Classification and Regression III

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies Master studies, second semester Academic year 2018/19 (winter course)

Review of the previous lectures

- Mining of massive datasets.
- Classification and regression
 - ► What is machine learning?
 - Supervised learning: statistical decision/learning theory, loss functions, risk.
 - ► Learning paradigms and principles.
 - ► Learning algorithms: lazy learning, decision trees, generative models, linear models.

Outline

1 Linear Models for Classification

2 Summary

Outline

1 Linear Models for Classification

2 Summary

• Let the output variable be $y \in \{-1,1\}$ and prediction function $h(\boldsymbol{x}) \in \{-1,1\}.$

• Let the output variable be $y \in \{-1, 1\}$ and prediction function $h(x) \in \{-1, 1\}$.

- Alternatively, one can assume $y, h(x) \in \{0, 1\}$.
- Mapping $m:\{-1,1\}\longrightarrow\{0,1\}$ and $m^{-1}:\{0,1\}\longrightarrow\{-1,1\}$:

$$m(y) = \frac{y+1}{2}, \qquad m^{-1}(y) = 2y - 1.$$

 \bullet Loss is measured usually in terms of 0/1 loss which can be expressed by:

$$\ell_{0/1}(y, h(\boldsymbol{x})) = [\![yh(\boldsymbol{x}) \le 0]\!]$$

• Loss is measured usually in terms of 0/1 loss which can be expressed by:

$$\ell_{0/1}(y, h(\boldsymbol{x})) = [\![yh(\boldsymbol{x}) \le 0]\!]$$

• Solve:

$$\widehat{h} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell_{0/1}(y_i, h(\boldsymbol{x}_i)) = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i h(\boldsymbol{x}_i) \le 0 \rrbracket$$

• Loss is measured usually in terms of 0/1 loss which can be expressed by:

$$\ell_{0/1}(y, h(x)) = [yh(x) \le 0]$$

Solve:

$$\widehat{h} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell_{0/1}(y_i, h(\boldsymbol{x}_i)) = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i h(\boldsymbol{x}_i) \le 0 \rrbracket$$

• Hard to optimize h directly.

• Usually done in two phases:

- Usually done in two phases:
 - ▶ Learn a continuous function $f \in \mathcal{F}$:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i f(\boldsymbol{x}_i) \le 0 \rrbracket$$

- Usually done in two phases:
 - ▶ Learn a continuous function $f \in \mathcal{F}$:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i f(\boldsymbol{x}_i) \le 0 \rrbracket$$

► Threshold f at 0:

$$\widehat{h} = \operatorname{sgn}\left(\widehat{f}\right), \qquad \qquad \mathcal{H} = \{h \colon h = \operatorname{sgn}\left(f\right), f \in \mathcal{F}\},$$

so that

$$[y_i h(x_i) \le 0] = [y_i f(x_i) \le 0].$$

- Usually done in two phases:
 - ▶ Learn a continuous function $f \in \mathcal{F}$:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i f(\boldsymbol{x}_i) \le 0 \rrbracket$$

► Threshold f at 0:

$$\widehat{h} = \operatorname{sgn}\left(\widehat{f}\right), \qquad \qquad \mathcal{H} = \{h \colon h = \operatorname{sgn}\left(f\right), f \in \mathcal{F}\},$$

so that

$$[y_i h(x_i) \le 0] = [y_i f(x_i) \le 0].$$

▶ The quantity yf(x) is usually referred to as margin.

• Solve:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i f(\boldsymbol{x}_i) \le 0 \rrbracket$$

• Solve:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \llbracket y_i f(\boldsymbol{x}_i) \le 0 \rrbracket$$

- Still hard to optimize: 0/1 loss is discontinuous and non-convex.
 - e.g., when \mathcal{H} is a class of linear function, the problem known to be **NP-hard**.

• Solve:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} [y_i f(\boldsymbol{x}_i) \le 0]$$

- Still hard to optimize: 0/1 loss is discontinuous and non-convex.
 - ► e.g., when \mathcal{H} is a class of linear function, the problem known to be NP-hard.

• **Solution**: use some **convex relaxation** of 0/1 loss.

• We can try to use linear regression to solve binary classification problem:

- Use $\mathrm{sgn}\left(\widehat{f}\right)$ to obtain prediction.
- Minimization of squared loss leads to estimation of the conditional probability, since:

$$P(y=1|\boldsymbol{x}) = \frac{\mathbb{E}(y|\boldsymbol{x}) + 1}{2}.$$

• Effectively, we replace 0/1 loss by squared error loss:

$$\ell_{\text{sq}}(y, f(\boldsymbol{x})) = (y - f(\boldsymbol{x}))^2 = (1 - yf(\boldsymbol{x}))^2.$$

• Effectively, we replace 0/1 loss by squared error loss:

$$\ell_{\text{sq}}(y, f(\boldsymbol{x})) = (y - f(\boldsymbol{x}))^2 = (1 - yf(\boldsymbol{x}))^2.$$

Works nicely in practice, but has several drawbacks . . .

• It tries to minimize the squared error of all examples, even those that are correctly classified.

 We could consider non-zero loss only for examples with margin less or equal zero:

$$yf(\boldsymbol{x}) \leq 0$$

• Such a loss function could be defined as:

$$\ell(y, f(\boldsymbol{x})) = \begin{cases} 0, & \text{if } yf(\boldsymbol{x}) > 0\\ (1 - yf(\boldsymbol{x}))^2, & \text{otherwise}. \end{cases}$$

• This definition does not lead to a "nice" shape of the loss.

• A better solution: $\ell(y, f(x)) = (\max\{0, \epsilon - yf(x)\})^2$.

• A better solution: $\ell(y, f(x)) = (\max\{0, 1 - yf(x)\})^2$.

- Similarly, if we use absolute error instead of squared error, we get the following loss functions:
 - ▶ perceptron-like loss function: $\ell(y, f(x)) = \max\{0, \epsilon yf(x)\},$
 - ▶ hinge loss: $\ell(y, f(x)) = \max\{0, 1 yf(x)\}$, used in support vector machines.

• Perceptron uses a linear model:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=0}^n w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}$$

• Perceptron uses a linear model:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=0}^n w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}$$

• We replace 0/1 loss by:

$$\ell_{\text{perc}}(y, f(\boldsymbol{x})) = \max\{0, \epsilon - yf(\boldsymbol{x})\}\$$
$$= \max\{0, \epsilon - y\boldsymbol{w} \cdot \boldsymbol{x}\}\$$

Perceptron uses a linear model:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=0}^n w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}$$

• We replace 0/1 loss by:

$$\ell_{\text{perc}}(y, f(\boldsymbol{x})) = \max\{0, \epsilon - yf(\boldsymbol{x})\}\$$
$$= \max\{0, \epsilon - y\boldsymbol{w} \cdot \boldsymbol{x}\}\$$

We solve

$$\widehat{f} = \underset{f}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, \epsilon - y_i f(\boldsymbol{x}_i)\}$$
$$= \underset{\boldsymbol{w}}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, \epsilon - y_i \boldsymbol{w} \cdot \boldsymbol{x}_i\}$$

using an incremental optimization technique (\Rightarrow the stochastic gradient descent algorithm).

- Learning algorithm for perceptron:
 - ► The update in iteration *t*:

$$\mathbf{w}^t = \mathbf{w}^{t-1} + \alpha y \mathbf{x}$$
 if $y \mathbf{w} \cdot \mathbf{x} \le 0$
 $\mathbf{w}^t = \mathbf{w}^{t-1}$ if $y \mathbf{w} \cdot \mathbf{x} > 0$.

where α is the learning rate.

► Only misclassified examples are updated.

Perceptron – Graphical interpretation

• The update is simply a summation or substraction of two vectors:

Perceptron – Graphical interpretation

• The update is simply a summation or substraction of two vectors:

Perceptron – Graphical interpretation

• The update is simply a summation or substraction of two vectors:

Perceptron

- The update can be interpreted in terms of gradient descent:
 - For a misclassified example $(y w \cdot x \le 0)$, the gradient of $\ell_{perc}(y, f(x))$ with respect to w is given by:

$$\frac{\partial \ell_{\text{perc}}(y, f(\boldsymbol{x}))}{\partial \boldsymbol{w}} = -y\boldsymbol{x}.$$

► For a correctly classified example $(y w \cdot x > 0)$, the gradient is 0.

Perceptron

- The update can be interpreted in terms of gradient descent:
 - For a misclassified example $(y w \cdot x \le 0)$, the gradient of $\ell_{perc}(y, f(x))$ with respect to w is given by:

$$\frac{\partial \ell_{\text{perc}}(y, f(\boldsymbol{x}))}{\partial \boldsymbol{w}} = -y\boldsymbol{x}.$$

- ► For a correctly classified example $(yw \cdot x > 0)$, the gradient is 0.
- ► Therefore, the update has the form:

$$\mathbf{w}^{t} = \mathbf{w}^{t-1} + \alpha y \mathbf{x}$$
 if $y \mathbf{w} \cdot \mathbf{x} \le 0$
 $\mathbf{w}^{t} = \mathbf{w}^{t-1}$ if $y \mathbf{w} \cdot \mathbf{x} > 0$.

 Such an algorithm is usually referred to as stochastic gradient descent.

Stochastic gradient descent

```
Input: learning rate \alpha w=0; //(or use random values) while (approximate minimum is obtained) { Randomly shuffle examples in the training set for i=1 to n { w:=w-\alpha\frac{\partial\ell(y_i,f(x_i))}{\partial w} } }
```

Linear models with hinge loss

• Loss function:

$$\ell_{\text{hinge}}(y, f(\boldsymbol{x})) = \max\{0, 1 - yf(\boldsymbol{x})\}\$$

Linear models with hinge loss

• Loss function:

$$\ell_{\text{hinge}}(y, f(\boldsymbol{x})) = \max\{0, 1 - yf(\boldsymbol{x})\}\$$

• Linear model:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=0}^n w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}$$

Linear models with hinge loss

Loss function:

$$\ell_{\text{hinge}}(y, f(\boldsymbol{x})) = \max\{0, 1 - yf(\boldsymbol{x})\}\$$

Linear model:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=0}^{n} w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}$$

• Learning = fitting the model to the data by minimizing:

$$\widehat{\boldsymbol{w}} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \ell_{\operatorname{hinge}}(y_i, f(\boldsymbol{x}_i))$$

$$= \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \max\{0, 1 - y_i f(\boldsymbol{x}_i)\}$$

$$= \underset{\boldsymbol{w}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \max\{0, 1 - y_i \boldsymbol{w} \cdot \boldsymbol{x}_i\}$$

Binary classification by Support Vector Machines (SVM)

Find maximal margin classifier

$$\min_{\mathbf{w}} \quad \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i \mathbf{w} \cdot \mathbf{x} > 1 - \xi_i \quad \forall i = 1..n$$

$$\xi_i \ge 0 \quad \forall i = 1..n$$

Binary classification by Support Vector Machines (SVM)

Find maximal margin classifier

$$\min_{\mathbf{w}} \quad \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i \mathbf{w} \cdot \mathbf{x} > 1 - \xi_i \quad \forall i = 1..n$$

$$\xi_i \ge 0 \quad \forall i = 1..n$$

$$\min_{\boldsymbol{w}} \quad \sum_{i=1}^{n} \max\{0, 1 - y_i \boldsymbol{w} \cdot \boldsymbol{x}_i\}$$

s.t. $\|\boldsymbol{w}\|^2 \leq B$ for some B.

• Another option is to use a sigmoid (or logistic) transformation of the linear function:

$$g(x) = \frac{1}{1 + \exp(-f(x))} \in (0, 1)$$
 $g(x) = \frac{1 - \exp(-f(x))}{1 + \exp(-f(x))} \in (-1, 1)$

• Another option is to use a sigmoid (or logistic) transformation of the linear function:

$$g(x) = \frac{1}{1 + \exp(-f(x))} \in (0, 1)$$
 $g(x) = \frac{1 - \exp(-f(x))}{1 + \exp(-f(x))} \in (-1, 1)$

• Get an estimate of $\eta(x) = P(y = 1 | x)$ from f(x).

- Get an estimate of $\eta(x) = P(y = 1 | x)$ from f(x).
 - $\quad \bullet \ \ \eta(\boldsymbol{x}) \in [0,1] \text{, while } f(\boldsymbol{x}) \in \mathbb{R}.$

- Get an estimate of $\eta(x) = P(y = 1 \mid x)$ from f(x).
 - $\eta(\boldsymbol{x}) \in [0,1]$, while $f(\boldsymbol{x}) \in \mathbb{R}$.
 - ▶ A natural candidate for function $f(x) \mapsto \eta(x)$: sigmoid function

- Get an estimate of $\eta(x) = P(y = 1 | x)$ from f(x).
 - $\eta(x) \in [0,1]$, while $f(x) \in \mathbb{R}$.
 - A natural candidate for function $f(x) \mapsto \eta(x)$: sigmoid function

$$\eta(x) = \frac{1}{1 + \exp(-f(x))}$$

$$\updownarrow$$

$$f(x) = \log \frac{\eta(x)}{1 - \eta(x)}$$

• Solved by the method of Maximum Likelihood.

$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg max}} P_f(y_1, \dots, y_n | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

$$= \underset{f \in \mathcal{F}}{\operatorname{arg min}} - \log P_f(y_1, \dots, y_n | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

$$= \underset{f \in \mathcal{F}}{\operatorname{arg min}} \sum_{i=1}^n - \log P_f(y_i | \boldsymbol{x}_i)$$

- Get an estimate of $\eta(x) = P(y = 1 | x)$ from f(x).
 - \bullet $\eta(x) \in [0,1]$, while $f(x) \in \mathbb{R}$.
 - A natural candidate for function $f(x) \mapsto \eta(x)$: sigmoid function

$$\eta(\boldsymbol{x}) = \frac{1}{1 + \exp(-f(\boldsymbol{x}))}$$

$$\updownarrow$$

$$f(\boldsymbol{x}) = \log \frac{\eta(\boldsymbol{x})}{1 - \eta(\boldsymbol{x})}$$

• Solved by the method of Maximum Likelihood.

$$\begin{split} \widehat{f} &= \mathop{\arg\max}_{f \in \mathcal{F}} P_f(y_1, \dots, y_n | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \\ &= \mathop{\arg\min}_{f \in \mathcal{F}} - \log P_f(y_1, \dots, y_n | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \\ &= \mathop{\arg\min}_{f \in \mathcal{F}} \sum_{i=1}^n - \log P_f(y_i | \boldsymbol{x}_i) \end{split}$$
 Why this is correct?

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{n} -\log P_f(y_i \mid \boldsymbol{x}_i)$$

$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^{n} -\log P_f(y_i \mid \boldsymbol{x}_i)$$

$$= \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \left(-\left[y_i = 1 \right] \log \eta(\boldsymbol{x}_i) - \left[y_i = -1 \right] \log (1 - \eta(\boldsymbol{x}_i)) \right)$$

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} -\log P_f(y_i \mid \boldsymbol{x}_i)$$

$$= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \left(- [y_i = 1]] \log \eta(\boldsymbol{x}_i) - [y_i = -1]] \log (1 - \eta(\boldsymbol{x}_i)) \right)$$

$$= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \left([y_i = 1]] \log \left(1 + e^{-f(\boldsymbol{x}_i)} \right) + [y_i = -1]] \log \left(1 + e^{f(\boldsymbol{x}_i)} \right) \right)$$

$$\eta(\boldsymbol{x}) = \left(1 + e^{-f(\boldsymbol{x})}\right)^{-1}$$

$$1 - \eta(\boldsymbol{x}) = 1 - \frac{1}{1 + e^{-f(\boldsymbol{x})}} = \frac{e^{-f(\boldsymbol{x})}}{1 + e^{-f(\boldsymbol{x})}} = \left(1 + e^{f(\boldsymbol{x})}\right)^{-1}$$

$$\begin{split} \widehat{f} &= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} -\log P_f(y_i \,|\, \boldsymbol{x}_i) \\ &= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \Big(- [\![y_i = 1]\!] \log \eta(\boldsymbol{x}_i) - [\![y_i = -1]\!] \log (1 - \eta(\boldsymbol{x}_i)) \Big) \\ &= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \Big([\![y_i = 1]\!] \log \Big(1 + e^{-f(\boldsymbol{x}_i)} \Big) + [\![y_i = -1]\!] \log \Big(1 + e^{f(\boldsymbol{x}_i)} \Big) \Big) \\ &= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \log \Big(1 + e^{-y_i f(\boldsymbol{x}_i)} \Big) . \\ &= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \log \Big(1 + e^{-y_i f(\boldsymbol{x}_i)} \Big) . \end{split}$$

$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(\boldsymbol{x}_i)} \right)$$
$$= \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(\boldsymbol{x}_i)} \right).$$

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(\boldsymbol{x}_i)} \right)$$
$$= \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(\boldsymbol{x}_i)} \right).$$

• Effectively, we replaced 0/1 loss with **logistic loss**:

$$\ell_{\log}(y, f(\boldsymbol{x})) = \log\left(1 + e^{-yf(\boldsymbol{x})}\right).$$

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(\boldsymbol{x}_i)} \right)$$
$$= \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(\boldsymbol{x}_i)} \right).$$

• Effectively, we replaced 0/1 loss with **logistic loss**:

$$\ell_{\log}(y, f(\boldsymbol{x})) = \log\left(1 + e^{-yf(\boldsymbol{x})}\right).$$

Commonly used, better than least squares in practice.

• Let f(x) be a linear function of input attributes:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=1}^m w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}.$$

• The task of the learning algorithm is to solve:

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \sum_{i=1}^{n} \ell_{\log} (y_i, \boldsymbol{w} \cdot \boldsymbol{x}_i)$$

$$= \arg\min_{\boldsymbol{w}} \sum_{i=1}^{n} \log (1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)).$$

 This problem is usually solved using iterative convex optimization algorithms.

- Consider a simple gradient descent algorithm.
- Total loss over the training examples:

$$\widehat{L}(\boldsymbol{w}) = \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \boldsymbol{w} \cdot \boldsymbol{x} \right) \right)$$

- The gradient descent algorithm:
 - ▶ Initialize $m{w}^0$, e.g. by $m{w}^0 = m{0}$
 - ► Repeat until convergence:

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \alpha \frac{\partial \widehat{L}(\boldsymbol{w}^t)}{\partial \boldsymbol{w}^t}$$

where α is the step size (learning rate) and

$$\frac{\partial \widehat{L}(\boldsymbol{w})}{\partial \boldsymbol{w}} = \left(\frac{\partial \widehat{L}}{\partial w_1}, \dots, \frac{\partial \widehat{L}}{\partial w_m}\right)$$

$$\frac{\partial L}{\partial w_i} =$$

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$
$$= -\sum_{y_i=1}$$

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$
$$= -\sum_{u=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$
$$= -\sum_{y_i=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)} + \sum_{y_i=-1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$
$$= -\sum_{v_i=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)} + \sum_{v_i=-1}^n \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

• Compute the partial derivative of the loss with respect to w_j :

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$= -\sum_{u_i=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)} + \sum_{u_i=-1}^n \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

Denote:

$$\widehat{\eta}_i = \frac{1}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

• Compute the partial derivative of the loss with respect to w_j :

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$= -\sum_{v_i=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)} + \sum_{v_i=-1}^n \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

Denote:

$$\widehat{\eta}_i = \frac{1}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

• Then:

• Compute the partial derivative of the loss with respect to w_j :

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$= -\sum_{u_i=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)} + \sum_{u_i=-1}^n \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

Denote:

$$\widehat{\eta}_i = \frac{1}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

• Then:

$$\frac{\partial L}{\partial w_j} = -\sum_{y_i=1} (1 - \widehat{\eta}_i) x_{ij} + \sum_{y_i=-1} \widehat{\eta}_i x_{ij} =$$

• Compute the partial derivative of the loss with respect to w_j :

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n \frac{\exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i) y_i x_{ij}}{1 + \exp(-y_i \boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

$$= -\sum_{w=1}^n \frac{\exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)} + \sum_{w=-1}^n \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x}_i) x_{ij}}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

Denote:

$$\widehat{\eta}_i = \frac{1}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x}_i)}$$

• Then:

$$\frac{\partial L}{\partial w_j} = -\sum_{y_i=1} (1 - \widehat{\eta}_i) x_{ij} + \sum_{y_i=-1} \widehat{\eta}_i x_{ij} = -\sum_{i=1}^n (y_i' - \widehat{\eta}_i) x_{ij},$$

where
$$y' = \frac{y+1}{2} \in \{0, 1\}.$$

- Connection with linear regression:
 - ▶ The partial derivative of the squared loss over training examples with respect to w_j is similar:

$$\frac{\partial \widehat{L}_{se}}{\partial w_j} =$$

- Connection with linear regression:
 - ▶ The partial derivative of the squared loss over training examples with respect to w_i is similar:

$$\frac{\partial \widehat{L}_{se}}{\partial w_j} = -2 \sum_{i=1}^n (y_i - f(\boldsymbol{x})) x_{ij}$$

- Connection with linear regression:
 - ▶ The partial derivative of the squared loss over training examples with respect to w_i is similar:

$$\frac{\partial \widehat{L}_{se}}{\partial w_j} = -2\sum_{i=1}^n (y_i - f(\boldsymbol{x}))x_{ij}$$

For the squared error loss, however, the solution can be found analytically since $f(\boldsymbol{x})$ is linear.

- Connection with linear regression:
 - ▶ The partial derivative of the squared loss over training examples with respect to w_j is similar:

$$\frac{\partial \widehat{L}_{se}}{\partial w_j} = -2\sum_{i=1}^n (y_i - f(\boldsymbol{x}))x_{ij}$$

- For the squared error loss, however, the solution can be found analytically since f(x) is linear.
- For logistic regression we need to use iterative methods, since $\widehat{\eta}_i$ is not linear, but sigmoid.
- The simplest method assumes α to be constant.
- It does not mean that the step is always the same:
 - As we approach (local) minimum, $\frac{\partial \widehat{L}(w)}{\partial w}$ takes smaller values.

• Gradient descent example:

• Gradient descent example:

• Gradient descent example:

Stochastic gradient descent

- Computing the gradient can be costly:
 - ightharpoonup Sum over n components.
 - ► The number of training examples *n* can be large.
- We can approximate the gradient by sampling from the training set.
- Stochastic gradient descent:
 - Randomly draw an example from the training set.
 - Compute the gradient based on this single example:

$$\frac{\partial \widehat{L}_i}{\partial w_i} = -(y_i' - \widehat{\eta}_i) x_{ij} \,,$$

where
$$\widehat{L}_i = \ell_{\log}(y_i, \boldsymbol{w} \cdot \boldsymbol{x}_i)$$
.

- ► Update parameters.
- ► Repeat until convergence.

Stochastic gradient descent

```
Input: learning rate \alpha w=0; //(or use random values) while (approximate minimum is obtained) { Randomly shuffle examples in the training set for i=1 to n { w:=w-\alpha\frac{\partial \hat{L}_i(w)}{\partial w} } }
```

Loss functions

Figure: Loss functions for classification task

Outline

1 Linear Models for Classification

2 Summary

Summary

- Linear models for classification:
 - ► Linear regression.
 - ► Perceptron.
 - ► Support vector machines.
 - ► Logistic regression.

Bibliography

• T. Hastie, R. Tibshirani, and J. Friedman. *Elements of Statistical Learning: Second Edition*.

Springer, 2009 http://www-stat.stanford.edu/~tibs/ElemStatLearn/

- Christopher M. Bishop. Pattern Recognition and Machine Learning.
 Springer-Verlag, 2006
- David Barber. Bayesian Reasoning and Machine Learning.
 Cambridge University Press, 2012
 http://www.cs.ucl.ac.uk/staff/d.barber/brml/
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data.

AMLBook, 2012