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Review of the previous lectures

• Mining of massive datasets

• Classification and regression

• Evolution of database systems

• MapReduce
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Multi-dimensional structures

• Conventional index structures are one dimensional and are not
suitable for multi-dimensional search queries.
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Multi-dimensional structures

• Typical applications:

I Geographic Information Systems (GIS): where-am-I queries.
I Computer vision: find the most similar picture.
I Learning: decision trees, rules, nearest neighbors.
I Recommender systems: find the most similar users/items.
I Similarity of documents: plagiarism, mirror pages, articles from the

same source.
I . . .
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Multi-dimensional structures

• Typical types of multi-dimensional queries:

I Partial match queries: for specified values for one or more dimensions
find all points matching those values in those dimensions:

where salary = 5000 and age = 30

I Range queries: for specified ranges for one or more dimensions find all
the points within those ranges:

where salary between 3500 and 5000

and age between 25 and 35

I Nearest-neighbor queries: find the closest one or more points to a given
point.

I Where-am-I queries: for a given point, where this point is located (in
which shape).
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Multi-dimensional queries with conventional indexes

• Consider a range query:

where salary between 3500 and 5000

and age between 25 and 35
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• To answer the query:
I Scan along either index at once,
I Intersect the elements returned by indexes

• This approach produces many false hits on each index!
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Nearest neighbor queries

• Brute force search:

I Given a query point q scan through each of n data points in database
I Computational complexity for 1-NN query: O(n).
I Computational complexity for k-NN query: O(n log k)!

• With large databases linear complexity can be too costly.

• Can we do better?
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Nearest neighbor queries

• To solve the nearest neighbor search one can ask the range query and
select the point closest to the target within that range.

• There are two situations we need to take into account:

I There is no point within the selected range.
I The closest point within the range might not be the closest point

overall.
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Nearest neighbor queries

• A general technique for finding the nearest neighbor:

I Estimate the range in which the nearest point is likely to be found.
I Execute the corresponding range query.
I If no points are found within that range, repeat with a larger range,

until at least one point will be found.
I Consider, whether there is the possibility that a closer point exists

outside the range used. If so, increase appropriately the range once
more and retrieve all points in the larger range to check.
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Multidimensional index structures

• Hash-table-like approaches

• Tree-like approaches
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Grid files

• The space of points partitioned in a grid.

• In each dimension, grid lines partition the space into stripes.
• The number of grid lines in different dimensions may vary.
• Spacings between adjacent grid lines may also vary.
• Each region corresponds to a bucket.
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Grid files

• Lookup in Grid Files:

I Look at each component of a point and determine the position of the
point in the grid for that dimension.

I The positions of the point in each of the dimensions together
determine the bucket.

• Insertion into Grid Files:

I Follow the procedure for lookup of the record and place the new record
to that bucket

I If there is no room in the bucket:

• Add overflow blocks to the buckets, as needed, or
• Reorganize the structure by adding or moving the grid lines.
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Accessing buckets of a grid file

• For each dimension with large number of stripes create an index over
the partition values.

• Given a value v in some coordinate, search for the corresponding
partition values (the lower end) and get one component of the
address of the corresponding bucket.

• Given all components of the address from each dimension, find where
in the matrix (grid file) the pointer to the bucket falls.

• If the matrix is sparse treat it as a relation whose attributes are
corners of the nonempty buckets and a final attribute representing the
pointer to the bucket.
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Grid files

• Partial-match queries: We need to look at all the buckets in
dimension not specified in the query
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Grid files

• Range queries: We need to look at all the buckets that cover the
rectangular region defined by the query
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Grid files

• Nearest-neighbor queries:

I Start with the bucket in which the point belongs.
I If there is no point, check the adjacent buckets, for example, by spiral

search; otherwise, find the nearest point to be a candidate.
I Check points in the adjacent buckets if the distance between the query

point and the border of its bucket is less than the distance from the
candidate.
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Partitioned hash functions

• Hash functions can take a list of values as arguments, although
typically there is only one argument.

• For example, one can compute

h(a, b) ,

where a is an integer value and b is a character-string value, by adding
the value of a to the value of the ASCII code for each character of b,
dividing by the number of buckets, and taking the remainder.

• This is, however, useful only in the queries that specify values for
both a and b.
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Partitioned hash functions

• Partitioned hash function h is a list of hash functions

(h1, h2, . . . , hn) ,

such that hi applies to a value for the i-th attribute and produces a
sequence of ki bits.

• The bucket in which to place a point with values (v1, v2, . . . , vn) for
the n attributes is computed by concatenating the bit sequences:

h1(v1)h2(v2) · · ·hn(vn)

• The length of the hash is

n∑
i=1

ki = k
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Partitioned hash functions

• Example: A hash table with 10-bit bucket number (1024 buckets)

I First 4-bits devoted to attribute a.
I Remaining 6-bits devoted to attribute b.
I For a tuple with a-value A and b-value B and other attributes not

involved in the hash, we could obtain, for example:

h1(A) = 0101 h2(B) = 111000

This tuple hashes to bucket 0101111000.
I Moreover, we get some advantage from knowing values for any one or

more of the attributes that contribute to the hash function

• For instance, for a value A of attribute a with h1 = 0101, we know
that the tuples with a-value A are in the 64 buckets whose numbers are
of the form 0101 · · · · · ·.
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more of the attributes that contribute to the hash function

• For instance, for a value A of attribute a with h1 = 0101, we know
that the tuples with a-value A are in the 64 buckets whose numbers are
of the form 0101 · · · · · ·.
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Grid files vs. Partitioned hashing

• Partitioned hash tables are useless for nearest-neighbor or range
queries

I The physical distance between points is not reflected by the closeness
of bucket numbers.

I By imposing that kind of correspondence between physical distance
and hash values we reinvent the grid file.

• Grid files will tend to leave many buckets empty if we deal with high
dimensional and/or correlated data.

I Hash tables are more efficient in this regard.
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Multiple-key indexes

• Multiple-key index can be seen as a kind of an index of indexes, or a
tree in which the nodes at each level are indexes for one attribute.

• The indexes on each level can be of any type of conventional indexes.

• Coverage vs. size trade-off

I More attributes in search key → index covers more queries, but takes
up more disk space.

• Example: An index on attributes (a, b)

I Search key is (a, b) combination.
I Index entries sorted by a value.
I Entries with same a value are sorted by b value, the so-called

lexicographic sort.
I A query SELECT SUM(B) FROM R WHERE A=5 is covered by the index.
I But for a query SELECT SUM(A) FROM R WHERE B=5 records with

B = 5 are scattered throughout index.
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Quad trees

• Quad tree splits the space into 2d equal sub-squares (cubes), where d
is number of attributes.

• Repeat the partition until: only one pixel left; only one point left; only
a few points left.
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Quad trees

• Partial-match queries: We need to look at all cubes that intersect the
condition of queries.
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Quad trees

• Range queries: We need to look at all cubes that cover the region
defined by the query
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Quad trees

• Nearest neighbor search for point q:

Put t h e r o o t on t h e p r i o r i t y queue w i t h t h e min d i s t a n c e = 0
Repeat {

Pop t h e n e x t node T from t h e p r i o r i t y queue
i f ( min d i s t a n c e > r ) {

t h e c a n d i d a t e i s t h e n e a r e s t n e i g h b o r ;
break ;

}
i f (T i s l e a f ) {

examine p o i n t ( s ) i n T and f i n d t h e c a n d i d a t e ;
update r to be d i s t a n c e between q and t h e c a n d i d a t e ;

}
e l s e {

f o r each c h i l d C o f T {
i f ( C i n t e r s e c t s w i t h t h e b a l l o f r a d i u s r around q ) {

compute t h e min d i s t a n c e from q to any p o i n t i n C ;
add C to t h e p r i o r i t y queue w i t h t h e min d i s t a n c e ;

}
}

}
}

• Start search with r =∞.

• Whenever a candidate point is found, update r.

• Only investigate nodes with respect to current r.
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Quad trees

• Nearest neighbor search for point q:
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kd-trees

• kd-trees use only one-dimensional splits: widest or alternate
dimensions in round-robin fashion.

• Splits the dimension at median of the chosen region (can use the
center of the region, too).

• Stop criterion similar to quad trees.

• Similar operations as for quad trees.

• Advantages: no (or less) empty spaces, only linear space.
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R-trees

• Similar in construction to B-trees.

• A kind of bottom-up approach (where kd-tree are top-down).

• Suitable for where-am-I queries, but also for the other types of queries
(similar operations as before).

• Can deal with points and shapes.

• Avoid empty spaces.

• The regions may overlap.

• Work well in low dimensions, but may have problems with high.
dimensions.

33 / 40



R-trees
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Additional aspects of multidimensional indexes

• Adaptation to secondary storage.

• Balancing of the tree structures.

• Storing data only in leaves or in internal nodes and leaves.

• Many variations of the structures presented.
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Problems with nearest neighbor search

• Exponential query time
I The query time is from log n to O(n), but can be exponential in d.
I Tree structures are good when n� 2d.
I The curse of dimensionality.

• Solution: Approximate nearest neighbor search.
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The curse of dimensionality

• In high-dimensional spaces almost all pairs of points are equally far
away from one another.

• In other words, the neighborhood becomes very large

• Example:

I Task: Find the 5-nearest neighbor in the unit hypercube.
I There are 5000 points uniformly distributed.
I The query point: The origin of the space.
I For 1-dimensional hypercube (line), the average distance to capture all

5 nearest neighbors is 5/5000 = 0.001.
I For 2 dimensional hypercube, we must go

√
0.001 in each direction to

get a square that contains 0.001 of the volume.
I In general, for d dimensions, we must go (0.001)

1
d .

I For instance, for d = 20, it is 0.707, and for d = 200, it is 0.966.
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Summary

• Multi-dimensional index structures:

I Applications: partial match queries, range queries, where-am-I-queries,
nearest-neighbor search.

I Approaches: hash table-based, tree-like structures.
I Work good for low-dimensional problems – curse of dimensionality.
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