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Review of the previous lectures

e Mining of massive datasets.

o Classification and regression.

o Evolution of database systems:

Operational (OLTP) vs. analytical (OLAP) systems.
Relational model vs. multidimensional model.
Design of data warehouses.

NoSQL.

Processing of massive datasets.

\{

v vy VvYy

2/36



Outline

1 Motivation

2 MapReduce

3 Spark

4 Summary

3/36



1 Motivation

Outline

36



Motivation

e Traditional DBMS vs. NoSQL

36



Motivation

e Traditional DBMS vs. NoSQL

o New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

5/36



Motivation

e Traditional DBMS vs. NoSQL

o New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

o New computational challenges: WordCount, PageRank, etc.

5/36



Motivation

Traditional DBMS vs. NoSQL

New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

New computational challenges: WordCount, PageRank, etc.
Computational burden — distributed systems

5/36



Motivation

Traditional DBMS vs. NoSQL

New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

New computational challenges: WordCount, PageRank, etc.

Computational burden — distributed systems
» Scaling-out instead of scaling-up

5/36



Motivation

Traditional DBMS vs. NoSQL

New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

New computational challenges: WordCount, PageRank, etc.
Computational burden — distributed systems

» Scaling-out instead of scaling-up
» Move-code-to-data
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MapReduce-based systems

Accessible — run on large clusters of commodity machines or on cloud
computing services such as Amazon's Elastic Compute Cloud (EC2).

Robust — are intended to run on commodity hardware; desinged with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

Scalable — scales linearly to handle larger data by adding more nodes
to the cluster.

Simple — allow users to quickly write efficient parallel code.
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MapReduce: Two simple procedures

Word count: A basic operation for every search engine.

Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

How to implement these procedures for efficient execution in a
distributed system?

How much can we gain by such implementation?
Let us focus on the word count problem ...
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Word count

e Count the number of times each word occurs in a set of documents:

Do as | say, not as | do.
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Word count

o Let us write the procedure in pseudo-code for a single machine:
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Word count

o Let us write the procedure in pseudo-code for a single machine:
define wordCount as Multiset;

for each document in documentSet {
T = tokenize(document);

for each token in T {
wordCount [token]++;
}

}

display (wordCount);
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Word count

e Let us write the procedure in pseudo-code for many machines:
» First step:

define wordCount as Multiset;

for each document in documentSubset {
T = tokenize(document);
for each token in T {
wordCount [token]++;
}

}

sendToSecondPhase (wordCount) ;
» Second step:

define totalWordCount as Multiset;

for each wordCount received from firstPhase {
multisetAdd (totalWordCount, wordCount);
}
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Word count

e To make the procedure work properly across a cluster of distributed
machines, we need to add a number of functionalities:

v

Store files over many processing machines (of phase one).

Write a disk-based hash table permitting processing without being
limited by RAM capacity.

Partition the intermediate data (that is, wordCount) from phase one.
Shuffle the partitions to the appropriate machines in phase two.
Ensure fault tolerance.
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MapReduce

e MapReduce programs are executed in two main phases, called
mapping and reducing:
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MapReduce

e MapReduce programs are executed in two main phases, called
mapping and reducing:
» Map: the map function is written to convert input elements to
key-value pairs.
» Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.
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MapReduce

e The complete data flow:
‘ Input ‘ Output
map (<k1, vi1>) list(kk2, v2>)
reduce | (<k2, list(<v2>) | list(<k3, v3>)
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MapReduce

Figure: The complete data flow

Input data
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e The

MapReduce
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The input is structured as a list of key-value pairs: 1list(<k1,v1>).
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MapReduce

complete data flow:

The input is structured as a list of key-value pairs: 1list(<k1,v1>).
The list of key-value pairs is broken up and each individual key-value
pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

» The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
» The key-value pairs are processed in arbitrary order.
» The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

The framework asks the reducer to process each one of these
aggregated key-value pairs individually.
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Combiner and partitioner

e Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.
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Combiner and partitioner

e Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the

data flow.

e Combiner — perform local aggregation (the reduce step) on the map
node.

o Partitioner — divide the key space of the map output and assign the
key-value pairs to reducers.
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WordCount in MapReduce

e Map:
» For a pair <k1,document> produce a sequence of pairs <token, 1>,
where token is a token/word found in the document.

map(String filename, String document) {
List<String> T = tokenize(document);

for each token in T {
emit ((String)token, (Integer) 1);
}
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WordCount in MapReduce

e Reduce
» For a pair <word, list(1, 1, ., 1)> sum up all ones appearing
in the list and return <word, sum>, where sum is the sum of ones.

reduce(String token, List<Integer> values) {
Integer sum = 0;

for each value in values {
sum = sum + value;

}

emit ((String)token, (Integer) sum);
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Matrix-vector Multiplication

o Let A to be large n X m matrix, and x a long vector of size m.

e The matrix-vector multiplication is defined as:
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Matrix-vector Multiplication

o Let A to be large n X m matrix, and x a long vector of size m.

e The matrix-vector multiplication is defined as:
Ax =,

where v = (v1,...,v,) and

m
v; = E aijxj.
Jj=1
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Matrix-vector multiplication

o Let us first assume that m is large, but not so large that vector «
cannot fit in main memory, and be part of the input to every Map

task.
e The matrix A is stored with explicit coordinates, as a triple (4, j, a;;).
e We also assume the position of element x; in the vector x will be
stored in the analogous way.
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Matrix-vector multiplication

e Map:
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Matrix-vector multiplication
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matrix A. From each matrix element a;; it produces the key-value
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component v; of the matrix-vector product will get the same key.
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Matrix-vector multiplication

e Map: each map task will take the entire vector & and a chunk of the
matrix A. From each matrix element a;; it produces the key-value
pair (i,a;;x;). Thus, all terms of the sum that make up the
component v; of the matrix-vector product will get the same key.

¢ Reduce: a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, v;) where:

m
v; = E aijxj.
Jj=1
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Matrix-Vector Multiplication with Large Vector v
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Matrix-Vector Multiplication with Large Vector v

e Divide the matrix into vertical stripes of equal width and divide the
vector into an equal number of horizontal stripes, of the same height.

e The ith stripe of the matrix multiplies only components from the ith

stripe of the vector.

e Thus, we can divide the matrix into one file for each stripe, and do

the same for the vector.
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Matrix-Vector Multiplication with Large Vector v

e Each Map task is assigned a chunk from one the stripes of the matrix
and gets the entire corresponding stripe of the vector.

e The Map and Reduce tasks can then act exactly as in the case where
Map tasks get the entire vector.
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e Spark is a fast and general-purpose cluster computing system.
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e Spark is a fast and general-purpose cluster computing system.

o It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
e It also supports a rich set of higher-level tools including:

Spark SQL for SQL and structured data processing,
MLIib for machine learning,

GraphX for graph processing,

and Spark Streaming.
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Spark is a fast and general-purpose cluster computing system.

It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including:

Spark SQL for SQL and structured data processing,
MLIib for machine learning,

GraphX for graph processing,

and Spark Streaming.
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For more check https://spark.apache.org/
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Spark

e Spark uses Hadoop which is a popular open-source implementation of
MapReduce.

e Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

¢ Hadoop Distributed File System (HDFS) is responsible for distributed
storage.
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Installation of Spark

Download Spark from
http://spark.apache.org/downloads.html

Untar the spark archive:
tar xvfz spark-2.2.0-bin-hadoop2.7.tar

To play with Spark there is no need to install HDFS ...

But, you can try to play around with HDFS.
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HDFS

e Create new directories:

hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/mynane

o Copy the input files into the distributed filesystem:
hdfs dfs -put data.txt /user/myname/data.txt
o View the files in the distributed filesystem:

hdfs dfs -1s /user/myname/
hdfs dfs -cat /user/myname/data.txt
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WordCount in Hadoop

import java.io.lOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf. Configuration;

import org.apache.hadoop. fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io. Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce. Reducer;

import org.apache.hadoop.mapreduce. lib.input.FilelnputFormat;
import org.apache.hadoop.mapreduce. lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws |OException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word . set (itr.nextToken());
context.write(word, one);
}
¥
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WordCount in Hadoop

blic static class IntSumReducer

extends Reducer<Text, IntWritable , Text, IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, lterable<IntWritable> values,
Context context
) throws |OException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

result.set(sum);
context.write(key, result);

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getlnstance(conf, "word count”);
job.setJarByClass (WordCount. class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer. class);
job.setReducerClass(IntSumReducer. class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addlnputPath(job, new Path(args[0]))
FileOutputFormat.setOutputPath(job, new Path(args[1]
System.exit(job.waitForCompletion(true) ? 0 : 1);

)):
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WordCount in Spark

e The same code is much simpler in Spark
e To run the Spark shell type: ./bin/spark-shell
e The code

val textFile = sc.textFile(”~/data/all—bible.txt")
val counts = (textFile.flatMap(line => line.split("” "))
.map(word => (word, 1))
.reduceByKey (- + .))
counts.saveAsTextFile(”~/data/all —bible—counts.txt")

Alternatively:

val wordCounts = textFile.flatMap(line => line.split(” ")).groupByKey(identity).
count ()
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Matrix-vector multiplication in Spark

e The Spark code is quite simple:

val x = sc.textFile(”"”/data/x.txt").map(line => {val t
trim.tolnt, t(1).trim.toDouble)})

line.split(”,”); (t(0).

val vectorX = x.map{case (i,v) => v}.collect
val broadcastedX = sc.broadcast(vectorX)
val matrix = sc.textFile(”"/data/M.txt"”).map(line => {val t = line.split(",”); (t

(0).trim.tolnt, t(1).trim.tolnt, t(2).trim.toDouble)})
val v = matrix.map { case (i,j,a) => (i, a % broadcastedX.value(j—1))}.reduceByKey(

-+ 2)
v.toDF.orderBy (" -1").show
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Summary

e Motivation: New data-intensive challenges like search engines.
e MapReduce: The overall idea and simple algorithms.

e Spark: MapReduce in practice.
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