 10-bit bucket number (1024 buckets)
- First 4-bits devoted to attribute a.

For a tuple with a-value A and b-value B and other attributes not involved in the hash, we could obtain, for example:

$h_1(A) = 0101$
$h_2(B) = 111000$

This tuple hashes to bucket 0101111000.

Moreover, we get some advantage from knowing values for any one or more of the attributes that contribute to the hash function.
- For instance, for a value A of attribute a with $h_1 = 0101$, we know that the tuples with a-value A are in the 64 buckets whose numbers are of the form $0101 \cdots \cdots$.
Partitioned hash functions

- **Example**: A hash table with 10-bit bucket number (1024 buckets)
 - First 4-bits devoted to attribute a.
 - Remaining 6-bits devoted to attribute b.

 For a tuple with a-value A and b-value B and other attributes not involved in the hash, we could obtain, for example:

 - $h_1(A) = 0101$
 - $h_2(B) = 111000$

 This tuple hashes to bucket 0101111000.

 Moreover, we get some advantage from knowing values for any one or more of the attributes that contribute to the hash function
 - For instance, for a value A of attribute a with $h_1 = 0101$, we know that the tuples with a-value A are in the 64 buckets whose numbers are of the form $0101 \cdots \cdots$.

Partitioned hash functions

Example: A hash table with 10-bit bucket number (1024 buckets)

- First 4-bits devoted to attribute a.
- Remaining 6-bits devoted to attribute b.
- For a tuple with a-value A and b-value B and other attributes not involved in the hash, we could obtain, for example:

 $$h_1(A) = 0101 \quad h_2(B) = 111000$$

 This tuple hashes to bucket 010111000.
Partitioned hash functions

• **Example**: A hash table with 10-bit bucket number (1024 buckets)
 ▶ First 4-bits devoted to attribute a.
 ▶ Remaining 6-bits devoted to attribute b.
 ▶ For a tuple with a-value A and b-value B and other attributes not involved in the hash, we could obtain, for example:

 \[
 h_1(A) = 0101 \quad h_2(B) = 111000
 \]

 This tuple hashes to bucket 0101111000.
 ▶ Moreover, we get some advantage from knowing values for any one or more of the attributes that contribute to the hash function
Partitioned hash functions

- **Example**: A hash table with 10-bit bucket number (1024 buckets)
 - First 4-bits devoted to attribute \(a \).
 - Remaining 6-bits devoted to attribute \(b \).
 - For a tuple with \(a \)-value \(A \) and \(b \)-value \(B \) and other attributes not involved in the hash, we could obtain, for example:

\[
 h_1(A) = 0101 \quad h_2(B) = 111000
\]

This tuple hashes to bucket 0101111000.

- Moreover, we get some advantage from knowing values for any one or more of the attributes that contribute to the hash function
 - For instance, for a value \(A \) of attribute \(a \) with \(h_1 = 0101 \), we know that the tuples with \(a \)-value \(A \) are in the 64 buckets whose numbers are of the form 0101 \(
 \cdots \cdots\).
Partitioned hash tables are useless for nearest-neighbor or range queries.
Grid files vs. Partitioned hashing

- Partitioned hash tables are useless for nearest-neighbor or range queries
 - The physical distance between points is not reflected by the closeness of bucket numbers.
- Grid files will tend to leave many buckets empty if we deal with high-dimensional and/or correlated data.
 - Hash tables are more efficient in this regard.
• Partitioned hash tables are useless for nearest-neighbor or range queries
 ▶ The physical distance between points is not reflected by the closeness of bucket numbers.
 ▶ By imposing that kind of correspondence between physical distance and hash values we reinvent the grid file.
• Partitioned hash tables are useless for nearest-neighbor or range queries
 ▶ The physical distance between points is not reflected by the closeness of bucket numbers.
 ▶ By imposing that kind of correspondence between physical distance and hash values we reinvent the grid file.
• Grid files will tend to leave many buckets empty if we deal with high dimensional and/or correlated data.
• Partitioned hash tables are useless for nearest-neighbor or range queries
 ▶ The physical distance between points is not reflected by the closeness of bucket numbers.
 ▶ By imposing that kind of correspondence between physical distance and hash values we reinvent the grid file.

• Grid files will tend to leave many buckets empty if we deal with high dimensional and/or correlated data.
 ▶ Hash tables are more efficient in this regard.
Outline

1. Motivation

2. Hash Structures for Multidimensional Data

3. Tree Structures for Multidimensional Data

4. Summary
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.

Example: An index on attributes \((a, b)\)

- Search key is \((a, b)\) combination.
- Index entries sorted by \(a\) value.
- Entries with same \(a\) value are sorted by \(b\) value, the so-called lexicographic sort.
- A query \(\text{SELECT SUM(B) FROM R WHERE A=5}\) is covered by the index.
- But for a query \(\text{SELECT SUM(A) FROM R WHERE B=5}\) records with \(B=5\) are scattered throughout index.
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.
- Coverage vs. size trade-off
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.
- Coverage vs. size trade-off
 - More attributes in search key \(\rightarrow\) index covers more queries, but takes up more disk space.
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.
- Coverage vs. size trade-off
 - More attributes in search key \rightarrow index covers more queries, but takes up more disk space.
- **Example**: An index on attributes (a, b)
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.
- **Coverage vs. size trade-off**
 - More attributes in search key \rightarrow index covers more queries, but takes up more disk space.
- **Example**: An index on attributes (a, b)
 - Search key is (a, b) combination.
Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off
 ▶ More attributes in search key → index covers more queries, but takes up more disk space.

• **Example**: An index on attributes \((a, b)\)
 ▶ Search key is \((a, b)\) combination.
 ▶ Index entries sorted by \(a\) value.
Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
• The indexes on each level can be of any type of conventional indexes.
• Coverage vs. size trade-off
 ▶ More attributes in search key \rightarrow index covers more queries, but takes up more disk space.
• **Example**: An index on attributes (a, b)
 ▶ Search key is (a, b) combination.
 ▶ Index entries sorted by a value.
 ▶ Entries with same a value are sorted by b value, the so-called lexicographic sort.
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.
- Coverage vs. size trade-off
 - More attributes in search key \rightarrow index covers more queries, but takes up more disk space.
- **Example:** An index on attributes (a, b)
 - Search key is (a, b) combination.
 - Index entries sorted by a value.
 - Entries with same a value are sorted by b value, the so-called lexicographic sort.
 - A query `SELECT SUM(B) FROM R WHERE A=5` is covered by the index.
Multiple-key indexes

- Multiple-key index can be seen as a kind of an index of indexes, or a tree in which the nodes at each level are indexes for one attribute.
- The indexes on each level can be of any type of conventional indexes.
- Coverage vs. size trade-off
 - More attributes in search key \rightarrow index covers more queries, but takes up more disk space.
- **Example**: An index on attributes (a, b)
 - Search key is (a, b) combination.
 - Index entries sorted by a value.
 - Entries with same a value are sorted by b value, the so-called lexicographic sort.
 - A query `SELECT SUM(B) FROM R WHERE A=5` is covered by the index.
 - But for a query `SELECT SUM(A) FROM R WHERE B=5` records with $B = 5$ are scattered throughout index.
Quad trees

- Quad tree splits the space into 2^d equal sub-squares (cubes), where d is the number of attributes.
Quad trees

- Quad tree splits the space into 2^d equal sub-squares (cubes), where d is number of attributes.
- Repeat the partition until: only one pixel left; only one point left; only a few points left.
Quad trees

- Partial-match queries: We need to look at all cubes that intersect the condition of queries.
Quad trees

- Range queries: We need to look at all cubes that cover the region defined by the query.
• Nearest neighbor search for point q:

```plaintext
Put the root on the priority queue with the min distance = 0
Repeat {
    Pop the next node $T$ from the priority queue
    if (min distance > $r$) {
        the candidate is the nearest neighbor;
        break;
    }
    if ($T$ is leaf) {
        examine point(s) in $T$ and find the candidate;
        update $r$ to be distance between $q$ and the candidate;
    }
    else {
        for each child $C$ of $T$ {
            if (C intersects with the ball of radius $r$ around $q$) {
                compute the min distance from $q$ to any point in $C$;
                add $C$ to the priority queue with the min distance;
            }
        }
    }
}
```

• Start search with $r = \infty$.
• Whenever a candidate point is found, update r.
• Only investigate nodes with respect to current r.

Quad trees
Quad trees

- Nearest neighbor search for point q:
Quad trees

- Nearest neighbor search for point q:
• Nearest neighbor search for point q:

![Diagram showing nearest neighbor search in a 2D space with salary and age as axes.](image)
Quad trees

- Nearest neighbor search for point q:
kd-trees

- kd-trees use only one-dimensional splits: widest or alternate dimensions in round-robin fashion.
kd-trees

- kd-trees use only one-dimensional splits: widest or alternate dimensions in round-robin fashion.
- Splits the dimension at median of the chosen region (can use the center of the region, too).
kd-trees

• kd-trees use only one-dimensional splits: widest or alternate dimensions in round-robin fashion.
• Splits the dimension at median of the chosen region (can use the center of the region, too).
• Stop criterion similar to quad trees.
kd-trees

- kd-trees use only one-dimensional splits: widest or alternate dimensions in round-robin fashion.
- Splits the dimension at median of the chosen region (can use the center of the region, too).
- Stop criterion similar to quad trees.
- Similar operations as for quad trees.
kd-trees

- kd-trees use only one-dimensional splits: widest or alternate dimensions in round-robin fashion.
- Splits the dimension at median of the chosen region (can use the center of the region, too).
- Stop criterion similar to quad trees.
- Similar operations as for quad trees.
- Advantages: no (or less) empty spaces, only linear space.
kd-trees

age

salary
R-trees

• Similar in construction to B-trees.
• A kind of bottom-up approach (where kd-tree are top-down).
• Suitable for where-am-I queries, but also for the other types of queries (similar operations as before).
• Can deal with points and shapes.
• Avoid empty spaces.
• The regions may overlap.
• Work well in low dimensions, but may have problems with high dimensions.
R-trees

age

salary
R-trees

![Diagram of R-trees with age on the y-axis and salary on the x-axis, showing a scatter plot with data points.](image-url)
R-trees
R-trees
R-trees
R-trees

age

salary
Additional aspects of multidimensional indexes

• Adaptation to secondary storage.
• Balancing of the tree structures.
• Storing data only in leaves or in internal nodes and leaves.
• Many variations of the structures presented.
Problems with nearest neighbor search

• Exponential query time
 ▶ The query time is from $\log n$ to $O(n)$, but can be exponential in d.
 ▶ Tree structures are good when $n \gg 2^d$.
 ▶ The curse of dimensionality.

• Solution: Approximate nearest neighbor search.
The curse of dimensionality

• In high-dimensional spaces almost all pairs of points are equally far away from one another.
The curse of dimensionality

• In high-dimensional spaces almost all pairs of points are equally far away from one another.
• In other words, the neighborhood becomes very large.
The curse of dimensionality

• In high-dimensional spaces almost all pairs of points are equally far away from one another.
• In other words, the neighborhood becomes very large
• **Example:**

- Task: Find the 5-nearest neighbor in the unit hypercube.
- There are 5000 points uniformly distributed.
- The query point: The origin of the space.
- For 1-dimensional hypercube (line), the average distance to capture all 5 nearest neighbors is $\frac{5}{5000} = 0.001$.
- For 2-dimensional hypercube, we must go $\sqrt{0.001}$ in each direction to get a square that contains 0.001 of the volume.
- In general, for d dimensions, we must go $(0.001)^{\frac{1}{d}}$.
- For instance, for $d = 20$, it is 0.707, and for $d = 200$, it is 0.966.
The curse of dimensionality

- In high-dimensional spaces almost all pairs of points are equally far away from one another.
- In other words, the neighborhood becomes very large.
- **Example:**
 - Task: Find the 5-nearest neighbor in the unit hypercube.
The curse of dimensionality

- In high-dimensional spaces almost all pairs of points are equally far away from one another.
- In other words, the neighborhood becomes very large
- **Example:**
 - Task: Find the 5-nearest neighbor in the unit hypercube.
 - There are 5000 points uniformly distributed.
The curse of dimensionality

- In high-dimensional spaces almost all pairs of points are equally far away from one another.
- In other words, the neighborhood becomes very large.
- **Example:**
 - Task: Find the 5-nearest neighbor in the unit hypercube.
 - There are 5000 points uniformly distributed.
 - The query point: The origin of the space.
The curse of dimensionality

- In high-dimensional spaces almost all pairs of points are equally far away from one another.
- In other words, the neighborhood becomes very large
- **Example:**
 - Task: Find the 5-nearest neighbor in the unit hypercube.
 - There are 5000 points uniformly distributed.
 - The query point: The origin of the space.
 - For 1-dimensional hypercube (line), the average distance to capture all 5 nearest neighbors is \(\frac{5}{5000} = 0.001 \).
The curse of dimensionality

- In high-dimensional spaces almost all pairs of points are equally far away from one another.
- In other words, the neighborhood becomes very large.
- **Example:**
 - Task: Find the 5-nearest neighbor in the unit hypercube.
 - There are 5000 points uniformly distributed.
 - The query point: The origin of the space.
 - For 1-dimensional hypercube (line), the average distance to capture all 5 nearest neighbors is \(\frac{5}{5000} = 0.001 \).
 - For 2-dimensional hypercube, we must go \(\sqrt{0.001} \) in each direction to get a square that contains 0.001 of the volume.
The curse of dimensionality

- In high-dimensional spaces almost all pairs of points are equally far away from one another.
- In other words, the neighborhood becomes very large
- **Example:**
 - Task: Find the 5-nearest neighbor in the unit hypercube.
 - There are 5000 points uniformly distributed.
 - The query point: The origin of the space.
 - For 1-dimensional hypercube (line), the average distance to capture all 5 nearest neighbors is $\frac{5}{5000} = 0.001$.
 - For 2 dimensional hypercube, we must go $\sqrt{0.001}$ in each direction to get a square that contains 0.001 of the volume.
 - In general, for d dimensions, we must go $(0.001)^{\frac{1}{d}}$.
The curse of dimensionality

• In high-dimensional spaces almost all pairs of points are equally far away from one another.
• In other words, the neighborhood becomes very large
• Example:
 ▶ Task: Find the 5-nearest neighbor in the unit hypercube.
 ▶ There are 5000 points uniformly distributed.
 ▶ The query point: The origin of the space.
 ▶ For 1-dimensional hypercube (line), the average distance to capture all 5 nearest neighbors is $5/5000 = 0.001$.
 ▶ For 2 dimensional hypercube, we must go $\sqrt{0.001}$ in each direction to get a square that contains 0.001 of the volume.
 ▶ In general, for d dimensions, we must go $(0.001)^{\frac{1}{d}}$.
 ▶ For instance, for $d = 20$, it is 0.707, and for $d = 200$, it is 0.966.
Outline

1 Motivation

2 Hash Structures for Multidimensional data

3 Tree Structures for Multidimensional Data

4 Summary
Summary

• Multi-dimensional index structures:
• Multi-dimensional index structures:
 ▶ Applications: partial match queries, range queries, where-am-I-queries, nearest-neighbor search.
• Multi-dimensional index structures:
 ▶ Applications: partial match queries, range queries, where-am-I-queries, nearest-neighbor search.
 ▶ Approaches: hash table-based, tree-like structures.
Summary

• Multi-dimensional index structures:
 ▶ Applications: partial match queries, range queries, where-am-I-queries, nearest-neighbor search.
 ▶ Approaches: hash table-based, tree-like structures.
 ▶ Work good for low-dimensional problems – curse of dimensionality.

• P. Indyk. Algorithms for nearest neighbor search