MapReduce in Spark

Krzysztof Dembczyński
Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, second semester
Academic year 2018/19 (winter course)
Review of the previous lectures

- Mining of massive datasets.
- Classification and regression.
- Evolution of database systems.
- MapReduce:
 - The overall idea of the MapReduce paradigm.
 - WordCount and matrix-vector multiplication.
 - Algorithms in MapReduce.
Outline

1. Spark

2. Programming in Spark

3. Summary
Outline

1. Spark
2. Programming in Spark
3. Summary
• Spark is a fast and general-purpose cluster computing system.
Spark

• Spark is a fast and general-purpose cluster computing system.
• Also known as a **unified analytics engine for large-scale data processing**.
• Spark is a fast and general-purpose cluster computing system.
• Also known as a **unified analytics engine for large-scale data processing**.
• It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
• Spark is a fast and general-purpose cluster computing system.
• Also known as a **unified analytics engine for large-scale data processing**.
• It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
• It also supports a rich set of higher-level tools including:
Spark

• Spark is a fast and general-purpose cluster computing system.
• Also known as a **unified analytics engine for large-scale data processing**.
• It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
• It also supports a rich set of higher-level tools including:
 ▶ Spark SQL for SQL and structured data processing,
Spark

• Spark is a fast and general-purpose cluster computing system.
• Also known as a **unified analytics engine for large-scale data processing**.
• It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
• It also supports a rich set of higher-level tools including:
 ▶ Spark SQL for SQL and structured data processing,
 ▶ MLlib for machine learning,
Spark

• Spark is a fast and general-purpose cluster computing system.
• Also known as a **unified analytics engine for large-scale data processing**.
• It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
• It also supports a rich set of higher-level tools including:
 ▶ Spark SQL for SQL and structured data processing,
 ▶ MLlib for machine learning,
 ▶ GraphX for graph processing,
Spark

- Spark is a fast and general-purpose cluster computing system.
- Also known as a **unified analytics engine for large-scale data processing**.
- It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
- It also supports a rich set of higher-level tools including:
 - Spark SQL for SQL and structured data processing,
 - MLlib for machine learning,
 - GraphX for graph processing,
 - and Spark Streaming.

For more check https://spark.apache.org/
Spark

- Spark is a fast and general-purpose cluster computing system.
- Also known as a **unified analytics engine for large-scale data processing**.
- It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
- It also supports a rich set of higher-level tools including:
 - Spark SQL for SQL and structured data processing,
 - MLlib for machine learning,
 - GraphX for graph processing,
 - and Spark Streaming.
- For more check https://spark.apache.org/
Spark

- Spark collaborates with Hadoop which is a popular open-source implementation of MapReduce.
Spark

- Spark collaborates with Hadoop which is a popular open-source implementation of MapReduce.
- Hadoop works in a master/slave architecture for both distributed storage and distributed computation.
Spark collaborates with Hadoop which is a popular open-source implementation of MapReduce.

Hadoop works in a master/slave architecture for both distributed storage and distributed computation.

Hadoop Distributed File System (HDFS) is responsible for distributed storage.
Installation of Spark

- Download Spark from

http://spark.apache.org/downloads.html

tar xvfz spark-2.2.0-bin-hadoop2.7.tar
Installation of Spark

• Download Spark from
 http://spark.apache.org/downloads.html
Installation of Spark

- Untar the spark archive:
Installation of Spark

- Download Spark from

 http://spark.apache.org/downloads.html

- Untar the spark archive:

 tar xvfz spark-2.2.0-bin-hadoop2.7.tar
Installation of Spark

- Download Spark from

 http://spark.apache.org/downloads.html

- Untar the spark archive:

 tar xvfz spark-2.2.0-bin-hadoop2.7.tar

- To play with Spark there is no need to install HDFS ...
Installation of Spark

- Download Spark from

 \[\text{http://spark.apache.org/downloads.html} \]

- Untar the spark archive:

 \[\text{tar xvfz spark-2.2.0-bin-hadoop2.7.tar} \]

- To play with Spark there is no need to install HDFS . . .

- But, you can try to play around with HDFS.
• Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/
hdfs dfs -cat /user/myname/data.txt
HDFS

- Create new directories:

 hdfs dfs -mkdir /user

- Copy the input files into the distributed filesystem:

 hdfs dfs -put data.txt /user/myname/data.txt

- View the files in the distributed filesystem:

 hdfs dfs -ls /user/myname/
 hdfs dfs -cat /user/myname/data.txt
HDFS

- Create new directories:

 hdfs dfs -mkdir /user
 hdfs dfs -mkdir /user/myname

- Copy the input files into the distributed filesystem:

 hdfs dfs -put data.txt /user/myname/data.txt

- View the files in the distributed filesystem:

 hdfs dfs -ls /user/myname/
 hdfs dfs -cat /user/myname/data.txt
HDFS

- Create new directories:

 `hdfs dfs -mkdir /user`

 `hdfs dfs -mkdir /user/myname`

- Copy the input files into the distributed filesystem:
• Create new directories:
 hdfs dfs -mkdir /user
 hdfs dfs -mkdir /user/myname

• Copy the input files into the distributed filesystem:
 hdfs dfs -put data.txt /user/myname/data.txt
HDFS

- Create new directories:
 - `hdfs dfs -mkdir /user`
 - `hdfs dfs -mkdir /user/myname`
- Copy the input files into the distributed filesystem:
 - `hdfs dfs -put data.txt /user/myname/data.txt`
- View the files in the distributed filesystem:
HDFS

- Create new directories:
 - `hdfs dfs -mkdir /user`
 - `hdfs dfs -mkdir /user/myname`

- Copy the input files into the distributed filesystem:
 - `hdfs dfs -put data.txt /user/myname/data.txt`

- View the files in the distributed filesystem:
 - `hdfs dfs -ls /user/myname/`
HDFS

- Create new directories:
 - `hdfs dfs -mkdir /user`
 - `hdfs dfs -mkdir /user/myname`

- Copy the input files into the distributed filesystem:
 - `hdfs dfs -put data.txt /user/myname/data.txt`

- View the files in the distributed filesystem:
 - `hdfs dfs -ls /user/myname/`
 - `hdfs dfs -cat /user/myname/data.txt`
public class WordCount {

 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

 (...)
}
public static class IntSumReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}
• The same code is much simpler in Spark
• To run the Spark shell type: ./bin/spark-shell
• The code

```scala
val textFile = sc.textFile("~/data/all-bible.txt")
val counts = (textFile.flatMap(line => line.split(" "))
    .map(word => (word, 1))
    .reduceByKey(_ + _))
counts.saveAsTextFile("~/data/all-bible-counts.txt")

Alternatively:

val textFile = spark.read.textFile("~/data/all-bible.txt")
val wordCounts = textFile.flatMap(line => line.split(" ")).groupBy(identity).count()
```
Matrix-vector multiplication in Spark

- The Spark code is quite simple:

```scala
val x = sc.textFile("~/data/x.txt").map(line => 
  {val t = line.split","; (t(0).trim.toInt, t(1).trim.toDouble)}
)
val vectorX = x.map{case (i,v) => v}.collect
val broadcastedX = sc.broadcast(vectorX)
val matrix = sc.textFile("~/data/M.txt").map(line => 
  {val t = line.split","; (t(0).trim.toInt, t(1).trim.toInt, t(2).trim.toDouble)}
)
val v = matrix.map { case (i,j,a) => (i, a * broadcastedX.value(j-1)) }.reduceByKey(
  _ + _)
v.toDF.orderBy("_1" ).show
```
Outline

1. Spark

2. Programming in Spark

3. Summary
• Spark uses in-memory storage for storing immediate results, while Hadoop stores data on disk.

• A Spark program consists of two parts:
 ▶ A driver program: runs on your machine.
 ▶ Worker programs: run on cluster nodes or in local threads.

• A Spark program first creates a SparkContext object that tells how to access a cluster
• Three types of APIs:
 ▶ RDD: an immutable collection of elements partitioned across the nodes of the cluster.
 ▶ Dataset: a strongly-typed, distributed and immutable collection of data that can benefit of the optimized execution engine.
 ▶ Dataframe: an immutable distributed collection of data organized into named columns (implemented as Dataset of type Row).
Resilient Distributed Datasets

- RDDs are immutable, distributed, lazy, and compile-time type-safe based on Scala collections API.
- They track lineage information to efficiently recompute lost data.
- Enable operations on collection of elements in parallel.
- Construction of RDD:
 - Parallelization of an existing collection in the driver program,
 - By transforming an existing RDDs,
 - From files in HDFS or any other storage system.
- The number of partitions is to be set by a programmer.
• Two types of operations:
 ▶ Transformations: create a new dataset from an existing one in the lazy manner (do not run computations on data immediately).
 ▶ Actions: return a value to the driver program after running a computation on the dataset or storing the results to the file system.
Transformations

- Transformations are recipes for creating a result.
- Lazy evaluation: results not computed right away – instead Spark remembers set of transformations applied to the base dataset.
- Spark optimizes the required calculations.
- Spark recovers from failures and slow workers.
- Examples:
 - map, flatMap
 - filter
 - distinct
 - union, intersection
 - join, cartesian
 - reduceByKey, groupByKey, sortByKey (⇐ MapReduce-style operations working on pair RDDs)
• Actions cause Spark to execute recipe to transform input data.
• Examples:
 - reduce,
 - collect,
 - count,
 - first, take(1), take(n),
 - saveAsTextFile, saveAsSequenceFile,
 - countByKey,
 - foreach(func).
Caching of results

- One of the most important capabilities in Spark is persisting (or caching) a dataset in memory across operations.
- When you persist an RDD, each node stores any partitions of it that it computes in memory and reuses them in other actions on that dataset (or datasets derived from it).
- To persist RDD use the `persist()` or `cache()` methods on it.

```scala
val textFile = sc.textFile("~/data/all-shakespeare.txt")
textFile.count()
textFile.count()
textFile.cache()
textFile.count()
textFile.count()
textFile.count()
```
Lifecycle of Spark Program

• Create RDDs from external data or parallelize a collection in your driver program,
• Lazily transform them into new RDDs,
• Cache some RDDs for reuse.
• Perform actions to execute parallel computation and produce results.
Closure

• Spark automatically creates closures for:
 ▶ Functions that run on RDDs at workers.
 ▶ Any global variables used by those workers.

• One closure per worker:
 ▶ Sent for every task.
 ▶ No communication between workers.
 ▶ Changes to global variables at workers are not sent to driver.
Shared Variables

- **Broadcast Variables:**
 - Efficiently send large, read-only value to all workers.
 - Saved at workers for use in one or more Spark operations.
 - Like sending a large, read-only lookup table to all the nodes.

- **Example:**

  ```scala
  scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
  broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)
  
  scala> broadcastVar.value
  res0: Array[Int] = Array(1, 2, 3)
  ```
Shared Variables

• Accumulators:
 ▶ Aggregate values from workers back to driver.
 ▶ Only driver can access value of accumulator.
 ▶ For tasks, accumulators are write-only.
 ▶ Use to count errors seen in RDD across workers.

• Example:

```scala
scala> val accum = sc.longAccumulator("My Accumulator")
accum: org.apache.spark.util.LongAccumulator = LongAccumulator
  (id: 0, name: Some(My Accumulator), value: 0)

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))
...

scala> accum.value
res2: Long = 10
```
Let us check some code

- **Word count I:**

  ```scala
  val textFile = sc.textFile("~/data/all-bible.txt")
  val counts = (textFile.flatMap(line => line.split(" ")))  
    .map(word => (word, 1))  
    .reduceByKey(_ + _)
  counts.saveAsTextFile("~/data/all-bible-counts.txt")
  ```
Let us check some code

- **Matrix-vector multiplication:**

```scala
val x = sc.textFile("~/data/x.txt").map(line => {
  val t = line.split(" ","); (t(0).trim.toInt, t(1).trim.toDouble)
}).collect
val vectorX = x.map{case (i,v) => v}.collect
val broadcastedX = sc.broadcast(vectorX)
val matrix = sc.textFile("~/data/M.txt").map(line => {
  val t = line.split(" ","); (t(0).trim.toInt, t(1).trim.toInt, t(2).trim.toDouble)
}).map{case (i,j,a) => (i, a * broadcastedX.value(j-1))}.reduceByKey(_ + _)
val v = matrix.map { case (i,j,a) => (i, a * broadcastedX.value(j-1))}.reduceByKey(_ + _)
v.toDF.orderBy("_1").show
```
Dataframes and Datasets

• Alternative for RDDs
• Rather *What* than *How* programming style ⇒ More optimizations possible
• Datasets are strongly typed, but Dataframes not.
• They use the `SqlContext`.
• SQL-like queries: either from Scala or SQL.
Dataframes and Datasets

- A sample code:

```scala
val df = spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout
df.show()

---
| age | name |
---
| null | Michael |
| 30   | Andy    |
| 19   | Justin  |

df.printSchema()

// root
// |--- age: long (nullable = true)
// |--- name: string (nullable = true)

// Select only the "name" column
df.select("name").show()

---
| name |
---
| Michael |
| Andy |
| Justin |
```
• One can also use SQL directly:

```scala
df.createOrReplaceTempView("people")
val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +---+---+
// | age| name|
// +---+---+
// | null| Michael|
// | 30| Andy|
// | 19| Justin|
// +---+---+
```
• Creating dataframes and datasets:

```scala
// Create a class for Person

case class Person(name: String, age: Long)

val path = "examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]

val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)

// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF = spark.sparkContext
  .textFile("examples/src/main/resources/people.txt")
  .map(_.split(","))
  .map(attributes => Person(attributes(0), attributes(1).trim.toInt))
  .toDF()
```
Dataframes and Datasets

- **Data sources:**
 - The default data source is **parquet**, which is highly efficient columnar format.
 - Other data sources are also supported like **json**, databases via **jdbc**, **hive** databases, and many others.

```scala
val usersDF = spark.read.load("examples/src/main/resources/users.parquet")
usersDF.select("name", "favorite_color").write.save("namesAndFavColors.parquet")

val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
```

- For file-based data source, it is also possible to bucket and sort or partition the output.

```scala
peopleDF
  .write
  .partitionBy("favorite_color")
  .bucketBy(42, "name")
  .saveAsTable("people_partitioned_bucketed")
```
Let us check some code

- Dataframes and Datasets:

```scala
val songs = spark.read.
  option("delimiter", ",").
  csv("songs").
  toDF("song_id", "track_long_id", "song_long_id", "artist", "song")

val facts = spark.read.
  option("delimiter", ",").
  csv("facts").
  toDF("id", "user_id", "song_id", "date_id")

facts.groupBy("song_id").
  count.
  join(songs, facts("song_id")==songs("song_id")).
  select("song", "count").
  orderBy(desc("count")).
  show(10)
```
• Every SparkContext launches a web UI, by default on port 4040.

• It displays useful information about the application:
 ▶ A list of scheduler stages and tasks,
 ▶ A summary of RDD sizes and memory usage,
 ▶ Environmental information,
 ▶ Information about the running executors.

• To access the interface, you can open in your web browser the following page:

 http://<driver-node>:4040 (e.g. http://localhost:4040)

• If multiple SparkContexts are running on the same host, they will bind to successive ports beginning with 4040 (4041, 4042, etc).
Monitoring Spark

Spark Jobs

User: kdembozniki
Total Uptime: 5.4 min
Scheduling Mode: FIFO
Completed Jobs: 8

Completed Jobs (8)

<table>
<thead>
<tr>
<th>Job Id</th>
<th>Description</th>
<th>Submitted</th>
<th>Duration</th>
<th>Stages: Succeeded/Total</th>
<th>Tasks (for all stages): Succeeded/Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>reduce at <console>:26</td>
<td>2018/11/26 10:56:35</td>
<td>12 ms</td>
<td>1/1 (1 skipped)</td>
<td>4/4 (4 skipped)</td>
</tr>
<tr>
<td>6</td>
<td>collect at <console>:27</td>
<td>2018/11/26 10:56:26</td>
<td>0.1 s</td>
<td>2/2 (1 skipped)</td>
<td>8/8 (4 skipped)</td>
</tr>
<tr>
<td>5</td>
<td>sortBy at <console>:27</td>
<td>2018/11/26 10:56:26</td>
<td>0.3 s</td>
<td>1/1 (1 skipped)</td>
<td>4/4 (4 skipped)</td>
</tr>
<tr>
<td>4</td>
<td>reduce at <console>:26</td>
<td>2018/11/26 10:55:12</td>
<td>2 s</td>
<td>1/1</td>
<td>4/4</td>
</tr>
<tr>
<td>3</td>
<td>reduce at <console>:26</td>
<td>2018/11/26 10:55:11</td>
<td>54 ms</td>
<td>1/1 (1 skipped)</td>
<td>4/4 (4 skipped)</td>
</tr>
<tr>
<td>2</td>
<td>collect at <console>:27</td>
<td>2018/11/26 10:55:10</td>
<td>0.3 s</td>
<td>2/2 (1 skipped)</td>
<td>8/8 (4 skipped)</td>
</tr>
</tbody>
</table>
Outline

1. Spark

2. Programming in Spark

3. Summary
Summary

• MapReduce in Spark
• Resilient Distributed Datasets (RDD)
• Dataframes and Datasets
 http://infolab.stanford.edu/~ullman/mmds.html

 http://lintool.github.com/MapReduceAlgorithms/

• Ch. Lam. *Hadoop in Action*. Manning Publications Co., 2011

• https://spark.apache.org/docs/

• Anthony D. Joseph. Introduction to Big Data with Apache Spark, publisher = edX, MOOC, year = 2016