Evolution of Database Systems

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland

Software Development Technologies Master studies, second semester Academic year 2018/19 (winter course)

Review of the Previous Lecture

- Mining of massive datasets.
- Classification and regression.

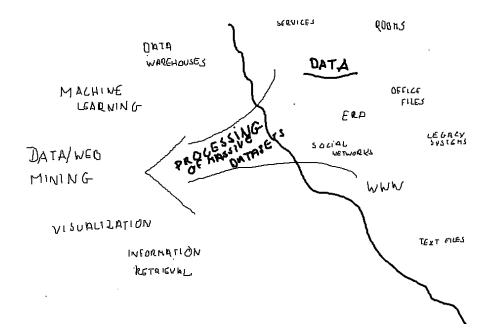
Outline

- 1 Evolution of database systems
- 2 Analytical database systems
- 3 Processing of massive datasets
- 4 Summary

Outline

1 Evolution of database systems

- 2 Analytical database systems
- 3 Processing of massive datasets
- 4 Summary



Data is the new oil (?)

• A database is a collection of information that exists over a long period of time.

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - Give users the ability of query the data and modify the data,

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - Give users the ability of query the data and modify the data,
 - Support the storage of very large amounts of data, allowing efficient access to data for queries and database modifications,

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - Give users the ability of query the data and modify the data,
 - Support the storage of very large amounts of data, allowing efficient access to data for queries and database modifications,
 - ► Enable durability, the recovery of the database in the face of failures,

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - Give users the ability of query the data and modify the data,
 - Support the storage of very large amounts of data, allowing efficient access to data for queries and database modifications,
 - ► Enable durability, the recovery of the database in the face of failures,
 - Control access to data from many users at once in isolation and ensure the actions on data to be performed completely.

Data models

- **Data model** is an abstract model that defines how data is represented and accessed.
 - Logical data model from a user's point of view
 - Physical data model from a computer's point of view.
- Data model defines:
 - Data objects and types, relationships between data objects, and constraints imposed on them.
 - Operations for defining, searching and updating data.

• File management system

- File management system
- Database management system

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems
 - Post-relational database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems
 - Post-relational database systems
 - Object-based database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems
 - Post-relational database systems
 - Object-based database systems
 - Multi-dimensional database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems
 - Post-relational database systems
 - Object-based database systems
 - Multi-dimensional database systems
- NoSQL and BigData

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems
 - Post-relational database systems
 - Object-based database systems
 - Multi-dimensional database systems
- NoSQL and BigData
- NewSQL

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - Relational database systems
 - Post-relational database systems
 - Object-based database systems
 - Multi-dimensional database systems
- NoSQL and BigData
- NewSQL
- The choice of the approach strongly depends on a given application!

• Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - Flexible schema (less restricted than typical RDBMS, but may not support join operations)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - ► Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)
 - ▶ Relaxed consistency → higher performance and availability, but fewer guarantees (like ACID)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)
 - ▶ Relaxed consistency → higher performance and availability, but fewer guarantees (like ACID)
 - ► Not all operations supported (e.g., join operation)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)
 - ▶ Relaxed consistency → higher performance and availability, but fewer guarantees (like ACID)
 - ► Not all operations supported (e.g., join operation)
 - No declarative query language (requires more programming, but new paradigms like MapReduce appear)

NoSQL

• Different types of models:

NoSQL

- Different types of models:
 - MapReduce frameworks,

- Different types of models:
 - MapReduce frameworks,
 - ► key-values stores,

- Different types of models:
 - MapReduce frameworks,
 - ► key-values stores,
 - column stores and BigTable implementations,

- Different types of models:
 - MapReduce frameworks,
 - ► key-values stores,
 - column stores and BigTable implementations,
 - document-oriented databases,

- Different types of models:
 - MapReduce frameworks,
 - key-values stores,
 - column stores and BigTable implementations,
 - document-oriented databases,
 - graph database systems.

- Different types of models:
 - MapReduce frameworks,
 - key-values stores,
 - column stores and BigTable implementations,
 - document-oriented databases,
 - graph database systems.
- Design for different purposes.

BigData – a lot of Vs^1

- Volume: the quantity of generated and stored data.
- Variety: the type and nature of the data.
- Velocity: the speed at which the data is generated and processed.
- Variability: inconsistency of the data.
- Value: the value of the data.

¹ https://en.wikipedia.org/wiki/Big_data

• Operational systems:

- Operational systems:
 - ► Support day-to-day operations of an organization.

- Operational systems:
 - ► Support day-to-day operations of an organization.
 - Also referred to as on-line transaction processing (OLTP).

- Operational systems:
 - Support day-to-day operations of an organization.
 - Also referred to as on-line transaction processing (OLTP).
 - Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.

- Operational systems:
 - Support day-to-day operations of an organization.
 - Also referred to as on-line transaction processing (OLTP).
 - Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:

- Operational systems:
 - Support day-to-day operations of an organization.
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making.

- Operational systems:
 - Support day-to-day operations of an organization.
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making.
 - Also referred to as on-line analytical processing (OLAP).

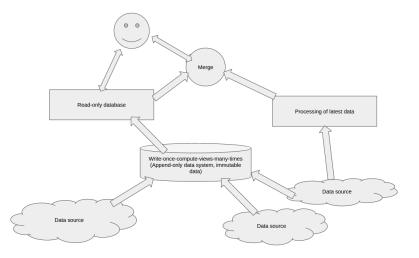
- Operational systems:
 - Support day-to-day operations of an organization.
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making.
 - Also referred to as on-line analytical processing (OLAP).
 - Main tasks: effective processing of multidimensional queries concerning huge volumes of data.

- Operational systems:
 - Support day-to-day operations of an organization.
 - Also referred to as on-line transaction processing (OLTP).
 - Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making.
 - Also referred to as on-line analytical processing (OLAP).
 - Main tasks: effective processing of multidimensional queries concerning huge volumes of data.
 - ► Database systems of a write-once-read-many-times type.

Outline

- 1 Evolution of database systems
- 2 Analytical database systems
- 3 Processing of massive datasets
- 4 Summary

- Data warehouses,
- Business intelligence,
- Computational and analytical tools,
- Scientific databases,
- Analytics engines for large-scale data processing.



• The old and still good definition of the data warehouse:

- The old and still good definition of the data warehouse:
 - Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.

- The old and still good definition of the data warehouse:
 - Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - **Subject oriented**: oriented to the major subject areas of the corporation that have been defined in the data model.

- The old and still good definition of the data warehouse:
 - Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - **Subject oriented**: oriented to the major subject areas of the corporation that have been defined in the data model.
 - **Integrated**: there is no consistency in encoding, naming conventions, etc., among different data sources that are heterogeneous data sources (when data is moved to the warehouse, it is converted).

- The old and still good definition of the data warehouse:
 - Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - **Subject oriented**: oriented to the major subject areas of the corporation that have been defined in the data model.
 - **Integrated**: there is no consistency in encoding, naming conventions, etc., among different data sources that are heterogeneous data sources (when data is moved to the warehouse, it is converted).
 - Non-volatile: warehouse data is loaded and accessed; update of data does not occur in the data warehouse environment.

- The old and still good definition of the data warehouse:
 - Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - **Subject oriented**: oriented to the major subject areas of the corporation that have been defined in the data model.
 - **Integrated**: there is no consistency in encoding, naming conventions, etc., among different data sources that are heterogeneous data sources (when data is moved to the warehouse, it is converted).
 - Non-volatile: warehouse data is loaded and accessed; update of data does not occur in the data warehouse environment.
 - **Time-variant**: the time horizon for the data warehouse is significantly longer than that of operational systems.

Life-cycle of analytical database systems

- Logical design of the database
- Design and implementation of ETL (extraction, transformation, load) process
- Deployment of the system
- Optimization of the system
- Refreshing of the data

Logical design of the database

- University authorities decided to analyze teaching performance by using the data collected in databases owned by the university containing information about students, instructors, lectures, faculties, etc.
- They would like to get answers for the following queries:

Logical design of the database

- University authorities decided to analyze teaching performance by using the data collected in databases owned by the university containing information about students, instructors, lectures, faculties, etc.
- They would like to get answers for the following queries:
 - What is the average score of students over academic years?
 - What is the number of students over academic years?
 - ► What is the average score by faculties, instructors, etc.?
 - ► What is the distribution of students over faculties, semesters, etc.?
 - ► ...

Example

- An exemplary query could be the following: SELECT Instructor, Academic_year, AVG(Grade) FROM Data_Warehouse GROUP BY Instructor, Academic_year
- And the result:

Academic_year	Name	AVG(Grade)
2013/14	Stefanowski	4.2
2014/15	Stefanowski	4.5
2013/14	Słowiński	4.1
2014/15	Słowiński	4.3
2014/15	Dembczyński	4.6

Motivation

• The result is also commonly given as a pivot table:

AVG(Grade)	Academic_year	
Name	2013/2014	2014/2015
Stefanowski	4.2	4.5
Słowiński	4.1	4.3
Dembczyński		4.6

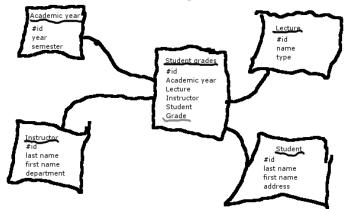
Conceptual schemes of data warehouses

- Three main goals for logical design:
 - ► Simplicity:
 - Users should understand the design,
 - Data model should match users' conceptual model,
 - Queries should be easy and intuitive to write.
 - Expressiveness:
 - Include enough information to answer all important queries,
 - Include all relevant data (without irrelevant data).
 - Performance:
 - An efficient physical design should be possible to apply.

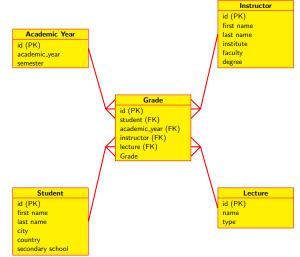
Three basic conceptual schemes

- Star schema,
- Snowflake schema,
- Fact constellations.

• A single table in the middle connected to a number of dimension tables.



• A single table in the middle connected to a number of dimension tables.



• Measures, e.g. grades, price, quantity.

- Measures, e.g. grades, price, quantity.
 - Measures should be aggregative.

• Measures, e.g. grades, price, quantity.

- Measures should be aggregative.
- ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

• Measures, e.g. grades, price, quantity.

- Measures should be aggregative.
- ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

• Fact table

• Measures, e.g. grades, price, quantity.

- Measures should be aggregative.
- ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

• Fact table

• Relates the dimensions to the measures.

- Measures, e.g. grades, price, quantity.
 - Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

• Fact table

- Relates the dimensions to the measures.
- Dimension tables

- Measures, e.g. grades, price, quantity.
 - Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

• Fact table

• Relates the dimensions to the measures.

• Dimension tables

► Represent information about dimensions (student, academic year, etc.).

- Measures, e.g. grades, price, quantity.
 - Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

• Fact table

• Relates the dimensions to the measures.

- ► Represent information about dimensions (student, academic year, etc.).
- Each dimension has a set of descriptive attributes.

• Each fact table contains measurements about a process of interest.

- Each fact table contains measurements about a process of interest.
- Each fact row contains foreign keys to dimension tables and numerical measure columns.

- Each fact table contains measurements about a process of interest.
- Each fact row contains foreign keys to dimension tables and numerical measure columns.
- Any new fact is added to the fact table.

- Each fact table contains measurements about a process of interest.
- Each fact row contains foreign keys to dimension tables and numerical measure columns.
- Any new fact is added to the fact table.
- The aggregated fact columns are the matter of the analysis.

• Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).
- Content is relatively static.

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).
- Content is relatively static.
- The attributes of dimension tables are used for filtering and grouping.

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).
- Content is relatively static.
- The attributes of dimension tables are used for filtering and grouping.
- Dimension tables describe facts stored in the fact table.

• Fact table:

- Fact table:
 - ► narrow,

- Fact table:
 - narrow,
 - ► big (many rows),

- Fact table:
 - ► narrow,
 - ► big (many rows),
 - numeric (rows are described by numerical measures),

- Fact table:
 - ► narrow,
 - ► big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).

- Fact table:
 - ► narrow,
 - ► big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table

- Fact table:
 - ► narrow,
 - ► big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ► wide,

- Fact table:
 - ► narrow,
 - ► big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ► wide,
 - small (few rows),

- Fact table:
 - narrow,
 - big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ► wide,
 - small (few rows),
 - descriptive (rows are described by descriptive attributes),

- Fact table:
 - narrow,
 - big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ► wide,
 - small (few rows),
 - descriptive (rows are described by descriptive attributes),
 - static.

Denormalization

• Denormalization is the process of attempting to optimize the performance of a database by adding redundant data or by grouping data.

Denormalization

- Denormalization is the process of attempting to optimize the performance of a database by adding redundant data or by grouping data.
- Denormalization helps cover up the inefficiencies inherent in relational database software.

Denormalization

- Denormalization is the process of attempting to optimize the performance of a database by adding redundant data or by grouping data.
- Denormalization helps cover up the inefficiencies inherent in relational database software.
- Normalize until it hurts, denormalize until it works :)

• Four step procedure:

- Four step procedure:
 - ► Select the business process to model (e.g. sales).

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - ► Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,
- Surrogate keys,

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - ► Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,
- Surrogate keys,
- Degenerate dimension,

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,
- Surrogate keys,
- Degenerate dimension,
- Role-playing dimensions,

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,
- Surrogate keys,
- Degenerate dimension,
- Role-playing dimensions,
- Slowly changing dimensions,

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - ► Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,
- Surrogate keys,
- Degenerate dimension,
- Role-playing dimensions,
- Slowly changing dimensions,
- Mini dimension,

- Four step procedure:
 - ► Select the business process to model (e.g. sales).
 - ► Determine the grain of the business process (e.g. single transaction in a market identified by bar-code scanners at cash register).
 - ► Choose the dimensions describing the business process (e.g. localization, product, data, promotion, etc.).
 - ► Identify the numeric measures for the facts (e.g. price, quantity).
- Date and time dimension,
- Surrogate keys,
- Degenerate dimension,
- Role-playing dimensions,
- Slowly changing dimensions,
- Mini dimension,
- Factless fact tables.

Multidimensional data model

• Retail sales data:

Location:Vancouver								
Time	Items	Items						
(quarters)	ΤV	TV Computer Phone Security						
Q1	605 825 14 400							
Q2	680 952 31 512							
Q3	812 1023 30 501							
Q4	927	1038	38	580				

Multidimensional data model

• Similar information for other cities:

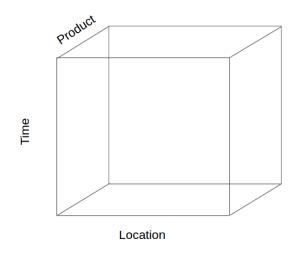
Location:Vancouver								
Time		Items						
(quarters)	TV	TV Computer Phone Security						
Q1	605 825 14 400							
Q2	680 952 31 512							
Q3	812 1023 30 501							
Q4	927 1038 38 580							

Location:Chicago								
Time	Items	Items						
(quarters)	TV	TV Computer Phone Security						
Q1	854 882 89 623							
Q2	943	890	64	698				
Q3	1023	924	59	789				
Q4	1129	992	63	870				

Location:Toronto							
Time	Items	Items					
(quarters)	TV	TV Computer Phone Security					
Q1	1087 968 38 872						
Q2	1130		41	952			
Q3	1034	1048	45	1002			
Q4	1142	1091	52	984			

Location:New York								
Time		Items						
(quarters)	TV	TV Computer Phone Security						
Q1	818	818 746 43 591						
Q2	894 769 52 682							
Q3	940 795 58 728							
Q4	978	978 864 59 784						

Multidimensional cube



• More dimensions possible.

Different levels of aggregation

• Sales(time, product, *)

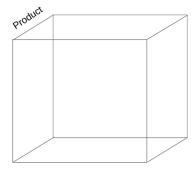
Time	Items				
(quarters)	TV	Security			
Q1	3364	3421	184	2486	
Q2	3647	3635	188	2817	
Q3	3809	3790	186	3020	
Q4	4176	3985	212	3218	

• Sales(time, *, *); Sales(*, *, *)

Operators in multidimensional data model

Time

- Roll up summarize data along a dimension hierarchy.
- Drill down go from higher level summary to lower level summary or detailed data.
- Slice and dice corresponds to selection and projection.
- Pivot reorient cube.
- Raking, Time functions, etc.



Location

Exploring the cube

Time	Items						
(quarters)	TV Computer Phone Securit						
Q1	3364	3421	184	2486			
Q2	3647	3635	188	2817			
Q3	3809			3020			
Q4	4176	3985	212	3218			

	Time		Items				
1			TV	Computer	Phone	Security	
	Q1		3364	3421	184	2486	
	Q2		3647	3635	188	2817	
⇔	Q3		3809	3790	186	3020	
		October	1172	960	105	1045	
]	Q4	November	1005	1340	45	987	
-		December	1999	1685	62	1186	

Outline

- 1 Evolution of database systems
- 2 Analytical database systems
- 3 Processing of massive datasets
- 4 Summary

• Physical data organization:

• Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access:

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.
- Data compression.

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.
- Data compression.
- Approximate query processing.

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.
- Data compression.
- Approximate query processing.
- Probabilistic data structures and algorithms.

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.
- Data compression.
- Approximate query processing.
- Probabilistic data structures and algorithms.
- Data schemas:

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.
- Data compression.
- Approximate query processing.
- Probabilistic data structures and algorithms.
- Data schemas: star schema, flexible schemas.

Outline

- 1 Evolution of database systems
- 2 Analytical database systems
- 3 Processing of massive datasets

4 Summary

Summary

- Significant difference between operational and analytical systems.
- Different data models dedicated to particular applications.
- NoSQL = "Not only traditional relational DBMS."
- OLAP vs. OLTP.
- Star schema.
- Multidimensional data model.
- Processing of massive datasets.

Bibliography

- H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems: The Complete Book. Second Edition.* Pearson Prentice Hall, 2009
- R. Kimball and M. Ross. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
 John Wiley & Sons, 2013
- Nathan Marz and James Warren. Big Data: Principles and best practices of scalable real-time data systems.
 Manning Publications Co., 2015