Algorithms in MapReduce

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, second semester
Academic year 2017/18 (winter course)
Review of the previous lectures

- Mining of massive datasets.
- Classification and regression.
- Evolution of database systems
- MapReduce in Spark
 - The overall idea of the MapReduce paradigm.
 - WordCount and matrix-vector multiplication.
 - Spark: MapReduce in practice.
Outline

1 Motivation

2 Relational-Algebra Operations

3 Matrix Multiplication

4 Summary
Outline

1 Motivation

2 Relational-Algebra Operations

3 Matrix Multiplication

4 Summary
Algorithms in MapReduce

• How to implement fundamental algorithms in MapReduce?
 ▶ Relational-Algebra Operations.
 ▶ Matrix multiplication.
Outline

1 Motivation

2 Relational-Algebra Operations

3 Matrix Multiplication

4 Summary
Example (Relation **Links**)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>url1</td>
<td>url2</td>
</tr>
<tr>
<td>url1</td>
<td>url3</td>
</tr>
<tr>
<td>url2</td>
<td>url3</td>
</tr>
<tr>
<td>url2</td>
<td>url4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Relational-Algebra Operations

- Selection
- Projection
- Union, Intersection, and Difference
- Natural Join
- Grouping and Aggregation
Relational-Algebra Operations

- R, S - relation
- t, t' - a tuple
- C - a condition of selection
- A, B, C - subset of attributes
- a, b, c - attribute values for a given subset of attributes
Selection

- **Map:** For each tuple \(t \) in \(R \), test if it satisfies \(C \). If so, produce the key-value pair \((t, t)\). That is, both the key and value are \(t \).

- **Reduce:** The Reduce function is the identity. It simply passes each key-value pair to the output.
Selection

- **Map**: For each tuple t in R, test if it satisfies C. If so, produce the key-value pair (t, t). That is, both the key and value are t.

- **Reduce**:
• **Map**: For each tuple \(t \) in \(R \), test if it satisfies \(C \). If so, produce the key-value pair \((t, t)\). That is, both the key and value are \(t \).

• **Reduce**: The Reduce function is the identity. It simply passes each key-value pair to the output.
Projection

• Map: For each tuple \(t \) in \(R \), construct a tuple \(t' \) by eliminating from \(t \) those components whose attributes are not in \(A \). Output the key-value pair \((t',t')\).

• Reduce: For each key \(t' \) produced by any of the Map tasks, there will be one or more key-value pairs \((t',t',...,t')\). The Reduce function turns \((t',[t',t',...,t'])\) into \((t',t')\), so it produces exactly one pair \((t',t')\) for this key \(t' \).
Projection

- **Map:**

 For each tuple t in R, construct a tuple t' by eliminating from t those components whose attributes are not in A. Output the key-value pair (t', t').

- **Reduce:**

 For each key t' produced by any of the Map tasks, there will be one or more key-value pairs $(t', t',..., t')$. The Reduce function turns $(t', [t', t',..., t'])$ into (t', t'), so it produces exactly one pair (t', t') for this key t'.

Projection

• **Map**: For each tuple t in R, construct a tuple t' by eliminating from t those components whose attributes are not in A. Output the key-value pair (t', t').

• **Reduce**:
Projection

- **Map**: For each tuple \(t\) in \(R\), construct a tuple \(t'\) by eliminating from \(t\) those components whose attributes are not in \(A\). Output the key-value pair \((t', t')\).

- **Reduce**: For each key \(t'\) produced by any of the Map tasks, there will be one or more key-value pairs \((t', t')\). The Reduce function turns \((t', [t', t', \ldots, t'])\) into \((t', t')\), so it produces exactly one pair \((t', t')\) for this key \(t'\).
• Map:

- Turn each input tuple \(t \) either from relation \(R \) or \(S \) into a key-value pair \((t, t) \).

- Reduce: Associated with each key \(t \) there will be either one or two values. Produce output \((t, t) \) in either case.
• **Map**: Turn each input tuple t either from relation R or S into a key-value pair (t, t).

• **Reduce**:
• **Map**: Turn each input tuple t either from relation R or S into a key-value pair (t, t).

• **Reduce**: Associated with each key t there will be either one or two values. Produce output (t, t) in either case.
Intersection

- **Map:**

 - Turn each input tuple \(t \) either from relation \(R \) or \(S \) into a key-value pair \((t, t)\).
 - **Reduce:** If key \(t \) has value list \([t, t]\) then produce \((t, t)\). Otherwise, produce nothing.
Intersection

- **Map**: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- **Reduce**:
Intersection

- **Map**: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- **Reduce**: If key t has value list $[t, t]$, then produce (t, t). Otherwise, produce nothing.
• **Map:**

 For a tuple \(t \) in \(R \), produce key-value pair \((t, \text{name}(R))\), and for a tuple \(t \) in \(S \), produce key-value pair \((t, \text{name}(S))\).

• **Reduce:**

 For each key \(t \), do the following.

 1. If the associated value list is \([\text{name}(R)]\), then produce \((t, t)\).

 2. If the associated value list is anything else, which could only be \([\text{name}(R), \text{name}(S)]\), \([\text{name}(S), \text{name}(R)]\), or \([\text{name}(S)]\), produce nothing.
• **Map**: For a tuple t in R, produce key-value pair $(t, \text{name}(R))$, and for a tuple t in S, produce key-value pair $(t, \text{name}(S))$.

• **Reduce**:
• **Map**: For a tuple t in R, produce key-value pair $(t, \text{name}(R))$, and for a tuple t in S, produce key-value pair $(t, \text{name}(S))$.

• **Reduce**: For each key t, do the following.
 1. If the associated value list is $[\text{name}(R)]$, then produce (t, t).
 2. If the associated value list is anything else, which could only be $[\text{name}(R), \text{name}(S)]$, $[\text{name}(S), \text{name}(R)]$, or $[\text{name}(S)]$, produce nothing.
Let us assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.

Map:
Natural Join

• Let us assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.

• **Map**: For each tuple (a, b) of R, produce the key-value pair $(b, (\text{name}(R), a))$. For each tuple (b, c) of S, produce the key-value pair $(b, (\text{name}(S), c))$.

• **Reduce**:
Natural Join

- Let us assume that we join relation $R(A, B)$ with relation $S(B, C)$ that share the same attribute B.

- **Map**: For each tuple (a, b) of R, produce the key-value pair $(b, (\text{name}(R), a))$. For each tuple (b, c) of S, produce the key-value pair $(b, (\text{name}(S), c))$.

- **Reduce**: Each key value b will be associated with a list of pairs that are either of the form $(\text{name}(R), a)$ or $(\text{name}(S), c)$. Construct all pairs consisting of one with first component $\text{name}(R)$ and the other with first component S, say $(\text{name}(R), a)$ and $(\text{name}(S), c)$. The output for key b is $(b, [(a_1, b, c_1), (a_2, b, c_2), ...])$, that is, b associated with the list of tuples that can be formed from an R-tuple and an S-tuple with a common b value.
Grouping and Aggregation

• Let assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B.

• Map:

$$\text{For each tuple } (a, b, c) \text{ produce the key-value pair } (a, b).$$

• Reduce:

Each key a represents a group. Apply the aggregation operator θ to the list $[b_1, b_2, ..., b_n]$ of B-values associated with key a. The output is the pair (a, x), where x is the result of applying θ to the list. For example, if θ is SUM, then $x = b_1 + b_2 + ... + b_n$, and if θ is MAX, then x is the largest of $b_1, b_2, ..., b_n$.
Grouping and Aggregation

- Let assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B.

- **Map**: For each tuple (a, b, c) produce the key-value pair (a, b).

- **Reduce**:
Let assume that we group a relation $R(A, B, C)$ by attributes A and aggregate values of B.

- **Map**: For each tuple (a, b, c) produce the key-value pair (a, b).
- **Reduce**: Each key a represents a group. Apply the aggregation operator θ to the list $[b_1, b_2, \ldots, b_n]$ of B-values associated with key a. The output is the pair (a, x), where x is the result of applying θ to the list. For example, if θ is SUM, then $x = b_1 + b_2 + \ldots + b_n$, and if θ is MAX, then x is the largest of b_1, b_2, \ldots, b_n.
Outline

1 Motivation

2 Relational-Algebra Operations

3 Matrix Multiplication

4 Summary
Matrix Multiplication

- If M is a matrix with element m_{ij} in row i and column j, and N is a matrix with element n_{jk} in row j and column k, then the product:

$$P = MN$$

is the matrix P with element p_{ik} in row i and column k, where:

$$p_{ik} =$$
Matrix Multiplication

- If M is a matrix with element m_{ij} in row i and column j, and N is a matrix with element n_{jk} in row j and column k, then the product:

$$P = MN$$

is the matrix P with element p_{ik} in row i and column k, where:

$$p_{ik} = \sum_j m_{ij} n_{jk}$$
Matrix Multiplication

• We can think of a matrix M and N as a relation with three attributes: the row number, the column number, and the value in that row and column, i.e.,:

$$M(I, J, V) \text{ and } N(J, K, W)$$

with the following tuples, respectively:

$$(i, j, m_{ij}) \text{ and } (j, k, n_{jk}).$$

• In case of sparsity of M and N, this relational representation is very efficient in terms of space.

• The product MN is almost a natural join followed by grouping and aggregation.
Matrix Multiplication

• Map:
 Send each matrix element m_{ij} to the key value pair: $(j, (M, i, m_{ij}))$.
 Analogously, send each matrix element n_{jk} to the key value pair: $(j, (N, k, n_{jk}))$.

• Reduce:
 For each key j, examine its list of associated values. For each value that comes from M, say (M, i, m_{ij}), and each value that comes from N, say (N, k, n_{jk}), produce the tuple $(i, k, v = m_{ij}n_{jk})$.
 The output of the Reduce function is a key j paired with the list of all the tuples of this form that we get from j: $(j, [(i_1, k_1, v_1), (i_2, k_2, v_2), ..., (i_p, k_p, v_p)])$.

20 / 26
Matrix Multiplication

- **Map:**

 - **Reduce:** For each key j, examine its list of associated values. For each value that comes from M, say (M,i,m_{ij}), and each value that comes from N, say (N,k,n_{jk}), produce the tuple $(i,k,v = m_{ij}n_{jk})$.

 The output of the Reduce function is a key j paired with the list of all the tuples of this form that we get from j: $(j,[[(i_1,k_1,v_1)],[(i_2,k_2,v_2)],...,[(i_p,k_p,v_p)]]).$
Matrix Multiplication

- **Map**: Send each matrix element m_{ij} to the key value pair:

 $$(j, (M, i, m_{ij})).$$

 Analogously, send each matrix element n_{jk} to the key value pair:

 $$(j, (N, k, n_{jk})).$$

- **Reduce**:

 The output of the Reduce function is a key j paired with the list of all the tuples of this form that we get from j:

 $$(j, [(i_1, k_1, v_1), (i_2, k_2, v_2), ..., (i_p, k_p, v_p)])$$.
Matrix Multiplication

- **Map**: Send each matrix element m_{ij} to the key value pair:

 $$(j, (M, i, m_{ij})).$$

 Analogously, send each matrix element n_{jk} to the key value pair:

 $$(j, (N, k, n_{jk})).$$

- **Reduce**: For each key j, examine its list of associated values. For each value that comes from M, say (M, i, m_{ij}), and each value that comes from N, say (N, k, n_{jk}), produce the tuple

 $$(i, k, v = m_{ij}n_{jk}),$$

 The output of the Reduce function is a key j paired with the list of all the tuples of this form that we get from j:

 $$(j, [(i_1, k_1, v_1), (i_2, k_2, v_2), \ldots, (i_p, k_p, v_p)]).$$
Matrix Multiplication

Map:
From the pairs that are output from the previous Reduce function produce key-value pairs:

\((i_1, k_1), v_1 \),
\((i_2, k_2), v_2 \), ...,
\((i_p, k_p), v_p \).

Reduce:
For each key \((i, k)\), produce the sum of the list of values associated with this key. The result is a pair \((i, k), v\), where \(v\) is the value of the element in row \(i\) and column \(k\) of the matrix \(P = MN\).
Matrix Multiplication

• **Map:**

 - From the pairs that are output from the previous Reduce function produce key-value pairs:

 \[
 ((i_1, k_1), v_1), ((i_2, k_2), v_2), \ldots, ((i_p, k_p), v_p) \]

 - **Reduce:** For each key \((i, k)\), produce the sum of the list of values associated with this key. The result is a pair \(((i, k), v)\), where \(v\) is the value of the element in row \(i\) and column \(k\) of the matrix \(P = MN\).
Matrix Multiplication

- **Map**: From the pairs that are output from the previous Reduce function produce p key-value pairs:

 $$((i_1, k_1), v_1), ((i_2, k_2), v_2), \ldots, ((i_p, k_p), v_p).$$

- **Reduce**:

 ...
Matrix Multiplication

- **Map**: From the pairs that are output from the previous Reduce function produce p key-value pairs:

$$(((i_1, k_1), v_1), ((i_2, k_2), v_2), \ldots, ((i_p, k_p), v_p)).$$

- **Reduce**: For each key (i, k), produce the sum of the list of values associated with this key. The result is a pair

$$((i, k), v),$$

where v is the value of the element in row i and column k of the matrix

$$P = MN.$$
Matrix Multiplication with One Map-Reduce Step

- **Map:**

 For each element m_{ij} of M, produce a key-value pair $((i,k), (M,j,m_{ij}))$, for $k = 1, 2, ..., \text{up to the number of columns of } N$.

 Also, for each element n_{jk} of N, produce a key-value pair $((i,k), (N,j,n_{jk}))$, for $i = 1, 2, ..., \text{up to the number of rows of } M$.
Matrix Multiplication with One Map-Reduce Step

- **Map**: For each element m_{ij} of M, produce a key-value pair

$$((i, k), (M, j, m_{ij})),$$

for $k = 1, 2, \ldots$, up to the number of columns of N. Also, for each element n_{jk} of N, produce a key-value pair

$$((i, k), (N, j, n_{jk})),$$

for $i = 1, 2, \ldots$, up to the number of rows of M.
Matrix Multiplication with One Map-Reduce Step

- **Reduce:**

 Each key \((i, k)\) will have an associated list with all the values \((M,j,m)_{ij}\) and \((N,j,n)_{jk}\), for all possible values of \(j\). We connect the two values on the list that have the same value of \(j\):

 ▶ We sort by \(j\) the values that begin with \(M\) and sort by \(j\) the values that begin with \(N\), in separate lists,

 ▶ The \(j\)th values on each list must have their third components, \(m_{ij}\) and \(n_{jk}\) extracted and multiplied,

 ▶ Then, these products are summed and the result is paired with \((i, k)\) in the output of the Reduce function.
Matrix Multiplication with One Map-Reduce Step

- **Reduce**: Each key \((i, k)\) will have an associated list with all the values

\[
(M, j, m_{ij}) \quad \text{and} \quad (N, j, n_{jk}),
\]

for all possible values of \(j\). We connect the two values on the list that have the same value of \(j\), for each \(j\):

- We sort by \(j\) the values that begin with \(M\) and sort by \(j\) the values that begin with \(N\), in separate lists,
- The \(j\)th values on each list must have their third components, \(m_{ij}\) and \(n_{jk}\) extracted and multiplied,
- Then, these products are summed and the result is paired with \((i, k)\) in the output of the Reduce function.
Outline

1. Motivation
2. Relational-Algebra Operations
3. Matrix Multiplication
4. Summary
Summary

- Algorithms in MapReduce:
 - Relational-algebra operations.
 - Matrix multiplication.
• A. Rajaraman and J. D. Ullman. *Mining of Massive Datasets.*
 Cambridge University Press, 2011
 http://infolab.stanford.edu/~ullman/mmds.html

• J. Lin and Ch. Dyer. *Data-Intensive Text Processing with MapReduce.*
 Morgan and Claypool Publishers, 2010
 http://lintool.github.com/MapReduceAlgorithms/

• Ch. Lam. *Hadoop in Action.*
 Manning Publications Co., 2011