Classification and Regression Il

Krzysztof Dembczynski

Intelligent Decision Support Systems Laboratory (IDSS)
Poznan University of Technology, Poland

Software Development Technologies
Master studies, second semester
Academic year 2018/19 (winter course)

/39

Review of the previous lectures

e Mining of massive datasets.
o Classification and regression
» What is machine learning?

» Supervised learning: statistical decision/learning theory, loss functions,
risk.

» Learning paradigms and principles.

» Learning algorithms: lazy learning, decision trees, generative models,
linear models.

)

39

1 Linear Models for Classification

2 Summary

Outline

39

1 Linear Models for Classification

Outline

39

€2

Linear models for classification

® °
°
° °
°
¥] ° :. °
° o o
[] Y °
°
i ° o
°
°
°® °

I

39

Linear models for classification

e Let the output variable be y € {—1,1} and prediction function
h(x) € {-1,1}.

39

Linear models for classification

e Let the output variable be y € {—1,1} and prediction function
h(x) € {-1,1}.

e Alternatively, one can assume y, h(x) € {0,1}.
e Mapping m : {—1,1} — {0,1} and m~': {0,1} — {-1,1}:

y+1 _
my)="—F—, m "y)=2y—1.

6/39

Linear models for classification

e Loss is measured usually in terms of 0/1 loss which can be expressed
by:
lo1(y; h(z)) = [yh(z) < 0]

39

Linear models for classification

e Loss is measured usually in terms of 0/1 loss which can be expressed
by:
lo1(y; h(z)) = [yh(z) < 0]
e Solve:

~

1 & 1 &
h = arg min — 14 i, h(x;)) = arg min — ih(x;) <0
I%e?{ n; 0/1(y (xi)) %GH n;ﬂy (i) |

39

Linear models for classification

e Loss is measured usually in terms of 0/1 loss which can be expressed

by:
loy1(y, M) = [yh(e) < 0]

e Solve:

~ 1 & 1 &
h = arg min — 14 i, h(x;)) = arg min — ih(x;) <0
I%e?{ n ; 0/1(y (xi)) %GH n ;ﬂy (i) |

e Hard to optimize h directly.

39

Linear models for classification

e Usually done in two phases:

/39

Linear models for classification

e Usually done in two phases:
» Learn a continuous function f € F:

- 1 &
f= ar}gem}_ln - Z[[yzf(azz) < 0]

=1

39

Linear models for classification

e Usually done in two phases:
» Learn a continuous function f € F:

~ 1 &
f= ar}gem}_ln - ;[[yzf(azz) < 0]
» Threshold f at 0:
h=sen (F). H={h:h=sen(f).f € F},

so that
lyih(x;) < 0] = [y f(xi) <0].

39

Linear models for classification

e Usually done in two phases:
» Learn a continuous function f € F:

~ 1 &
f= ar}gem}_ln - ;[[yzf(azz) < 0]
» Threshold f at 0:
h=sen (F). H={h:h=sen(f).f € F},

so that
lyih(x;) < 0] = [y f(xi) <0].

» The quantity yf(x) is usually referred to as margin.

39

e Solve:

Linear models for classification

n
~

f= argmin%Z[[yif(a:i) <0]

fer i—1

/39

Linear models for classification

e Solve:

~

f= argmin:lzn:[[yif(azi) <0]
i=1

fer

e Still hard to optimize: 0/1 loss is discontinuous and non-convex.

» e.g., when H is a class of linear function, the problem known to be

NP-hard. e

0.5

0.0
I

39

Linear models for classification

e Solve:

~

f= argmin:lzn:[[yif(azi) <0]
i=1

fer

e Still hard to optimize: 0/1 loss is discontinuous and non-convex.

» e.g., when H is a class of linear function, the problem known to be

NP-hard. e

10

0.5

0.0
I

0
uf(=)

¢ Solution: use some convex relaxation of 0/1 loss.

39

Linear regression for classification

e We can try to use linear regression to solve binary classification
problem:

e Use sgn <f> to obtain prediction.

e Minimization of squared loss leads to estimation of the conditional
probability, since:

E(ylx) + 1

Ply=1jz) = =22

10/39

Linear regression for classification

o Effectively, we replace 0/1 loss by squared error loss:

lsaly, f(®) = (y — f(@))* = (1 - yf(x))*

11/39

Linear regression for classification

o Effectively, we replace 0/1 loss by squared error loss:

lsa(y, f(2)) = (y — f(®))* = (1 - yf(2))*.

S5
0 1.5 2.0
1 1

3 2 1 0 1 2 3
yf(x)

e Works nicely in practice, but has several drawbacks ...

11/39

Linear regression for classification

-20 -10 0 10 20

12 /39

Linear regression for classification

~
— - el e o (X]
S O e e
4 e o o
o~
I
T T T T T
-20 -10 0 10 20

e |t tries to minimize the squared error of all examples, even those that
are correctly classified.

12/39

Linear models for classification

e We could consider non-zero loss only for examples with margin less or
equal zero:

yf(z) <0

e Such a loss function could be defined as:

_J o0, ifyf(x)>0
Uy, f(x)) = { (1-— y?(m))Q, otherwise .

13 /39

Linear models for classification

— O/l loss
— Modified squared loss

2.0 25
|

L(yf(x))
15

1.0

0.5

0.0
|

-2 -1 0 1 2

yf(x)

e This definition does not lead to a “nice” shape of the loss.

14 /39

Linear models for classification

3.0
|

2.0 25
|

L(yf(x))
15

1.0

0.5

yf(x)

e A better solution: £(y, f(z)) = (max{0,e — yf(x)})%

15/39

Linear models for classification

3.0
|

2.0 25
|

L(yf(x))
15

1.0

0.5

yf(x)

e A better solution: £(y, f(z)) = (max{0,1 — yf(x)})%

16 /39

Linear models for classification

o Similarly, if we use absolute error instead of squared error, we get the
following loss functions:
» perceptron-like loss function: ¢(y, f(x)) = max{0,e — yf(x)},
» hinge loss: ¢(y, f(x)) = max{0,1 —yf(x)}, used in support vector
machines.

— 0/1loss
= —— hinge loss

loss
0.0 05 1.0 15 20 25 3.0

Perceptron

e Perceptron uses a linear model:

n
f(x) :wo—l—ijxj =w-T
J=0

18 /39

Perceptron

e Perceptron uses a linear model:
f(x) =wo —I—ijxj =w-T
j=0
e We replace 0/1 loss by:
éperc(ya f(x)) = maX{Oa € — yf(m)}

= max{0,e —yw - x}

18 /39

Perceptron

e Perceptron uses a linear model:

n
f(x) :wo—l—ija:j =w-T
J=0

e We replace 0/1 loss by:
Eperc(ya f(x)) = maX{O, €— yf(m)}

= max{0,e —yw - x}

e We solve

~

1 n
f = argmin — Zmax{o, e—vyif(xi)}
I " =1

1 n
= arg min — max{0,e — y,w - x;
gw n Z {) Yi z}
=1
using an incremental optimization technique (= the stochastic
gradient descent algorithm).

18 /39

Perceptron

e Learning algorithm for perceptron:
» The update in iteration t:

w' =w' + ayx if yw-x<0

w' = w'™! if yw-x>0.

where « is the learning rate.

» Only misclassified examples are updated.

19/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

T T T
.. °
[]
[]
e o
: S, °
[\l
) ° ® W
L * N
[] PY s
[}
o® °
L ® N
| |
x1

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

T T T
.. °
[]
[]
e o
: S, °
[\l
) ° ® W
L * N
[] PY s
[}
o® °
L ® N
| |
x1

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

T T T
°
° °
°
°
tho)
4 LI |
/..
~ .
) ° ® W
L ° |
e o o
°
°® °
L ° |
\ \
Tl

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

T T T
°
° °
°
°
tho)
4 LI |
° LIS
~ .
) ° ® W
L ° |
e o o
°
°® °
L ° |
\ \
Tl

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

Z2

z1

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

Z2

z1

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

Z2

z1

20/39

Perceptron — Graphical interpretation

e The update is simply a summation or substraction of two vectors:

Z2

z1

20/39

Perceptron

e The update can be interpreted in terms of gradient descent:

» For a misclassified example (yw - & < 0), the gradient of {perc(y, f())
with respect to w is given by:

Mperc(y, f(T))
ow

= —yx.

» For a correctly classified example (yw - > 0), the gradient is 0.

21/39

Perceptron

e The update can be interpreted in terms of gradient descent:

» For a misclassified example (yw - & < 0), the gradient of {perc(y, f())
with respect to w is given by:

Mperc(y, f(T))
ow

= —yx.

» For a correctly classified example (yw - > 0), the gradient is 0.

» Therefore, the update has the form:
w' =w'" + ayx if yw-x<0

w' =w'! if yw-x>0.

e Such an algorithm is usually referred to as stochastic gradient
descent.

21/39

Stochastic gradient descent

Input: learning rate «

w = 0; //(or use random values)

while (approximate minimum is obtained) {
Randomly shuffle examples in the training set
for i=1 to n {

w = wfaf’f(ygi(mi))

22/39

Linear models with hinge loss

e Loss function:

ghinge(y’ f(m)) = maX{O’ 11— yf(m)}

23 /39

Linear models with hinge loss

e Loss function:

Ehinge(ya f(m)) = maX{O’ 11— yf(m)}

e Linear model:

n
f(x) :wg—i-ijxj =w-T
=0

23 /39

Linear models with hinge loss

e Loss function:

Ehinge(ya f(m)) = maX{Oa 11— yf(m)}

e Linear model: .
f(x) =wo —i—ijxj =w-x
j=0
o Learning = fitting the model to the data by minimizing:

n
w = argmin Z Ehinge(ym f(xs))
fer i=1

n
= argmin Z max{0,1 — y; f(x;)}
fer 4

n
= arg minz max{0,1 — y;w - x;}
Y=

23 /39

Binary classification by Support Vector Machines (SVM)

Find maximal margin classifier T8+ Bo =

n
min [wl?+ 03¢
i=1
st yw-x>1-—¢ Vi=1.n
>0 Vi=1l.n

24/39

Binary classification by Support Vector Machines (SVM)

Find maximal margin classifier T8+ Bo =

n
min [wl?+ 03¢
i=1
st yw-x>1-—¢ Vi=1.n
>0 Vi=1l.n

:& %

n
Irgn z;max{o, 1 —yw-x;}
1=

st. ||w|* <B for some B.

24 /39

Logistic regression — motivation

e Another option is to use a sigmoid (or logistic) transformation of the
linear function:

O L lem(f@)
O e) A Bt) B

25 /39

Logistic regression — motivation

e Another option is to use a sigmoid (or logistic) transformation of the
linear function:

(z))

9(x)

1 _ 1 —exp(—f
1+ exp(—f(z))

= Tren(f@) < Y 9@

€(—1,1)

25 /39

Logistic regression — motivation

e Get an estimate of n(x) = P(y = 1|x) from f(x).

26 /39

Logistic regression — motivation

e Get an estimate of n(x) = P(y = 1|x) from f(x).
» n(x) € [0,1], while f(x) € R.

26 /39

Logistic regression — motivation

e Get an estimate of n(x) = P(y = 1|x) from f(x).
» n(x) € [0,1], while f(z) € R.
» A natural candidate for function f(x) — n(x): sigmoid function
1
n(x) =
N S)
)

@) =tog 10

()
00 02 04 06 08 10
| | |

26 /39

Logistic regression — motivation

e Get an estimate of n(x) = P(y = 1|x) from f(x).
» n(x) € [0,1], while f(z) € R.
» A natural candidate for function f(x) — n(x): sigmoid function
1
n(x) =
N S)
)

@) =tog 10

()
00 02 04 06 08 10
| | |

T T T T T
4 2 0
f(@)

¢ Solved by the method of Maximum Likelihood.

o
IS

~

f=argmax Pr(y1,...,Yn|T1,...,Tn)
fer

= argmin —log P¢(y1, ..., Yn|®1,...,Tn)
feF

n
= argmin Z —log Pr(y; | ;)
1eF i 26 /39

Logistic regression — motivation

e Get an estimate of n(x) = P(y = 1|x) from f(x).
» n(x) € [0,1], while f(z) € R.
» A natural candidate for function f(x) — n(x): sigmoid function
1
n(x) =
N S)
)

@) =tog 10

()
00 02 04 06 08 10
| | |

T T T T T
4 2 0
f(@)

¢ Solved by the method of Maximum Likelihood.

o
IS

~

f =argmax P¢(yi,...,Un|®1,...,%n)
fer

= argmin —log P¢(y1, ..., Yn|®1,...,Tn)
feF

n Why this is correct?
= argmin Z —log Pr(y; | ;)

eF
! i=1 26 /39

Logistic regression

~

n
f=arg minz —log P¢(yi | ;)
DS a—

27 /39

Logistic regression

f:argming —log P¢(yi | ;) n(@) = Ply = 1l=)
fer =

= arg min — y; = 1] log n(x;) — |y; = —1] log(1 — n(x;
g ZK [ys = 1] log n(@:) — [y = ~1]log(1 — n(w.))

27 /39

Logistic regression

n
f=arg minz —log Py(y; | x;) —

fer 4
= ar%érgin; (— [y = 1] logn(=x;) — [y; = —1] log(1 — 77(%)))
_ < o — (i) o .
- ar%en}m; (Iys = 10108 (1 +e7=) + [ys = —1] log (1 + /=))

27 /39

Logistic regression

n
f=arg minz —log P¢(yi | ;) —

fer 4

= arg minZ (— [yi = 1] logn(x;) — [yi = —1] log(1 — U(ﬂ?z)))
= ar)gen;ini ([[yz‘ = 1] log (1 + e_f(”"i)) + [yi = —1] log (1 + ef("’i)))

n
= arg minz log (1 + e—yif(wi)>]

fer = _

27/39

Logistic regression

n
f=arg minZIOg (1 + e—yif(wi))

feF o
1 n
= arg min — Z log (1 4 6*%)‘(%)))
fer i

28 /39

Logistic regression

= argmin Y log (1 +e y’f(ml))
a3

=argmin— Y log <1 +e yzﬂw%)) .
fer N Z

kh)

o Effectively, we replaced 0/1 loss with logistic loss:

bog(y, f(x)) = log (1 + efyf(m)))

28 /39

Logistic regression

f— argmin » log (1 +e yzf(wz))
feFr ;

=argmin— Y log (1 +e yzﬂw%)) .
fer N Z

o Effectively, we replaced 0/1 loss with logistic loss:

bog(y, f(x)) = log (1 + efyf(m)))

loss
.5 1.0 1.5 20 25 3.0

0.0 0.

1
C
o

yf(z)

e Commonly used, better than least squares in practice.
28 /39

Learning algorithm for logistic regression

e Let f(x) be a linear function of input attributes:
m
f(x) = wo + ij:cj =w-T.
j=1
e The task of the learning algorithm is to solve:
n
w = argmin Z bog (Yi, w - x;)
i=1

n
= argminZlog (1+exp (—yiw - x;)) .
w

i=1

e This problem is usually solved using iterative convex optimization
algorithms.

29 /39

Learning algorithm for logistic regression

o Consider a simple gradient descent algorithm.
o Total loss over the training examples:

~

L(w) = " log (14 exp (—yiw - @))
=1

e The gradient descent algorithm:
» Initialize w°, e.g. by w® =0
» Repeat until convergence:

t+1 8f(wt)

wtlt =w! —a

where « is the step size (learning rate) and

OL(w) (ai oL)

ow \ow " dwn

30/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL
8wj

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL _ Z exp —Yyiw - mz)yzxm
ow; 1+ exp(—yw - x;)

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL . Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)

- -y

yi=1

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL . Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)

_ _Z exp(—w - x;)x;;

1+ exp(—w - x;)

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL . Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)

_ exp(—w - :DZI”
N ZlJrexp —w - x;) * Z

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL . Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)

exp(—w - x;)x;; exp(w - &;)x;;
- - 5>

1+ exp(—w - x;) — 1+ exp(w - ;)

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL _ Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)
_ Z exp(—w - x;)x;; N Z exp(w - &;)x;;
1+ exp(—w - x;) — 1+ exp(w - ;)
e Denote:)
i

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL _ Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)
_ Z exp(—w - x;)x;; N Z exp(w - &;)x;;
1+ exp(—w - x;) — 1+ exp(w - ;)
e Denote:)
i

e Then:

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL _ Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)
B _Z exp(—w - x;)x;; N Z exp(w - &;)x;;
o 1 1 .
+ exp(—w - x;) — + exp(w - x;)
¢ Denote:)
i
1+ exp(—w - x;)
e Then:

ai,wj = _Z 1_771551]"' Z nlmlj_

yi=1 yi=—1

31/39

Learning algorithm for logistic regression

e Compute the partial derivative of the loss with respect to wj:

oL _ Z exp —Yiw - mz)yzxm
ow; 1+ exp(—yw - x;)
L Z exp(—w - x;)x;; N Z exp(w - &;)x;;
o 1 1 ey
+ exp(—w - x;) — 1+ exp(w - x;)
e Denote:)
=
1+ exp(—w - ;)
e Then:
oL _ ~ - ~
v Z(l —0i)zij + Z Mi%ij = — Z(yi — i)z,
I yi=1 yi=—1 i=1

where y' = ¥t € {0,1}.

31/39

Learning algorithm for logistic regression

e Connection with linear regression:

» The partial derivative of the squared loss over training examples with
respect to wj is similar:

OLse
6wj

32/39

Learning algorithm for logistic regression

e Connection with linear regression:

» The partial derivative of the squared loss over training examples with
respect to wj is similar:

0L v
ij = -2 ;(% — f(®))zi;

32/39

Learning algorithm for logistic regression

e Connection with linear regression:

» The partial derivative of the squared loss over training examples with
respect to wj is similar:

OLse "
aT]j = -2 ;(% — f(®))zi;

» For the squared error loss, however, the solution can be found
analytically since f(x) is linear.

32/39

Learning algorithm for logistic regression

e Connection with linear regression:
» The partial derivative of the squared loss over training examples with
respect to wj is similar:

OLse "
ij = -2 ;(% — f(x))xi;

» For the squared error loss, however, the solution can be found

analytically since f(x) is linear.
» For logistic regression we need to use iterative methods, since 7; is not

linear, but sigmoid.
e The simplest method assumes « to be constant.
e |t does not mean that the step is always the same:

» As we approach (local) minimum, aggu) takes smaller values.

32/39

Logistic regression

o Gradient descent example:

100
1

f(x)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

o Gradient descent example:

100
1

f(x)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

o Gradient descent example:

100
1

f(x)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example(a = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example(a = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example(a = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example(a = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example(a = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example(a = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (o = 0.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (a = 4.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (a = 4.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (a = 4.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (a = 4.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Logistic regression

e Gradient descent example (a = 4.1):

150
1

100
1

fx)

50
1

-30 -20 -10 0 10 20

33/39

Stochastic gradient descent

o Computing the gradient can be costly:

» Sum over n components.

» The number of training examples n can be large.
o We can approximate the gradient by sampling from the training set.
e Stochastic gradient descent:

» Randomly draw an example from the training set.
» Compute the gradient based on this single example:

oL; _
= 7(y: - 771)5523 5

8wj
where fl = liog (yi, w - ;).

» Update parameters.
» Repeat until convergence.

34 /39

Stochastic gradient descent

Input: learning rate «

w =0; //(or use random values)

while (approximate minimum is obtained) {
Randomly shuffle examples in the training set
for i=1 to n {

z,
w = w— a2kl 5(“’)
w

35/39

L(yf(x))

Loss functions

o |
® — O-lloss
— Hinge loss
— Exponential loss
0 — Logitloss
@
o
N
w]
-
o
—
w]
S
o
IS
T T T T T
-2 -1 0 1 2

yf(x)

Figure: Loss functions for classification task

36/39

Outline

2 Summary

37/39

Summary

e Linear models for classification:

Linear regression.
Perceptron.
Support vector machines.

>
>
>
» Logistic regression.

38/39

Bibliography

T. Hastie, R. Tibshirani, and J. Friedman. Elements of Statistical Learning: Second
Edition.

Springer, 2009
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 2006

David Barber. Bayesian Reasoning and Machine Learning.

Cambridge University Press, 2012
http://wuw.cs.ucl.ac.uk/staff/d.barber/brml/

Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From
Data.

AMLBook, 2012

39/39

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www.cs.ucl.ac.uk/staff/d.barber/brml/

	Linear Models for Classification
	Summary

