
Multidimensional Queries

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, first semester

Academic year 2016/17 (winter course)

1 / 57

Review of the Previous Lecture

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• ETL and OLAP systems:
I Extraction, transformation, load.
I ROLAP, MOLAP, HOLAP.
I Challenges in OLAP systems: a huge number of possible aggregations

to compute.

2 / 57

Motivation

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or
I Inventing a new language (→ MDX).

3 / 57

Motivation

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or
I Inventing a new language (→ MDX).

3 / 57

Motivation

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:

I Extending SQL, or
I Inventing a new language (→ MDX).

3 / 57

Motivation

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or

I Inventing a new language (→ MDX).

3 / 57

Motivation

• We need an intuitive way of expressing analytical (multidimensional)
queries:

I Operations like roll up, drill
down, slice and dice,
pivoting, ranking, time and
window functions, etc.

• Two solutions:
I Extending SQL, or
I Inventing a new language (→ MDX).

3 / 57

Outline

1 OLAP Queries in SQL

2 OLAP Queries in MDX

3 Summary

4 / 57

Outline

1 OLAP Queries in SQL

2 OLAP Queries in MDX

3 Summary

5 / 57

OLAP Queries

• A typical example of an analytical query is a group-by query:

SELECT Instructor, Academic_year, AVG(Grade)

FROM Data_Warehouse

GROUP BY Instructor, Academic_year

• And the result:

Academic year Name AVG(Grade)

2013/14 Stefanowski 4.2
2014/15 Stefanowski 4.5
2013/14 S lowiński 4.1
2014/15 S lowiński 4.3
2014/15 Dembczyński 4.6

6 / 57

SQL

• OLAP extensions in SQL:
I GROUP BY CUBE,
I GROUP BY ROLLUP,
I GROUP BY GROUPING SETS,
I GROUPING and DECODE/CASE
I OVER and PARTITION BY,
I RANK.

7 / 57

SQL

• GROUP BY CUBE

I Example:
SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY CUBE (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

8 / 57

SQL

• GROUP BY CUBE
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY CUBE (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

8 / 57

SQL

• GROUP BY CUBE
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location, Supplier

UNION ALL

SELECT Time, Product, Location, ’’*’’, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location

UNION ALL

SELECT Time, Product, ’’*’’, Location, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location

UNION ALL

. . .
UNION ALL

SELECT ’*’, ’*’, ’*’, ’*’, SUM(Gain)

FROM Sales;

9 / 57

SQL

• GROUP BY CUBE
I It is not only a Macro instruction to reduce the number of

subgroup-bys.

I One can easily optimize the group-by operations, when they are
performed all-together: upper-level group-bys can be computed from
lower-level group-bys.

10 / 57

SQL

• GROUP BY CUBE
I It is not only a Macro instruction to reduce the number of

subgroup-bys.
I One can easily optimize the group-by operations, when they are

performed all-together: upper-level group-bys can be computed from
lower-level group-bys.

10 / 57

SQL

• GROUP BY CUBE
I Example:

SELECT Academic year, Name, AVG(Grade) FROM

Students grades GROUP BY CUBE(Academic year, Name);

All rows and columns

Academic year Name AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

Academic year AVG(Grade)

2011/2 4.15
2012/3 3.85
2013/4 3.8

Name AVG(Grade)

Stefanowski 3.9
S lowiński 3.6
Dembczyński 4.8

AVG(Grade)

3.95
11 / 57

SQL

• GROUP BY CUBE
I Example:

SELECT Academic year, Name, AVG(Grade) FROM

Students grades GROUP BY CUBE(Academic year, Name);

Academic year Name AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8
2011/2 NULL 4.15
2012/3 NULL 3.85
2013/4 NULL 3.8
NULL Stefanowski 3.9
NULL S lowiński 3.6
NULL Dembczyński 4.8
NULL NULL 3.95

12 / 57

SQL

• GROUP BY ROLLUP

I Example:
SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY ROLLUP (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

13 / 57

SQL

• GROUP BY ROLLUP
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY ROLLUP (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

13 / 57

SQL

• GROUP BY ROLLUP
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY ROLLUP (Time, Product, Location, Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

13 / 57

SQL

• GROUP BY ROLLUP
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location, Supplier

UNION ALL

SELECT Time, Product, Location, ’’*’’, SUM(Gain)

FROM Sales

GROUP BY Time, Product, Location

UNION ALL

SELECT Time, Product, ’’*’’, ’’*’’, SUM(Gain)

FROM Sales

GROUP BY Time, Product

UNION ALL

SELECT Time,’’*’’,’’*’’,’’*’’,SUM(Gain)

FROM Sales

GROUP BY Time

UNION ALL

SELECT ’*’, ’*’, ’*’, ’*’, SUM(Gain)

FROM Sales;

14 / 57

SQL

• GROUP BY ROLLUP
I Example:

SELECT Academic year, Name, AVG(Grade) FROM

Students grades GROUP BY ROLLUP(Academic year, Name);

Academic year Name AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8
2011/2 NULL 4.15
2012/3 NULL 3.85
2013/4 NULL 3.8
NULL NULL 3.95

15 / 57

SQL

• GROUP BY GROUPING SETS

I Example:
SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY GROUPING SETS (Time, Product, Location,

Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

16 / 57

SQL

• GROUP BY GROUPING SETS
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY GROUPING SETS (Time, Product, Location,

Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

16 / 57

SQL

• GROUP BY GROUPING SETS
I Example:

SELECT Time, Product, Location, Supplier, SUM(Gain)

FROM Sales

GROUP BY GROUPING SETS (Time, Product, Location,

Supplier);

{all}

{product}{time} {location} {supplier}

{time,
product}

{time,
location}

{time,
supplier}

{location,
supplier}

{product,
supplier}

{product,
location}

{time,product,location,supplier}

{time, prod-
uct, supplier}

{time, prod-
uct, location}

{time, loca-
tion, supplier}

{product, loca-
tion, supplier}

16 / 57

SQL

• GROUP BY GROUPING SETS

I Example:
SELECT Time,’’*’’,’’*’’,’’*’’,SUM(Gain)

FROM Sales

GROUP BY Time

UNION ALL

SELECT ’’*’’,Product,’’*’’,’’*’’,SUM(Gain)

FROM Sales

GROUP BY Product

UNION ALL

SELECT ’’*’’,’’*’’, Location, ’’*’’,SUM(Gain)

FROM Sales

GROUP BY Location

UNION ALL

SELECT ’’*’’,’’*’’,’’*’’,Supplier, SUM(Gain)

FROM Sales

GROUP BY Supplier

17 / 57

SQL

• GROUP BY GROUPING SETS
I Example:

SELECT Time,’’*’’,’’*’’,’’*’’,SUM(Gain)

FROM Sales

GROUP BY Time

UNION ALL

SELECT ’’*’’,Product,’’*’’,’’*’’,SUM(Gain)

FROM Sales

GROUP BY Product

UNION ALL

SELECT ’’*’’,’’*’’, Location, ’’*’’,SUM(Gain)

FROM Sales

GROUP BY Location

UNION ALL

SELECT ’’*’’,’’*’’,’’*’’,Supplier, SUM(Gain)

FROM Sales

GROUP BY Supplier

17 / 57

SQL

• GROUP BY GROUPING SETS
I Example:

SELECT Academic year, Name, AVG(Grade) FROM

Students grades GROUPING SETS (Academic year, Name,());

Academic year Name AVG(Grade)

2011/2 NULL 4.15
2012/3 NULL 3.85
2013/4 NULL 3.8
NULL Stefanowski 3.9
NULL S lowiński 3.6
NULL Dembczyński 4.8
NULL NULL 3.95

18 / 57

SQL

• The NULL returned as the result of a ROLLUP, CUBE or GROUPING
SETS operation is a special use of NULL that represents all values.

• How to distinguish this null value from a standard null?

• GROUPING(<column expression>)

I Returns a value of 1 if the value of expression in the row is a null
representing the set of all values.

I <column expression> is a column or an expression that contains a
column in a GROUP BY clause.

• Example:
SELECT Scholarship, AVG(Grade), GROUPING(Scholarship) as

Grouping FROM Students grades GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
NULL 3.89 1

19 / 57

SQL

• The NULL returned as the result of a ROLLUP, CUBE or GROUPING
SETS operation is a special use of NULL that represents all values.

• How to distinguish this null value from a standard null?

• GROUPING(<column expression>)

I Returns a value of 1 if the value of expression in the row is a null
representing the set of all values.

I <column expression> is a column or an expression that contains a
column in a GROUP BY clause.

• Example:
SELECT Scholarship, AVG(Grade), GROUPING(Scholarship) as

Grouping FROM Students grades GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
NULL 3.89 1

19 / 57

SQL

• The NULL returned as the result of a ROLLUP, CUBE or GROUPING
SETS operation is a special use of NULL that represents all values.

• How to distinguish this null value from a standard null?

• GROUPING(<column expression>)

I Returns a value of 1 if the value of expression in the row is a null
representing the set of all values.

I <column expression> is a column or an expression that contains a
column in a GROUP BY clause.

• Example:
SELECT Scholarship, AVG(Grade), GROUPING(Scholarship) as

Grouping FROM Students grades GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
NULL 3.89 1

19 / 57

SQL

• The NULL returned as the result of a ROLLUP, CUBE or GROUPING
SETS operation is a special use of NULL that represents all values.

• How to distinguish this null value from a standard null?

• GROUPING(<column expression>)
I Returns a value of 1 if the value of expression in the row is a null

representing the set of all values.

I <column expression> is a column or an expression that contains a
column in a GROUP BY clause.

• Example:
SELECT Scholarship, AVG(Grade), GROUPING(Scholarship) as

Grouping FROM Students grades GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
NULL 3.89 1

19 / 57

SQL

• The NULL returned as the result of a ROLLUP, CUBE or GROUPING
SETS operation is a special use of NULL that represents all values.

• How to distinguish this null value from a standard null?

• GROUPING(<column expression>)
I Returns a value of 1 if the value of expression in the row is a null

representing the set of all values.
I <column expression> is a column or an expression that contains a

column in a GROUP BY clause.

• Example:
SELECT Scholarship, AVG(Grade), GROUPING(Scholarship) as

Grouping FROM Students grades GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
NULL 3.89 1

19 / 57

SQL

• The NULL returned as the result of a ROLLUP, CUBE or GROUPING
SETS operation is a special use of NULL that represents all values.

• How to distinguish this null value from a standard null?

• GROUPING(<column expression>)
I Returns a value of 1 if the value of expression in the row is a null

representing the set of all values.
I <column expression> is a column or an expression that contains a

column in a GROUP BY clause.

• Example:
SELECT Scholarship, AVG(Grade), GROUPING(Scholarship) as

Grouping FROM Students grades GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
NULL 3.89 1

19 / 57

SQL

• Use a DECODE-like function or CASE-like instruction to properly format
your results.

• Example:
SELECT CASE

WHEN GROUPING(Scholarship) = 1 THEN "Total average"

WHEN GROUPING(Scholarship) = 0 THEN Scholarship

END AS Scholarship,

AVG(Grade),

FROM Grades

GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
Total average 3.89 1

20 / 57

SQL

• Use a DECODE-like function or CASE-like instruction to properly format
your results.

• Example:
SELECT CASE

WHEN GROUPING(Scholarship) = 1 THEN "Total average"

WHEN GROUPING(Scholarship) = 0 THEN Scholarship

END AS Scholarship,

AVG(Grade),

FROM Grades

GROUP BY ROLL UP(Scholarship);

Scholarship AVG(Grade) Grouping

Yes 4.15 0
No 3.61 0
NULL 4.03 0
Total average 3.89 1

20 / 57

SQL

• OVER():

I Determines the partitioning and ordering of a rowset before the
associated window function is applied.

I The OVER clause defines a window or user-specified set of rows within a
query result set.

I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

21 / 57

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.

I The OVER clause defines a window or user-specified set of rows within a
query result set.

I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

21 / 57

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.

I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

21 / 57

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.
I A window function then computes a value for each row in the window.

I The OVER clause can be used with functions to compute aggregated
values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

21 / 57

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.
I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

21 / 57

SQL

• OVER():
I Determines the partitioning and ordering of a rowset before the

associated window function is applied.
I The OVER clause defines a window or user-specified set of rows within a

query result set.
I A window function then computes a value for each row in the window.
I The OVER clause can be used with functions to compute aggregated

values such as moving averages, cumulative aggregates, running totals,
or a top N per group results.

I Syntax:
OVER (

[<PARTITION BY clause>]

[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

21 / 57

SQL

• OVER():

I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:

• Defines the logical order of the rows within each partition of the result
set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:

• Further limits the rows within the partition by specifying start and end
points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.

• This is done by specifying a range of rows with respect to the current
row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.

• The ROWS clause limits the rows within a partition by specifying a fixed
number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.
• The ROWS clause limits the rows within a partition by specifying a fixed

number of rows preceding or following the current row.

• The RANGE clause logically limits the rows within a partition by
specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.
• The ROWS clause limits the rows within a partition by specifying a fixed

number of rows preceding or following the current row.
• The RANGE clause logically limits the rows within a partition by

specifying a range of values with respect to the value in the current row.

• Preceding and following rows are defined based on the ordering in the
ORDER BY clause.

22 / 57

SQL

• OVER():
I PARTITION BY:

• Divides the query result set into partitions. The window function is
applied to each partition separately and computation restarts for each
partition.

I ORDER BY:
• Defines the logical order of the rows within each partition of the result

set, i.e., it specifies the logical order in which the window function
calculation is performed.

I ROW and RANGE:
• Further limits the rows within the partition by specifying start and end

points within the partition.
• This is done by specifying a range of rows with respect to the current

row either by logical association or physical association.
• The ROWS clause limits the rows within a partition by specifying a fixed

number of rows preceding or following the current row.
• The RANGE clause logically limits the rows within a partition by

specifying a range of values with respect to the value in the current row.
• Preceding and following rows are defined based on the ordering in the

ORDER BY clause.

22 / 57

SQL

• Examples

I Moving average for a student:

SELECT Student, Academic year,

AVG (grades) OVER (PARTITION BY Student ORDER BY

Academic year DESC ROWS UNBOUNDED PRECEDING)

FROM Grades

ORDER BY Student, Academic year;

I Moving average for different departments:

SELECT Department, Academic year,

AVG (grades) OVER (PARTITION BY Department ORDER BY

Academic year DESC ROWS UNBOUNDED PRECEDING)

FROM Grades

ORDER BY Department, Academic year;

23 / 57

SQL

• Examples
I Moving average for a student:

SELECT Student, Academic year,

AVG (grades) OVER (PARTITION BY Student ORDER BY

Academic year DESC ROWS UNBOUNDED PRECEDING)

FROM Grades

ORDER BY Student, Academic year;

I Moving average for different departments:

SELECT Department, Academic year,

AVG (grades) OVER (PARTITION BY Department ORDER BY

Academic year DESC ROWS UNBOUNDED PRECEDING)

FROM Grades

ORDER BY Department, Academic year;

23 / 57

SQL

• Examples
I Moving average for a student:

SELECT Student, Academic year,

AVG (grades) OVER (PARTITION BY Student ORDER BY

Academic year DESC ROWS UNBOUNDED PRECEDING)

FROM Grades

ORDER BY Student, Academic year;

I Moving average for different departments:

SELECT Department, Academic year,

AVG (grades) OVER (PARTITION BY Department ORDER BY

Academic year DESC ROWS UNBOUNDED PRECEDING)

FROM Grades

ORDER BY Department, Academic year;

23 / 57

SQL

• Ranking functions:

I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:

• Returns the rank of rows within the partition of a result set, without
any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:

• Distributes the rows in an ordered partition into a specified number of
groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:

• Returns the rank of rows within the partition of a result set, without
any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:

• Distributes the rows in an ordered partition into a specified number of
groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:

• Returns the rank of rows within the partition of a result set, without
any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:

• Distributes the rows in an ordered partition into a specified number of
groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:

• Returns the rank of rows within the partition of a result set, without
any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:

• Distributes the rows in an ordered partition into a specified number of
groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:
• Returns the rank of rows within the partition of a result set, without

any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:

• Distributes the rows in an ordered partition into a specified number of
groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:
• Returns the rank of rows within the partition of a result set, without

any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:

• Distributes the rows in an ordered partition into a specified number of
groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:
• Returns the rank of rows within the partition of a result set, without

any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:
• Distributes the rows in an ordered partition into a specified number of

groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:
• Returns the rank of rows within the partition of a result set, without

any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:
• Distributes the rows in an ordered partition into a specified number of

groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:

• Returns the sequential number of a row within a partition of a result
set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Ranking functions:
I RANK () OVER:

• Returns the rank of each row within the partition of a result set. The
rank of a row is one plus the number of ranks that come before the row
in question.

I DENSE RANK () OVER:
• Returns the rank of rows within the partition of a result set, without

any gaps in the ranking. The rank of a row is one plus the number of
distinct ranks that come before the row in question.

I NTILE (integer expression) OVER:
• Distributes the rows in an ordered partition into a specified number of

groups. The groups are numbered, starting at one. For each row,
NTILE returns the number of the group to which the row belongs.

I ROW NUMBER () OVER:
• Returns the sequential number of a row within a partition of a result

set, starting at 1 for the first row in each partition.

24 / 57

SQL

• Examples
I Ranking of the students:

SELECT Student, Avg(Grade),

RANK () OVER (ORDER BY Avg(Grade) DESC)

FROM Grades GROUP BY Student;

I Ranking of students partitioned by instructors:

SELECT Instructor, Student, Avg(Grade),

RANK () OVER (PARTITION BY Instructor ORDER BY

Avg(Grade) DESC) AS ranks FROM Grades GROUP BY Student,

Instructor

ORDER BY Instructor, rank;

25 / 57

SQL

• Examples
I Ranking of the students:

SELECT Student, Avg(Grade),

RANK () OVER (ORDER BY Avg(Grade) DESC)

FROM Grades GROUP BY Student;

I Ranking of students partitioned by instructors:

SELECT Instructor, Student, Avg(Grade),

RANK () OVER (PARTITION BY Instructor ORDER BY

Avg(Grade) DESC) AS ranks FROM Grades GROUP BY Student,

Instructor

ORDER BY Instructor, rank;

25 / 57

Outline

1 OLAP Queries in SQL

2 OLAP Queries in MDX

3 Summary

26 / 57

MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

27 / 57

MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

27 / 57

MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

27 / 57

MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

27 / 57

MDX

• MDX −→ Multidimensional expressions.

• For OLAP queries, MDX is an alternative to SQL:

Academic year Instructor AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

↓

AVG(Grade) Academic year
Name 2011/2 2012/3 2013/4

Stefanowski 4.2 4.0 3.9
S lowiński 4.1 3.8 3.6
Dembczyński 4.8

27 / 57

MDX

• MDX query:

SELECT {[Time].[1997],[Time].[1998]} ON COLUMNS,

{[Measures].[Sales],[Measures].[Cost]} ON ROWS

FROM Warehouse

WHERE ([Store].[All].[USA])

• Seems to be similar to SQL, but in fact it is quite different!

28 / 57

MDX

• Roll up – summarize data
along a dimension hierarchy.

• Drill down – go from higher
level summary to lower level
summary or detailed data.

• Slice and dice – corresponds
to selection and projection.

• Pivot – reorient cube.

29 / 57

MDX

• Main concepts of MDX:
I Dimension,
I Measure,
I Member,
I Cell,
I Hierarchy,
I Aggregation,
I Level,
I Tuple,
I Set,
I Axis,
I Member property.

30 / 57

Hierarchy

• Example: time hierarchy

All

2010

Q1

January February March

Q2 Q3 Q4

October November December

2011

Q1 Q2 Q3 Q4

October November December

All

Year

Quarter

Month

31 / 57

MDX

• Identifying a member in a hierarchy:

[Time].[All].[2010].[Q1]

[Store].[All].[Massachusetts].[Leominster]

• Short cuts possible:

[Store].[Leominster]

32 / 57

MDX

• Identifying a member in a hierarchy:

[Time].[All].[2010].[Q1]

[Store].[All].[Massachusetts].[Leominster]

• Short cuts possible:

[Store].[Leominster]

32 / 57

MDX

• The concepts like dimension, measure, member, cell or hierarchy are
intuitively well-understood.

• The concepts of tuple and set need more clarification.

33 / 57

MDX

• Tuple: An intersection of exactly a single member from each
dimension (hierarchy) in the cube. For each dimension (hierarchy)
that is not explicitly referenced, the current member is implicitly
added to the tuple definition. A tuple always identifies a single cell in
the multi-dimensional matrix. That could be an aggregate or a leaf
level cell, but nevertheless one cell and only one cell is ever implied by
a tuple.

• Example:

([Product].[Olives],[Store].[Poznan],[Time].[2014])

34 / 57

MDX

• Set: A set is a collection of tuples with the same dimensionality. It
may have more than one tuple, but it can also have only one tuple, or
even have zero tuples, in which case it is an empty set.

• Example:

{([Product].[Olives],[Store].[Poznan],[Time].[2013]),
([Product].[Olives],[Store].[Poznan],[Time].[2014]),

([Product].[Capers],[Store].[Poznan],[Time].[2013),

([Product].[Capers],[Store].[Poznan],[Time].[2014])}

35 / 57

MDX

• An MDX query must contain the following information:
I The number of axes on which the result is presented.
I The set of tuples to include on each axis of the MDX query.
I The name of the cube that sets the context of the MDX query.
I The set of members or tuples to include on the slicer axis.

36 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[March], [DATE].[All].[April]} ON COLUMNS

FROM Sales

WHERE [MEASURES].[SALES]

• Result:

March April

Chevy $155 000.00 $ 75 000.00
Ford $55 000.00 $175 000.00

Defines a tuple (Chevy) with
all not specified dimensions
being set to default member

Defines a tuple (March) with
all not specified dimensions
being set to default member

Slices the cube by (Sales)

with all not specified dimen-
sions being set to default
member

Intersects all tuples to give
(Chevy, March, Sales)

37 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[March], [DATE].[All].[April]} ON COLUMNS

FROM Sales

WHERE [MEASURES].[SALES]

• Result:

March April

Chevy $155 000.00 $ 75 000.00
Ford $55 000.00 $175 000.00

Defines a tuple (Chevy) with
all not specified dimensions
being set to default member

Defines a tuple (March) with
all not specified dimensions
being set to default member

Slices the cube by (Sales)

with all not specified dimen-
sions being set to default
member

Intersects all tuples to give
(Chevy, March, Sales)

37 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[March], [DATE].[All].[April]} ON COLUMNS

FROM Sales

• Result:

March April

Chevy $155 000.00 $ 75 000.00
Ford $55 000.00 $175 000.00

38 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[March], [DATE].[All].[April]} ON COLUMNS

FROM Sales

• Result:

March April

Chevy $155 000.00 $ 75 000.00
Ford $55 000.00 $175 000.00

38 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[March], [DATE].[All].[April]} ON COLUMNS

FROM Sales

WHERE ([MEASURES].[SALES N])

• Result:

Sales N March April

Chevy 1 000 700
Ford 600 1 500

39 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[March], [DATE].[All].[April]} ON COLUMNS

FROM Sales

WHERE ([MEASURES].[SALES N])

• Result:

Sales N March April

Chevy 1 000 700
Ford 600 1 500

39 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{DATE].[All].[JANUARY]:[DATE].[All].[APRIL]} ON COLUMNS

FROM Sales

• Result:

Chevy Ford

January $66 000.00 $ 79 000.00
February $55 000.00 $72 000.00
March $155 000.00 $55 000.00
April $75 000.00 $175 000.00

40 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{DATE].[All].[JANUARY]:[DATE].[All].[APRIL]} ON COLUMNS

FROM Sales

• Result:

Chevy Ford

January $66 000.00 $ 79 000.00
February $55 000.00 $72 000.00
March $155 000.00 $55 000.00
April $75 000.00 $175 000.00

40 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[YEAR].MEMBERS} ON COLUMNS

FROM Sales

• Result:

Chevy Ford

1998 $566 000.00 $479 000.00
1999 $545 000.00 $672 000.00
2000 $745 000.00 $ 527 000.00
2001 $345 000.00 $622 000.00

41 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Chevy], [CARS].[All].[Ford]} ON ROWS,

{[DATE].[All].[YEAR].MEMBERS} ON COLUMNS

FROM Sales

• Result:

Chevy Ford

1998 $566 000.00 $479 000.00
1999 $545 000.00 $672 000.00
2000 $745 000.00 $ 527 000.00
2001 $345 000.00 $622 000.00

41 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Ford].CHILDREN} ON ROWS,

{[DATE].[All].[YEAR].MEMBERS]} ON COLUMNS

FROM Sales

• Result:

Ford Mustang Ford Taurus . . .

1998 $56 000.00 $79 000.00
1999 $54 000.00 $72 000.00
2000 $72 000.00 $52 000.00
2001 $34 000.00 $22 000.00

42 / 57

MDX – Examples of queries

• Query:

SELECT

{[CARS].[All].[Ford].CHILDREN} ON ROWS,

{[DATE].[All].[YEAR].MEMBERS]} ON COLUMNS

FROM Sales

• Result:

Ford Mustang Ford Taurus . . .

1998 $56 000.00 $79 000.00
1999 $54 000.00 $72 000.00
2000 $72 000.00 $52 000.00
2001 $34 000.00 $22 000.00

42 / 57

MDX – Examples of queries

• Query:

SELECT

{([CARS].[All].[CHEVY], [MEASURES].[SALES SUM]),

([CARS].[All].[CHEVY], [MEASURES].[SALES N]),

([CARS].[All].[FORD], [MEASURES].[SALES SUM]),

([CARS].[All].[FORD], [MEASURES].[SALES N]} ON ROWS,

{[DATE].[All].[YEAR].MEMBERS]} ON COLUMNS

FROM Sales

• Result:

Chevy Ford
Sales Sum Sales N Sales Sum Sales N

1998 $566 000.00 450 $479 000.00 450
1999 $545 000.00 475 $672 000.00 670
2000 $745 000.00 750 $527 000.00 490
2001 $345 000.00 325 $622 000.00 640

43 / 57

MDX – Examples of queries

• Query:

SELECT

{([CARS].[All].[CHEVY], [MEASURES].[SALES SUM]),

([CARS].[All].[CHEVY], [MEASURES].[SALES N]),

([CARS].[All].[FORD], [MEASURES].[SALES SUM]),

([CARS].[All].[FORD], [MEASURES].[SALES N]} ON ROWS,

{[DATE].[All].[YEAR].MEMBERS]} ON COLUMNS

FROM Sales

• Result:

Chevy Ford
Sales Sum Sales N Sales Sum Sales N

1998 $566 000.00 450 $479 000.00 450
1999 $545 000.00 475 $672 000.00 670
2000 $745 000.00 750 $527 000.00 490
2001 $345 000.00 325 $622 000.00 640

43 / 57

MDX – Examples of queries

• Query:

SELECT

CROSSJOIN({[CARS].[ALL CARS].[CHEVY], [CARS].[ALL

CARS].[FORD]}, {[MEASURES].[SALES SUM], [MEASURES].[SALES N]}
) ON COLUMN, {[DATE].[All].[YEAR].MEMBERS]} ON COLUMNS

FROM Sales

• Result:

Chevy Ford
Sales Sum Sales N Sales Sum Sales N

1998 $566 000.00 450 $479 000.00 450
1999 $545 000.00 475 $672 000.00 670
2000 $745 000.00 750 $527 000.00 490
2001 $345 000.00 325 $622 000.00 640

44 / 57

MDX – Examples of queries

• Query:

SELECT

CROSSJOIN({[CARS].[ALL CARS].[CHEVY], [CARS].[ALL

CARS].[FORD]}, {[MEASURES].[SALES SUM], [MEASURES].[SALES N]}
) ON COLUMN, {[DATE].[All].[YEAR].MEMBERS]} ON COLUMNS

FROM Sales

• Result:

Chevy Ford
Sales Sum Sales N Sales Sum Sales N

1998 $566 000.00 450 $479 000.00 450
1999 $545 000.00 475 $672 000.00 670
2000 $745 000.00 750 $527 000.00 490
2001 $345 000.00 325 $622 000.00 640

44 / 57

MDX – Examples of queries

• Query:

SELECT

NON EMPTY [Store Type].[Store Type].MEMBERS ON COLUMNS,

FILTER([Store].[Store City].MEMBERS, (Measures.[Profit],

[Time].[1997]) > 250000) ON ROWS

FROM [Sales]

WHERE (Measures.[Profit], [Time].[Year].[1997])

• Result:

Profit Normal 24 hours

Toronto $66 000.00 $196 000.00
Vancouver $111 000.00 $156 000.00
New York $59 000.00 $196 000.00
Chicago $75 000.00 $ 211 000.00

45 / 57

MDX – Examples of queries

• Query:

SELECT

NON EMPTY [Store Type].[Store Type].MEMBERS ON COLUMNS,

FILTER([Store].[Store City].MEMBERS, (Measures.[Profit],

[Time].[1997]) > 250000) ON ROWS

FROM [Sales]

WHERE (Measures.[Profit], [Time].[Year].[1997])

• Result:

Profit Normal 24 hours

Toronto $66 000.00 $196 000.00
Vancouver $111 000.00 $156 000.00
New York $59 000.00 $196 000.00
Chicago $75 000.00 $ 211 000.00

45 / 57

MDX – Examples of queries

• Query:

SELECT

Measures.MEMBERS ON COLUMNS,

ORDER([Store].[Store City].MEMBERS, Measures.[Sales Count],

DESC) ON ROWS

FROM [Sales]

• Result:

Profit Sales Count

Toronto $747 000.00 2 196 000
Vancouver $785 000.00 1 956 000
New York $666 000.00 1 916 000
Chicago $711 000.00 1 596 000

46 / 57

MDX – Examples of queries

• Query:

SELECT

Measures.MEMBERS ON COLUMNS,

ORDER([Store].[Store City].MEMBERS, Measures.[Sales Count],

DESC) ON ROWS

FROM [Sales]

• Result:

Profit Sales Count

Toronto $747 000.00 2 196 000
Vancouver $785 000.00 1 956 000
New York $666 000.00 1 916 000
Chicago $711 000.00 1 596 000

46 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Time].[Year Difference] AS [Time].[2nd half] - [Time].[1st half]

SELECT { [Account].[Income], [Account].[Expenses] } ON COLUMNS,

{ [Time].[1st half], [Time].[2nd half], [Time].[Year Difference] }
ON ROWS

FROM [Financials]

• Result:

Income Expenses

1st Half 5 000 4 200
2nd Half 8 000 7 000
Year Difference 3 000 2 800

47 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Time].[Year Difference] AS [Time].[2nd half] - [Time].[1st half]

SELECT { [Account].[Income], [Account].[Expenses] } ON COLUMNS,

{ [Time].[1st half], [Time].[2nd half], [Time].[Year Difference] }
ON ROWS

FROM [Financials]

• Result:

Income Expenses

1st Half 5 000 4 200
2nd Half 8 000 7 000
Year Difference 3 000 2 800

47 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Account].[Net Income] AS

([Account].[Income] - [Account].[Expenses]) / [Account].[Income]

SELECT

[Account].[Income], [Account].[Expenses], [Account].[Net Income]

ON COLUMNS,

[Time].[1st half], [Time].[2nd half] ON ROWS

FROM [Financials]

• Result:

Income Expenses Net Income

1st Half 5 000 4 200 0.16
2nd Half 8 000 7 000 0.125

48 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Account].[Net Income] AS

([Account].[Income] - [Account].[Expenses]) / [Account].[Income]

SELECT

[Account].[Income], [Account].[Expenses], [Account].[Net Income]

ON COLUMNS,

[Time].[1st half], [Time].[2nd half] ON ROWS

FROM [Financials]

• Result:

Income Expenses Net Income

1st Half 5 000 4 200 0.16
2nd Half 8 000 7 000 0.125

48 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Time].[Year Difference] AS [Time].[2nd half] - [Time].[1st half],

SOLVE ORDER = 1

MEMBER [Account].[Net Income] AS

([Account].[Income] - [Account].[Expenses]) / [Account].[Income],

SOLVE ORDER = 2

SELECT

[Account].[Income], [Account].[Expenses], [Account].[Net Income] ON

COLUMNS,

[Time].[1st half], [Time].[2nd half], [Time].[Year Difference] ON

ROWS

FROM [Financials]

• Result:

Income Expenses Net Income

1st Half 5 000 4 200 0.16
2nd Half 8 000 7 000 0.125
Year Difference 3 000 2 800 0.066

49 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Time].[Year Difference] AS [Time].[2nd half] - [Time].[1st half],

SOLVE ORDER = 1

MEMBER [Account].[Net Income] AS

([Account].[Income] - [Account].[Expenses]) / [Account].[Income],

SOLVE ORDER = 2

SELECT

[Account].[Income], [Account].[Expenses], [Account].[Net Income] ON

COLUMNS,

[Time].[1st half], [Time].[2nd half], [Time].[Year Difference] ON

ROWS

FROM [Financials]

• Result:

Income Expenses Net Income

1st Half 5 000 4 200 0.16
2nd Half 8 000 7 000 0.125
Year Difference 3 000 2 800 0.066

49 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Time].[Year Difference] AS [Time].[2nd half] - [Time].[1st half],

SOLVE ORDER = 2

MEMBER [Account].[Net Income] AS

([Account].[Income] - [Account].[Expenses]) / [Account].[Income],

SOLVE ORDER = 1

SELECT

[Account].[Income], [Account].[Expenses], [Account].[Net Income] ON

COLUMNS,

[Time].[1st half], [Time].[2nd half], [Time].[Year Difference] ON

ROWS

FROM [Financials]

• Result:

Income Expenses Net Income

1st Half 5 000 4 200 0.16
2nd Half 8 000 7 000 0.125
Year Difference 3 000 2 800 -0.035

50 / 57

MDX – Examples of queries

• Query:

WITH MEMBER

[Time].[Year Difference] AS [Time].[2nd half] - [Time].[1st half],

SOLVE ORDER = 2

MEMBER [Account].[Net Income] AS

([Account].[Income] - [Account].[Expenses]) / [Account].[Income],

SOLVE ORDER = 1

SELECT

[Account].[Income], [Account].[Expenses], [Account].[Net Income] ON

COLUMNS,

[Time].[1st half], [Time].[2nd half], [Time].[Year Difference] ON

ROWS

FROM [Financials]

• Result:

Income Expenses Net Income

1st Half 5 000 4 200 0.16
2nd Half 8 000 7 000 0.125
Year Difference 3 000 2 800 -0.035

50 / 57

MDX – Examples of queries

• Query:

WITH SET

[Quarter1] AS GENERATE([Time].[Year].MEMBERS, {
[Time].CURRENTMEMBER.FIRSTCHILD })
SELECT [Quarter1] ON COLUMNS,

[Store].[Store Name].MEMBERS ON ROWS

FROM [Sales]

WHERE (Measures.[Profit])

• Result:

2010Q1 2011Q2 . . .

Saturn $ 147 000 $196 000
Media Markt $ 185 000 $156 000
Avans $ 166 000 $ 116 000

51 / 57

MDX – Examples of queries

• Query:

WITH SET

[Quarter1] AS GENERATE([Time].[Year].MEMBERS, {
[Time].CURRENTMEMBER.FIRSTCHILD })
SELECT [Quarter1] ON COLUMNS,

[Store].[Store Name].MEMBERS ON ROWS

FROM [Sales]

WHERE (Measures.[Profit])

• Result:

2010Q1 2011Q2 . . .

Saturn $ 147 000 $196 000
Media Markt $ 185 000 $156 000
Avans $ 166 000 $ 116 000

51 / 57

SQL vs. MDX

• Single member:

I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL:

where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’

I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX:

[City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):

I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL:

where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)

I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX:

{ ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

SQL vs. MDX

• Single member:
I SQL: where City = ’Redmond’
I MDX: [City].[Redmond]

• Multiple members (a set):
I SQL: where City IN (’Redmond’, ’Seattle’)
I MDX: { ([City].[Redmond]), ([City].[Seattle]) }

52 / 57

MDX

• SQL:

SELECT Sum(Sales), City FROM Sales

WHERE City IN (’Redmond’, ’Seattle’)

GROUP BY City

• MDX:

SELECT Measures.Sales ON 0,

NON EMPTY {([City].[Redmond]),([City].[Seattle])} ON 1

FROM Sales

53 / 57

MDX

• SQL:

SELECT Sum(Sales), City FROM Sales

WHERE City IN (’Redmond’, ’Seattle’)

GROUP BY City

• MDX:

SELECT Measures.Sales ON 0,

NON EMPTY {([City].[Redmond]),([City].[Seattle])} ON 1

FROM Sales

53 / 57

MDX

• SQL:

SELECT Sum(Sales) FROM Sales

WHERE City IN (’Redmond’, ’Seattle’)

• MDX:

SELECT Measures.Sales ON 0

FROM Sales

WHERE {([City].[Redmond]), ([City].[Seattle])}

54 / 57

MDX

• SQL:

SELECT Sum(Sales) FROM Sales

WHERE City IN (’Redmond’, ’Seattle’)

• MDX:

SELECT Measures.Sales ON 0

FROM Sales

WHERE {([City].[Redmond]), ([City].[Seattle])}

54 / 57

Outline

1 OLAP Queries in SQL

2 OLAP Queries in MDX

3 Summary

55 / 57

Summary

• Two main approaches for querying data warehouses.

• ROLAP servers: SQL and its OLAP extensions.

• MOLAP servers: MDX.

56 / 57

Bibliography

• J. Han and M. Kamber. Data Mining: Concepts and Techniques (second edition).

Morgan Kaufmann Publishers, 2006

• Mark Whitehorn, Robert Zare, and Mosha Pasumansky. Fast Track to MDX.

Springer, 2002

57 / 57

	OLAP Queries in SQL
	OLAP Queries in MDX
	Summary

