MapReduce in Spark

Krzysztof Dembczynski

Intelligent Decision Support Systems Laboratory (IDSS)
Poznan University of Technology, Poland

Software Development Technologies
Master studies, second semester
Academic year 2018/19 (winter course)

/37

Review of the previous lectures

Mining of massive datasets.
Classification and regression.
Evolution of database systems.

MapReduce:

» The overall idea of the MapReduce paradigm.
» WordCount and matrix-vector multiplication.
» Algorithms in MapReduce.

)

37

1 Spark

2 Programming in Spark

3 Summary

Outline

37

1 Spark

Outline

/37

Spark

e Spark is a fast and general-purpose cluster computing system.

5/37

https://spark.apache.org/

Spark

e Spark is a fast and general-purpose cluster computing system.

e Also known as a unified analytics engine for large-scale data
processing.

37

https://spark.apache.org/

Spark

e Spark is a fast and general-purpose cluster computing system.

e Also known as a unified analytics engine for large-scale data
processing.

o It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

37

https://spark.apache.org/

Spark

Spark is a fast and general-purpose cluster computing system.
Also known as a unified analytics engine for large-scale data
processing.

It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

It also supports a rich set of higher-level tools including:

5/37

https://spark.apache.org/

Spark

Spark is a fast and general-purpose cluster computing system.
Also known as a unified analytics engine for large-scale data
processing.
It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including:

» Spark SQL for SQL and structured data processing,

5/37

https://spark.apache.org/

Spark

Spark is a fast and general-purpose cluster computing system.

Also known as a unified analytics engine for large-scale data
processing.

It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including:

» Spark SQL for SQL and structured data processing,
» MLIib for machine learning,

5/37

https://spark.apache.org/

Spark

Spark is a fast and general-purpose cluster computing system.

Also known as a unified analytics engine for large-scale data
processing.

It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including:

» Spark SQL for SQL and structured data processing,
» MLIib for machine learning,
» GraphX for graph processing,

5/37

https://spark.apache.org/

Spark

Spark is a fast and general-purpose cluster computing system.

Also known as a unified analytics engine for large-scale data
processing.

It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including:

Spark SQL for SQL and structured data processing,
MLIib for machine learning,

GraphX for graph processing,

and Spark Streaming.

v

vvyy

5/37

https://spark.apache.org/

Spark

Spark is a fast and general-purpose cluster computing system.

Also known as a unified analytics engine for large-scale data
processing.

It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including:

Spark SQL for SQL and structured data processing,
MLIib for machine learning,

GraphX for graph processing,

and Spark Streaming.

v

vvyy

For more check https://spark.apache.org/

5/37

https://spark.apache.org/

Spark

e Spark collaborates with Hadoop which is a popular open-source
implementation of MapReduce.

6 /37

Spark

e Spark collaborates with Hadoop which is a popular open-source
implementation of MapReduce.

e Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

6 /37

Spark

e Spark collaborates with Hadoop which is a popular open-source
implementation of MapReduce.

e Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

¢ Hadoop Distributed File System (HDFS) is responsible for distributed
storage.

6 /37

e Download Spark from

Installation of Spark

37

http://spark.apache.org/downloads.html

Installation of Spark

e Download Spark from
http://spark.apache.org/downloads.html

37

http://spark.apache.org/downloads.html

Installation of Spark

e Download Spark from
http://spark.apache.org/downloads.html
e Untar the spark archive:

37

http://spark.apache.org/downloads.html

Installation of Spark

e Download Spark from
http://spark.apache.org/downloads.html
e Untar the spark archive:
tar xvfz spark-2.2.0-bin-hadoop2.7.tar

37

http://spark.apache.org/downloads.html

Installation of Spark

e Download Spark from
http://spark.apache.org/downloads.html
e Untar the spark archive:
tar xvfz spark-2.2.0-bin-hadoop2.7.tar

e To play with Spark there is no need to install HDFS ...

37

http://spark.apache.org/downloads.html

Installation of Spark

Download Spark from
http://spark.apache.org/downloads.html
Untar the spark archive:
tar xvfz spark-2.2.0-bin-hadoop2.7.tar

To play with Spark there is no need to install HDFS ...

But, you can try to play around with HDFS.

37

http://spark.apache.org/downloads.html

e Create new directories:

HDFS

37

e Create new directories:
hdfs dfs -mkdir /user

HDFS

37

HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

37

HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

o Copy the input files into the distributed filesystem:

37

HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

o Copy the input files into the distributed filesystem:
hdfs dfs -put data.txt /user/myname/data.txt

37

HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

o Copy the input files into the distributed filesystem:
hdfs dfs -put data.txt /user/myname/data.txt
o View the files in the distributed filesystem:

37

HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

o Copy the input files into the distributed filesystem:
hdfs dfs -put data.txt /user/myname/data.txt
o View the files in the distributed filesystem:
hdfs dfs -1s /user/myname/

37

HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/myname

o Copy the input files into the distributed filesystem:
hdfs dfs -put data.txt /user/myname/data.txt
o View the files in the distributed filesystem:

hdfs dfs -1s /user/myname/
hdfs dfs -cat /user/myname/data.txt

37

import
import

import
import
import
import
import
import
import
import
import

public

public

WordCount in Hadoop

java.io.lOException;
java.util.StringTokenizer;

org.apache.hadoop.conf. Configuration;

org.apache.hadoop. fs.Path;
org.apache.hadoop.io.IntWritable;

org.apache.hadoop.io. Text;

org.apache.hadoop.mapreduce. Job;
org.apache.hadoop.mapreduce. Mapper;
org.apache.hadoop.mapreduce. Reducer;
org.apache.hadoop.mapreduce. lib.input.FilelnputFormat;
org.apache.hadoop.mapreduce. lib.output.FileOutputFormat;

class WordCount {

static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context

) throws |OException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

}
}

word . set (itr.nextToken());
context.write(word, one);

37

(.

pu

}

WordCount in Hadoop

blic static class IntSumReducer

extends Reducer<Text, IntWritable , Text, IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, lterable<IntWritable> values,
Context context
) throws |OException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

result.set(sum);
context.write(key, result);

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getlnstance(conf, "word count”);
job.setJarByClass (WordCount. class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer. class);
job.setReducerClass(IntSumReducer. class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addlnputPath(job, new Path(args[0]))
FileOutputFormat.setOutputPath(job, new Path(args[1]
System.exit(job.waitForCompletion(true) ? 0 : 1);

)):

10/37

WordCount in Spark

e The same code is much simpler in Spark
e To run the Spark shell type: ./bin/spark-shell
e The code

val textFile = sc.textFile(”~/data/all—bible.txt")
val counts = (textFile.flatMap(line => line.split(” "))
.map(word => (word, 1))
.reduceByKey (- + _.))
counts.saveAsTextFile(”~/data/all —bible—counts.txt")

Alternatively:

val textFile = spark.read.textFile(””/data/all—bible.txt")

val wordCounts = textFile.flatMap(line => line.split(” ")).groupByKey(identity).
count ()

11/37

Matrix-vector multiplication in Spark

e The Spark code is quite simple:

val x = sc.textFile(”"”/data/x.txt").map(line => {val t
trim.tolnt, t(1).trim.toDouble)})

line.split(”,”); (t(0).

val vectorX = x.map{case (i,v) => v}.collect
val broadcastedX = sc.broadcast(vectorX)
val matrix = sc.textFile(”"/data/M.txt"”).map(line => {val t = line.split(",”); (t

(0).trim.tolnt, t(1).trim.tolnt, t(2).trim.toDouble)})
val v = matrix.map { case (i,j,a) => (i, a % broadcastedX.value(j—1))}.reduceByKey(

-+ 2)
v.toDF.orderBy (" -1").show

12 /37

Outline

2 Programming in Spark

13 /37

Programming in Spark

e Spark uses in-memory storage for storing immediate results, while
Hadoop stores data on disk.
e A Spark program consists of two parts:

» A driver program: runs on your machine.
» Worker programs: run on cluster nodes or in local threads.

e A Spark program first creates a SparkContext object that tells how

to access a cluster
Driver program
Spark context

’ Local threads ‘

’ Cluster manager

Worker
Spark executor

Worker
Spark executor

’ Amazon S3, HDFS, or other storage ‘

14 /37

Programming in Spark

e Three types of APIs:

» RDD: an immutable collection of elements partitioned across the nodes
of the cluster.

» Dataset: a strongly-typed, distributed and immutable collection of data
that can benefit of the optimized execution engine.

» Dataframe: an immutable distributed collection of data organized into
named columns (implemented as Dataset of type Row).

15 /37

Resilient Distributed Datasets

RDDs are immutable, distributed, lazy, and compile-time type-safe
based on Scala collections API.

They track lineage information to efficiently recompute lost data.
Enable operations on collection of elements in parallel.

Construction of RDD:

» Parallelization of an existing collection in the driver program,
» By transforming an existing RDDs,
» From files in HDFS or any other storage system.

The number of partitions is to be set by a programmer.

16

37

Programming in Spark

e Two types of operations:
» Transformations: create a new dataset from an existing one in the lazy
manner (do not run computations on data immediately).
» Actions: return a value to the driver program after running a
computation on the dataset or storing the results to the file system.

17 /37

Transformations

Transformations are recipes for creating a result.

Lazy evaluation: results not computed right away — instead Spark
remembers set of transformations applied to the base dataset.

Spark optimizes the required calculations.

Spark recovers from failures and slow workers.

Examples:

>

vV vy vy Vvyy

map, flatMap

filter

distinct

union, intersection

join, cartesian

reduceByKey, groupByKey, sortByKey (< MapReduce-style
operations working on pair RDDs)

18 /37

e Actions cause Spark to execute recipe to transform input data.

Actions

e Examples:

>

vV vy vy VvYVvYYy

reduce,

collect,

count,

first, take(1), take(n),
saveAsTextFile, saveAsSequenceFile,
countByKey,

foreach(func).

37

e One of the most important capabilities in Spark is persisting (or
caching) a dataset in memory across operations.

Caching of results

e When you persist an RDD, each node stores any partitions of it that

it computes in memory and reuses them in other actions on that
dataset (or datasets derived from it).

e To persist RDD use the persist() or cache() methods on it.

val textFile = sc.textFile(""/data/all—shakespeare.txt”)
.count ()
.count (
.cache(
textFile.
textFile.

textFile
textFile
textFile

20 /37

Lifecycle of Spark Program

Create RDDs from external data or parallelize a collection in your
driver program,

Lazily transform them into new RDDs,

Cache some RDDs for reuse.

Perform actions to execute parallel computation and produce results.

37

Closure

e Spark automatically creates closures for:

» Functions that run on RDDs at workers.

» Any global variables used by those workers.
e One closure per worker:

» Sent for every task.
» No communication between workers.
» Changes to global variables at workers are not sent to driver.

Shared Variables

e Broadcast Variables:

» Efficiently send large, read-only value to all workers.
» Saved at workers for use in one or more Spark operations.
» Like sending a large, read-only lookup table to all the nodes.

e Example:

scala> val broadcastVar = sc.broadcast(Array(1l, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]]
= Broadcast (0)

scala> broadcastVar.value
resO: Array[Int] = Array(1, 2, 3)

23 /37

Shared Variables

e Accumulators:

» Aggregate values from workers back to driver.

» Only driver can access value of accumulator.

» For tasks, accumulators are write-only.

» Use to count errors seen in RDD across workers.

o Example:
scala> val accum = sc.longAccumulator(”"My Accumulator”)
accum: org.apache.spark.util.LongAccumulator = LongAccumulator

(id: 0, name: Some(My Accumulator), value: 0)
scala> sc.parallelize (Array(1, 2, 3, 4)).foreach(x => accum.
add (x))

scala> accum.value
res2: Long = 10

24 /37

Let us check some code

e Word count [:

val

textFile = sc.textFile(”"/data/all—bible.txt")
val

counts = (textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey (- + _))

counts.saveAsTextFile(””/data/all —bible —counts.txt")

25 /37

Let us check some code

e Matrix-vector multiplication:

val x = sc.textFile("”"/data/x.txt").map(line = {val t = line.
split(”,”); (t(0).trim.tolnt, t(1l).trim.toDouble)})

val vectorX = x.map{case (i,v) = v}.collect

val broadcastedX = sc.broadcast(vectorX)

val matrix = sc.textFile(”"/data/M.txt").map(line = {val t =
line.split(”,”); (t(0).trim.tolnt, t(1l).trim.tolnt, t(2).
trim .toDouble)})

val v = matrix.map { case (i,j,a) => (i, a * broadcastedX.
value(j—1))}.reduceByKey (. + _)

v.toDF.orderBy (" -1").show

26 /37

Dataframes and Datasets

Alternative for RDDs

Rather What than How programming style = More optimizations
possible

Datasets are strongly typed, but Dataframes not.
They use the SqlContext.
SQL-like queries: either from Scala or SQL.

27 /37

Dataframes and Datasets

e A sample code:

val df = spark.read.json("examples/src/main/resources/people.json™)

// Displays the content of the DataFrame to stdout

/)

// | null| Michael|
// | 301 Andy

// | 19| Justin|
/)

df.printSchema ()

// root
// |—— age: long (nullable = true)
// |—— name: string (nullable = true)

// Select only the "name” column
df . select (”"name").show ()
/) At

// | name |
/) A—F
// | Michael|
// | Andy|
// | Justin|

/) At

28 /37

Dataframes and Datasets

One can also use SQL directly:

df.createOrReplaceTempView (" people™)

val sqlDF = spark.sql("SELECT % FROM people”)
sqIDF .show ()

/) At
// | null| Michael|
// | 30| Andy|
// | 19| Justin|
/) At

29 /37

Dataframes and Datasets

Creating dataframes and datasets:

case class Person(name: String, age: Long)

val path = "examples/src/main/resources/people.json”

val peopleDS = spark.read.json(path).as[Person]

val primitiveDS = Seq(1, 2, 3).toDS()

primitiveDS .map(.- + 1).collect() // Returns: Array(2, 3, 4)

// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF spark.sparkContext

.textFile (" examples/src/main/resources/people.txt”)

.map(_-.split(","”))

.map(attributes => Person(attributes(0), attributes(1).trim.tolnt))

.toDF ()

30/37

Dataframes and Datasets

e Data sources:
» The default data source is parquet, which is highly efficient columnar
format.
» Other data sources are also supported like json, databases via jdbc,
hive databases, and many others.

val usersDF = spark.read.load (" examples/src/main/resources/users.parquet”)
usersDF . select ("name”, " favorite_color”).write.save(”"namesAndFavColors. parquet”)

val peopleDF = spark.read.format(”json").load (" examples/src/main/resources/people.
json”)
peopleDF . select ("name”, "age”).write.format(” parquet”).save (" namesAndAges.parquet”)

e For file-based data source, it is also possible to bucket and sort or
partition the output.

peopleDF
.write
.partitionBy (" favorite_color”)
.bucketBy (42, "name”)
.saveAsTable(" people_partitioned_bucketed”)

31/37

Let us check some code

e Dataframes and Datasets:

val songs = spark.read.
option (" delimiter”, " ").
csv (" songs”).
toDF("song_id”, "track_long_id”, "song_long_id", "artist”, "song”
)
val facts = spark.read.
option (" delimiter”, " ,").
csv (" facts”).
toDF("id”, "user_id”, "song_id", "date_id")

facts.groupBy("song.id").
count .
join(songs, facts(”"song.id")=—=songs("song.id")).
select ("song”, "count”).
orderBy (desc (" count”)).
show (10)

32/37

Monitoring Spark

Every SparkContext launches a web Ul, by default on port 4040.
It displays useful information about the application:

A list of scheduler stages and tasks,

» A summary of RDD sizes and memory usage,

» Environmental information,

» Information about the running executors.

\4

To access the interface, you can open in your web browser the
following page:

http://<driver-node>:4040 (e.g. http://localhost:4040)

If multiple SparkContexts are running on the same host, they will bind

to successive ports beginning with 4040 (4041, 4042, etc).

33/37

http://<driver-node>:4040
http://localhost:4040

Spark Jobs (?

User: kdembozynski
Total Uptime: 5.4 min
Scheduling Mode: FIFO
Completed Jobs: 8

» Event Timeline
~ Completed Jobs (8)
Jobld ~ Description

7 reduce at <consol
reduce at <console>:

3
6 collect at <console>:27
collect at <console>:27
5 sortBy at <console>:27
sortBy at <console>:27
4 reduce at <console>:26
reduce at <consok

3 reduce at <console>:26
reduce at <console>:26
2 collect at <console>:27
collect at <console>:27

Storage

Monitoring Spark

Submitted
2018/11/26 10:56:35

2018/11/26 10:56:28

2018/11/26 10:56:28

2018/11/26 10:55:12

2018/11/26 10:55:11

2018/11/26 10:55:10

Environment

Executors

Duration

12ms

‘Stages: Succeeded/Total
1/1 (1 skipped)

2/2 (1 skipped)

111 (1 skipped)

n

171 (1 skipped)

202 (1 skipped)

Spark shell application Ul

g
3
H
;
i
§
H

34/37

Outline

3 Summary

35/37

Summary

e MapReduce in Spark
e Resilient Distributed Datasets (RDD)

e Dataframes and Datasets

36 /37

Bibliography

J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2014
http://infolab.stanford.edu/~ullman/mmds.html

J.Lin and Ch. Dyer. Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010
http://lintool.github.com/MapReduceAlgorithms/

Ch. Lam. Hadoop in Action.
Manning Publications Co., 2011

https://spark.apache.org/docs/

Anthony D. Joseph. Introduction to Big D]ata with Apache Spark, publisher =
edX, MOOC, year = 2016

37/37

http://infolab.stanford.edu/~ullman/mmds.html
http://lintool.github.com/MapReduceAlgorithms/
https://spark.apache.org/docs/

	Spark
	Programming in Spark
	Summary

