
MapReduce in Spark

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, first semester

Academic year 2017/18 (winter course)

1 / 54

Review of the previous lectures

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• ETL and OLAP systems:
I Extraction, transformation, load.
I ROLAP, MOLAP, HOLAP.
I Challenges in OLAP systems: a huge number of possible aggregations

to compute.

2 / 54

Outline

1 Motivation

2 MapReduce

3 Spark

4 Algorithms in Map-Reduce

5 Summary

3 / 54

Outline

1 Motivation

2 MapReduce

3 Spark

4 Algorithms in Map-Reduce

5 Summary

4 / 54

Motivation

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• New ideas:

I Scaling-out instead of scaling-up
I Move-code-to-data

5 / 54

Motivation

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• New ideas:

I Scaling-out instead of scaling-up
I Move-code-to-data

5 / 54

Motivation

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• New ideas:

I Scaling-out instead of scaling-up
I Move-code-to-data

5 / 54

Motivation

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• New ideas:

I Scaling-out instead of scaling-up
I Move-code-to-data

5 / 54

Motivation

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• New ideas:
I Scaling-out instead of scaling-up

I Move-code-to-data

5 / 54

Motivation

• Traditional DBMS vs. NoSQL

• New emerging applications: search engines, social networks, online
shopping, online advertising, recommender systems, etc.

• New computational challenges: WordCount, PageRank, etc.

• New ideas:
I Scaling-out instead of scaling-up
I Move-code-to-data

5 / 54

Outline

1 Motivation

2 MapReduce

3 Spark

4 Algorithms in Map-Reduce

5 Summary

6 / 54

MapReduce-based systems

• Accessible – run on large clusters of commodity machines or on cloud
computing services such as Amazon’s Elastic Compute Cloud (EC2).

• Robust – are intended to run on commodity hardware; desinged with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

• Scalable – scales linearly to handle larger data by adding more nodes
to the cluster.

• Simple – allow users to quickly write efficient parallel code.

7 / 54

MapReduce-based systems

• Accessible – run on large clusters of commodity machines or on cloud
computing services such as Amazon’s Elastic Compute Cloud (EC2).

• Robust – are intended to run on commodity hardware; desinged with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

• Scalable – scales linearly to handle larger data by adding more nodes
to the cluster.

• Simple – allow users to quickly write efficient parallel code.

7 / 54

MapReduce-based systems

• Accessible – run on large clusters of commodity machines or on cloud
computing services such as Amazon’s Elastic Compute Cloud (EC2).

• Robust – are intended to run on commodity hardware; desinged with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

• Scalable – scales linearly to handle larger data by adding more nodes
to the cluster.

• Simple – allow users to quickly write efficient parallel code.

7 / 54

MapReduce-based systems

• Accessible – run on large clusters of commodity machines or on cloud
computing services such as Amazon’s Elastic Compute Cloud (EC2).

• Robust – are intended to run on commodity hardware; desinged with
the assumption of frequent hardware malfunctions; they can
gracefully handle most such failures.

• Scalable – scales linearly to handle larger data by adding more nodes
to the cluster.

• Simple – allow users to quickly write efficient parallel code.

7 / 54

MapReduce: Two simple procedures

• Word count: A basic operation for every search engine.

• Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

• How to implement these procedures for efficient execution in a
distributed system?

• How much can we gain by such implementation?

• Let us focus on the word count problem . . .

8 / 54

MapReduce: Two simple procedures

• Word count: A basic operation for every search engine.

• Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

• How to implement these procedures for efficient execution in a
distributed system?

• How much can we gain by such implementation?

• Let us focus on the word count problem . . .

8 / 54

MapReduce: Two simple procedures

• Word count: A basic operation for every search engine.

• Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

• How to implement these procedures for efficient execution in a
distributed system?

• How much can we gain by such implementation?

• Let us focus on the word count problem . . .

8 / 54

MapReduce: Two simple procedures

• Word count: A basic operation for every search engine.

• Matrix-vector multiplication: A fundamental step in many algorithms,
for example, in PageRank.

• How to implement these procedures for efficient execution in a
distributed system?

• How much can we gain by such implementation?

• Let us focus on the word count problem . . .

8 / 54

Word count

• Count the number of times each word occurs in a set of documents:

Do as I say, not as I do.

Word Count

as 2
do 2
i 2

not 1
say 1

9 / 54

Word count

• Let us write the procedure in pseudo-code for a single machine:

d e f i n e wordCount as Mu l t i s e t ;

f o r each document i n documentSet {
T = to k e n i z e (document) ;

f o r each token i n T {
wordCount [token]++;

}

}

d i s p l a y (wordCount) ;

10 / 54

Word count

• Let us write the procedure in pseudo-code for a single machine:

d e f i n e wordCount as Mu l t i s e t ;

f o r each document i n documentSet {
T = to k e n i z e (document) ;

f o r each token i n T {
wordCount [token]++;

}

}

d i s p l a y (wordCount) ;

10 / 54

Word count

• Let us write the procedure in pseudo-code for many machines:

I First step:

d e f i n e wordCount as Mu l t i s e t ;

f o r each document i n documentSubset {
T = to k e n i z e (document) ;
f o r each token i n T {

wordCount [token]++;
}

}

sendToSecondPhase (wordCount) ;

I Second step:

d e f i n e tota lWordCount as Mu l t i s e t ;

f o r each wordCount r e c e i v e d from f i r s t P h a s e {
mul t i s e tAdd (totalWordCount , wordCount) ;

}

11 / 54

Word count

• Let us write the procedure in pseudo-code for many machines:
I First step:

d e f i n e wordCount as Mu l t i s e t ;

f o r each document i n documentSubset {
T = to k e n i z e (document) ;
f o r each token i n T {

wordCount [token]++;
}

}

sendToSecondPhase (wordCount) ;

I Second step:

d e f i n e tota lWordCount as Mu l t i s e t ;

f o r each wordCount r e c e i v e d from f i r s t P h a s e {
mul t i s e tAdd (totalWordCount , wordCount) ;

}

11 / 54

Word count

• Let us write the procedure in pseudo-code for many machines:
I First step:

d e f i n e wordCount as Mu l t i s e t ;

f o r each document i n documentSubset {
T = to k e n i z e (document) ;
f o r each token i n T {

wordCount [token]++;
}

}

sendToSecondPhase (wordCount) ;

I Second step:

d e f i n e tota lWordCount as Mu l t i s e t ;

f o r each wordCount r e c e i v e d from f i r s t P h a s e {
mul t i s e tAdd (totalWordCount , wordCount) ;

}

11 / 54

Word count

• To make the procedure work properly across a cluster of distributed
machines, we need to add a number of functionalities:

I Store files over many processing machines (of phase one).
I Write a disk-based hash table permitting processing without being

limited by RAM capacity.
I Partition the intermediate data (that is, wordCount) from phase one.
I Shuffle the partitions to the appropriate machines in phase two.
I Ensure fault tolerance.

12 / 54

MapReduce

• MapReduce programs are executed in two main phases, called
mapping and reducing:

I Map: the map function is written to convert input elements to
key-value pairs.

I Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.

13 / 54

MapReduce

• MapReduce programs are executed in two main phases, called
mapping and reducing:

I Map: the map function is written to convert input elements to
key-value pairs.

I Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.

13 / 54

MapReduce

• MapReduce programs are executed in two main phases, called
mapping and reducing:

I Map: the map function is written to convert input elements to
key-value pairs.

I Reduce: the reduce function is written to take pairs consisting of a key
and its list of associated values and combine those values in some way.

13 / 54

MapReduce

• The complete data flow:

Input Output

map (<k1, v1>) list(<k2, v2>)

reduce (<k2, list(<v2>) list(<k3, v3>)

14 / 54

MapReduce

Figure: The complete data flow

15 / 54

MapReduce

• The complete data flow:

I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

MapReduce

• The complete data flow:
I The input is structured as a list of key-value pairs: list(<k1,v1>).

I The list of key-value pairs is broken up and each individual key-value
pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

MapReduce

• The complete data flow:
I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

MapReduce

• The complete data flow:
I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.

I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

MapReduce

• The complete data flow:
I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.

I The output of all the mappers are (conceptually) aggregated into one
giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

MapReduce

• The complete data flow:
I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

MapReduce

• The complete data flow:
I The input is structured as a list of key-value pairs: list(<k1,v1>).
I The list of key-value pairs is broken up and each individual key-value

pair, <k1,v1>, is processed by calling the map function of the mapper
(the key k1 is often ignored by the mapper).

I The mapper transforms each <k1,v1> pair into a list of <k2,v2> pairs.
I The key-value pairs are processed in arbitrary order.
I The output of all the mappers are (conceptually) aggregated into one

giant list of <k2,v2> pairs. All pairs sharing the same k2 are grouped
together into a new aggregated key-value pair: <k2,list(v2)>.

I The framework asks the reducer to process each one of these
aggregated key-value pairs individually.

16 / 54

WordCount in MapReduce

• Map:
I For a pair <k1,document> produce a sequence of pairs <token,1>,

where token is a token/word found in the document.

map(S t r i n g f i l e name , S t r i n g document) {
L i s t<St r i ng> T = to k e n i z e (document) ;

f o r each token i n T {
emit ((S t r i n g) token , (I n t e g e r) 1) ;

}

}

17 / 54

WordCount in MapReduce

• Reduce
I For a pair <word, list(1, 1, ..., 1)> sum up all ones appearing

in the list and return <word, sum>, where sum is the sum of ones.

r educe (S t r i n g token , L i s t<I n t e g e r> v a l u e s) {
I n t e g e r sum = 0 ;

f o r each v a l u e i n v a l u e s {
sum = sum + va l u e ;

}

emit ((S t r i n g) token , (I n t e g e r) sum) ;
}

18 / 54

Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.

19 / 54

Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.

19 / 54

Combiner and partitioner

• Beside map and reduce there are two other important elements that
can be implemented within the MapReduce framework to control the
data flow.

• Combiner – perform local aggregation (the reduce step) on the map
node.

• Partitioner – divide the key space of the map output and assign the
key-value pairs to reducers.

19 / 54

Outline

1 Motivation

2 MapReduce

3 Spark

4 Algorithms in Map-Reduce

5 Summary

20 / 54

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:

I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:

I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:

I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:
I Spark SQL for SQL and structured data processing,

I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:
I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,

I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:
I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,

I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:
I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark is a fast and general-purpose cluster computing system.

• It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs.

• It also supports a rich set of higher-level tools including:
I Spark SQL for SQL and structured data processing,
I MLlib for machine learning,
I GraphX for graph processing,
I and Spark Streaming.

• For more check https://spark.apache.org/

21 / 54

https://spark.apache.org/

Spark

• Spark uses Hadoop which is a popular open-source implementation of
MapReduce.

• Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

• Hadoop Distributed File System (HDFS) is responsible for distributed
storage.

22 / 54

Spark

• Spark uses Hadoop which is a popular open-source implementation of
MapReduce.

• Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

• Hadoop Distributed File System (HDFS) is responsible for distributed
storage.

22 / 54

Spark

• Spark uses Hadoop which is a popular open-source implementation of
MapReduce.

• Hadoop works in a master/slave architecture for both distributed
storage and distributed computation.

• Hadoop Distributed File System (HDFS) is responsible for distributed
storage.

22 / 54

Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.

23 / 54

http://spark.apache.org/downloads.html

Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.

23 / 54

http://spark.apache.org/downloads.html

Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.

23 / 54

http://spark.apache.org/downloads.html

Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.

23 / 54

http://spark.apache.org/downloads.html

Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.

23 / 54

http://spark.apache.org/downloads.html

Installation of Spark

• Download Spark from

http://spark.apache.org/downloads.html

• Untar the spark archive:

tar xvfz spark-2.2.0-bin-hadoop2.7.tar

• To play with Spark there is no need to install HDFS . . .

• But, you can try to play around with HDFS.

23 / 54

http://spark.apache.org/downloads.html

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

HDFS

• Create new directories:

hdfs dfs -mkdir /user

hdfs dfs -mkdir /user/mynane

• Copy the input files into the distributed filesystem:

hdfs dfs -put data.txt /user/myname/data.txt

• View the files in the distributed filesystem:

hdfs dfs -ls /user/myname/

hdfs dfs -cat /user/myname/data.txt

24 / 54

WordCount in Hadoop

import j a v a . i o . I O E x c e p t i o n ;
import j a v a . u t i l . S t r i n g T o k e n i z e r ;

import org . apache . hadoop . c o n f . C o n f i g u r a t i o n ;
import org . apache . hadoop . f s . Path ;
import org . apache . hadoop . i o . I n t W r i t a b l e ;
import org . apache . hadoop . i o . Text ;
import org . apache . hadoop . mapreduce . Job ;
import org . apache . hadoop . mapreduce . Mapper ;
import org . apache . hadoop . mapreduce . Reducer ;
import org . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o r m a t ;
import org . apache . hadoop . mapreduce . l i b . output . F i l e O u t p u t F o r m a t ;

pub l i c c l a s s WordCount {

pub l i c s t a t i c c l a s s TokenizerMapper
extends Mapper<Object , Text , Text , I n t W r i t a b l e >{

p r i v a t e f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e (1) ;
p r i v a t e Text word = new Text () ;

pub l i c vo id map(Object key , Text v a l u e , Context c o n t e x t
) throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

S t r i n g T o k e n i z e r i t r = new S t r i n g T o k e n i z e r (v a l u e . t o S t r i n g ()) ;
wh i l e (i t r . hasMoreTokens ()) {

word . s e t (i t r . nextToken ()) ;
c o n t e x t . w r i t e (word , one) ;

}
}

}
(. . .)

25 / 54

WordCount in Hadoop

(. . .)
pub l i c s t a t i c c l a s s IntSumReducer

extends Reducer<Text , I n t W r i t a b l e , Text , I n t W r i t a b l e> {
p r i v a t e I n t W r i t a b l e r e s u l t = new I n t W r i t a b l e () ;

pub l i c vo id r e d u c e (Text key , I t e r a b l e <I n t W r i t a b l e> v a l u e s ,
Context c o n t e x t
) throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

i n t sum = 0 ;
f o r (I n t W r i t a b l e v a l : v a l u e s) {

sum += v a l . g e t () ;
}
r e s u l t . s e t (sum) ;
c o n t e x t . w r i t e (key , r e s u l t) ;

}
}

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) throws E x c e p t i o n {
C o n f i g u r a t i o n c o n f = new C o n f i g u r a t i o n () ;
Job j o b = Job . g e t I n s t a n c e (conf , ” word count ”) ;
j o b . s e t J a r B y C l a s s (WordCount . c l a s s) ;
j o b . s e t M a p p e r C l a s s (TokenizerMapper . c l a s s) ;
j o b . s e t C o m b i n e r C l a s s (IntSumReducer . c l a s s) ;
j o b . s e t R e d u c e r C l a s s (IntSumReducer . c l a s s) ;
j o b . s e t O u t p u t K e y C l a s s (Text . c l a s s) ;
j o b . s e t O u t p u t V a l u e C l a s s (I n t W r i t a b l e . c l a s s) ;
F i l e I n p u t F o r m a t . addInputPath (job , new Path (a r g s [0])) ;
F i l e O u t p u t F o r m a t . setOutputPath (job , new Path (a r g s [1])) ;
System . e x i t (j o b . w a i t F o r C o m p l e t i o n (t rue) ? 0 : 1) ;

}
}

26 / 54

WordCount in Spark

• The same code is much simpler in Spark

• To run the Spark shell type: ./bin/spark-shell

• The code

v a l t e x t F i l e = s c . t e x t F i l e (”˜/ data / a l l−b i b l e . t x t ”)
v a l c o u n t s = (t e x t F i l e . f l a tMap (l i n e => l i n e . s p l i t (” ”))

. map(word => (word , 1))

. reduceByKey (+))
c o u n t s . s a v e A s T e x t F i l e (”˜/ data / a l l−b i b l e−c o u n t s . t x t ”)

Alternatively:

v a l wordCounts = t e x t F i l e . f l a tMap (l i n e => l i n e . s p l i t (” ”)) . groupByKey (i d e n t i t y) .
count ()

27 / 54

Outline

1 Motivation

2 MapReduce

3 Spark

4 Algorithms in Map-Reduce

5 Summary

28 / 54

Algorithms in Map-Reduce

• How to implement fundamental algorithms in MapReduce?
I Matrix-vector multiplication.
I Relational-Algebra Operations.
I Matrix multiplication.

29 / 54

Matrix-vector Multiplication

• Let A to be large n×m matrix, and x a long vector of size m.

• The matrix-vector multiplication is defined as:

Ax = v,

where v = (v1, . . . , vn) and

vi =
m∑
j=1

aijxj .

30 / 54

Matrix-vector Multiplication

• Let A to be large n×m matrix, and x a long vector of size m.

• The matrix-vector multiplication is defined as:

Ax = v,

where v = (v1, . . . , vn) and

vi =

m∑
j=1

aijxj .

30 / 54

Matrix-vector multiplication

• Let us first assume that m is large, but not so large that vector x
cannot fit in main memory, and be part of the input to every Map
task.

• The matrix A is stored with explicit coordinates, as a triple (i, j, aij).

• We also assume the position of element xj in the vector x will be
stored in the analogous way.

31 / 54

Matrix-vector multiplication

• Map:

each map task will take the entire vector x and a chunk of the
matrix A. From each matrix element aij it produces the key-value
pair (i, aijxj). Thus, all terms of the sum that make up the
component vi of the matrix-vector product will get the same key.

• Reduce: a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, vi) where:

vi =

m∑
j=1

aijxj .

32 / 54

Matrix-vector multiplication

• Map: each map task will take the entire vector x and a chunk of the
matrix A. From each matrix element aij it produces the key-value
pair (i, aijxj). Thus, all terms of the sum that make up the
component vi of the matrix-vector product will get the same key.

• Reduce: a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, vi) where:

vi =

m∑
j=1

aijxj .

32 / 54

Matrix-vector multiplication

• Map: each map task will take the entire vector x and a chunk of the
matrix A. From each matrix element aij it produces the key-value
pair (i, aijxj). Thus, all terms of the sum that make up the
component vi of the matrix-vector product will get the same key.

• Reduce:

a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, vi) where:

vi =

m∑
j=1

aijxj .

32 / 54

Matrix-vector multiplication

• Map: each map task will take the entire vector x and a chunk of the
matrix A. From each matrix element aij it produces the key-value
pair (i, aijxj). Thus, all terms of the sum that make up the
component vi of the matrix-vector product will get the same key.

• Reduce: a reduce task has simply to sum all the values associated
with a given key i. The result will be a pair (i, vi) where:

vi =

m∑
j=1

aijxj .

32 / 54

Matrix-vector multiplication in Spark

• The Spark code is quite simple:

v a l x = s c . t e x t F i l e (”˜/ data / x . t x t ”) . map(l i n e => { v a l t = l i n e . s p l i t (” , ”) ; (t (0) .
t r i m . t o I n t , t (1) . t r i m . toDouble)})

v a l v e c t o r X = x . map{case (i , v) => v} . c o l l e c t
v a l b r oa dc a s t ed X = s c . b r o a d c a s t (v e c t o r X)
v a l m a t r i x = s c . t e x t F i l e (”˜/ data /M. t x t ”) . map(l i n e => { v a l t = l i n e . s p l i t (” , ”) ; (t

(0) . t r i m . t o I n t , t (1) . t r i m . t o I n t , t (2) . t r i m . toDouble)})
v a l v = m a t r i x . map { case (i , j , a) => (i , a ∗ b ro ad ca s te dX . v a l u e (j−1)) } . reduceByKey (

+)
v . toDF . orderBy (” 1 ”) . show

33 / 54

Matrix-Vector Multiplication with Large Vector v

• Divide the matrix into vertical stripes of equal width and divide the
vector into an equal number of horizontal stripes, of the same height.

×

• The ith stripe of the matrix multiplies only components from the ith
stripe of the vector.

• Thus, we can divide the matrix into one file for each stripe, and do
the same for the vector.

34 / 54

Matrix-Vector Multiplication with Large Vector v

• Divide the matrix into vertical stripes of equal width and divide the
vector into an equal number of horizontal stripes, of the same height.

×

• The ith stripe of the matrix multiplies only components from the ith
stripe of the vector.

• Thus, we can divide the matrix into one file for each stripe, and do
the same for the vector.

34 / 54

Matrix-Vector Multiplication with Large Vector v

• Each Map task is assigned a chunk from one the stripes of the matrix
and gets the entire corresponding stripe of the vector.

• The Map and Reduce tasks can then act exactly as in the case where
Map tasks get the entire vector.

35 / 54

Relational-Algebra Operations

Example (Relation Links)

From To

url1 url2

url1 url3

url2 url3

url2 url4

.

36 / 54

Relational-Algebra Operations

• Selection

• Projection

• Union, Intersection, and Difference

• Natural Join

• Grouping and Aggregation

37 / 54

Relational-Algebra Operations

• R, S - relation

• t, t′ - a tuple

• C - a condition of selection

• A, B, C - subset of attributes

• a, b, c - attribute values for a given subset of attributes

38 / 54

Selection

• Map:

For each tuple t in R, test if it satisfies C. If so, produce the
key-value pair (t, t). That is, both the key and value are t.

• Reduce: The Reduce function is the identity. It simply passes each
key-value pair to the output.

39 / 54

Selection

• Map: For each tuple t in R, test if it satisfies C. If so, produce the
key-value pair (t, t). That is, both the key and value are t.

• Reduce:

The Reduce function is the identity. It simply passes each
key-value pair to the output.

39 / 54

Selection

• Map: For each tuple t in R, test if it satisfies C. If so, produce the
key-value pair (t, t). That is, both the key and value are t.

• Reduce: The Reduce function is the identity. It simply passes each
key-value pair to the output.

39 / 54

Projection

• Map: For each tuple t in R, construct a tuple t′ by eliminating from t
those components whose attributes are not in A. Output the
key-value pair (t′, t′).

• Reduce: For each key t′ produced by any of the Map tasks, there will
be one or more key-value pairs (t′, t′). The Reduce function turns
(t′, [t′, t′, . . . , t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for
this key t′.

40 / 54

Projection

• Map:

For each tuple t in R, construct a tuple t′ by eliminating from t
those components whose attributes are not in A. Output the
key-value pair (t′, t′).

• Reduce: For each key t′ produced by any of the Map tasks, there will
be one or more key-value pairs (t′, t′). The Reduce function turns
(t′, [t′, t′, . . . , t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for
this key t′.

40 / 54

Projection

• Map: For each tuple t in R, construct a tuple t′ by eliminating from t
those components whose attributes are not in A. Output the
key-value pair (t′, t′).

• Reduce:

For each key t′ produced by any of the Map tasks, there will
be one or more key-value pairs (t′, t′). The Reduce function turns
(t′, [t′, t′, . . . , t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for
this key t′.

40 / 54

Projection

• Map: For each tuple t in R, construct a tuple t′ by eliminating from t
those components whose attributes are not in A. Output the
key-value pair (t′, t′).

• Reduce: For each key t′ produced by any of the Map tasks, there will
be one or more key-value pairs (t′, t′). The Reduce function turns
(t′, [t′, t′, . . . , t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for
this key t′.

40 / 54

Union

• Map:

Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce: Associated with each key t there will be either one or two
values. Produce output (t, t) in either case.

41 / 54

Union

• Map: Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce:

Associated with each key t there will be either one or two
values. Produce output (t, t) in either case.

41 / 54

Union

• Map: Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce: Associated with each key t there will be either one or two
values. Produce output (t, t) in either case.

41 / 54

Intersection

• Map:

Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce: If key t has value list [t, t], then produce (t, t). Otherwise,
produce nothing.

42 / 54

Intersection

• Map: Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce:

If key t has value list [t, t], then produce (t, t). Otherwise,
produce nothing.

42 / 54

Intersection

• Map: Turn each input tuple t either from relation R or S into a
key-value pair (t, t).

• Reduce: If key t has value list [t, t], then produce (t, t). Otherwise,
produce nothing.

42 / 54

Minus

• Map:

For a tuple t in R, produce key-value pair (t, name(R)), and for
a tuple t in S, produce key-value pair (t, name(S)).

• Reduce: For each key t, do the following.

1 If the associated value list is [name(R)], then produce (t, t).
2 If the associated value list is anything else, which could only be

[name(R), name(S)], [name(S), name(R)], or [name(S)], produce
nothing.

43 / 54

Minus

• Map: For a tuple t in R, produce key-value pair (t, name(R)), and for
a tuple t in S, produce key-value pair (t, name(S)).

• Reduce:

For each key t, do the following.

1 If the associated value list is [name(R)], then produce (t, t).
2 If the associated value list is anything else, which could only be

[name(R), name(S)], [name(S), name(R)], or [name(S)], produce
nothing.

43 / 54

Minus

• Map: For a tuple t in R, produce key-value pair (t, name(R)), and for
a tuple t in S, produce key-value pair (t, name(S)).

• Reduce: For each key t, do the following.

1 If the associated value list is [name(R)], then produce (t, t).
2 If the associated value list is anything else, which could only be

[name(R), name(S)], [name(S), name(R)], or [name(S)], produce
nothing.

43 / 54

Natural Join

• Let us assume that we join relation R(A,B) with relation S(B,C)
that share the same attribute B.

• Map:

For each tuple (a, b) of R, produce the key-value pair
(b, (name(R), a)). For each tuple (b, c) of S, produce the key-value
pair (b, (name(S), c)).

• Reduce: Each key value b will be associated with a list of pairs that
are either of the form (name(R), a) or (name(S), c). Construct all
pairs consisting of one with first component name(R) and the other
with first component S, say (name(R), a) and (name(S), c). The
output for key b is (b, [(a1, b, c1), (a2, b, c2), ...]), that is, b associated
with the list of tuples that can be formed from an R-tuple and an
S-tuple with a common b value.

44 / 54

Natural Join

• Let us assume that we join relation R(A,B) with relation S(B,C)
that share the same attribute B.

• Map: For each tuple (a, b) of R, produce the key-value pair
(b, (name(R), a)). For each tuple (b, c) of S, produce the key-value
pair (b, (name(S), c)).

• Reduce:

Each key value b will be associated with a list of pairs that
are either of the form (name(R), a) or (name(S), c). Construct all
pairs consisting of one with first component name(R) and the other
with first component S, say (name(R), a) and (name(S), c). The
output for key b is (b, [(a1, b, c1), (a2, b, c2), ...]), that is, b associated
with the list of tuples that can be formed from an R-tuple and an
S-tuple with a common b value.

44 / 54

Natural Join

• Let us assume that we join relation R(A,B) with relation S(B,C)
that share the same attribute B.

• Map: For each tuple (a, b) of R, produce the key-value pair
(b, (name(R), a)). For each tuple (b, c) of S, produce the key-value
pair (b, (name(S), c)).

• Reduce: Each key value b will be associated with a list of pairs that
are either of the form (name(R), a) or (name(S), c). Construct all
pairs consisting of one with first component name(R) and the other
with first component S, say (name(R), a) and (name(S), c). The
output for key b is (b, [(a1, b, c1), (a2, b, c2), ...]), that is, b associated
with the list of tuples that can be formed from an R-tuple and an
S-tuple with a common b value.

44 / 54

Grouping and Aggregation

• Let assume that we group a relation R(A,B,C) by attributes A and
aggregate values of B.

• Map:

For each tuple (a, b, c) produce the key-value pair (a, b).

• Reduce: Each key a represents a group. Apply the aggregation
operator θ to the list [b1, b2, . . . , bn] of B-values associated with key
a. The output is the pair (a, x), where x is the result of applying θ to
the list. For example, if θ is SUM, then x = b1 + b2 + . . .+ bn, and if θ
is MAX, then x is the largest of b1, b2,. . . , bn.

45 / 54

Grouping and Aggregation

• Let assume that we group a relation R(A,B,C) by attributes A and
aggregate values of B.

• Map: For each tuple (a, b, c) produce the key-value pair (a, b).

• Reduce:

Each key a represents a group. Apply the aggregation
operator θ to the list [b1, b2, . . . , bn] of B-values associated with key
a. The output is the pair (a, x), where x is the result of applying θ to
the list. For example, if θ is SUM, then x = b1 + b2 + . . .+ bn, and if θ
is MAX, then x is the largest of b1, b2,. . . , bn.

45 / 54

Grouping and Aggregation

• Let assume that we group a relation R(A,B,C) by attributes A and
aggregate values of B.

• Map: For each tuple (a, b, c) produce the key-value pair (a, b).

• Reduce: Each key a represents a group. Apply the aggregation
operator θ to the list [b1, b2, . . . , bn] of B-values associated with key
a. The output is the pair (a, x), where x is the result of applying θ to
the list. For example, if θ is SUM, then x = b1 + b2 + . . .+ bn, and if θ
is MAX, then x is the largest of b1, b2,. . . , bn.

45 / 54

Matrix Multiplication

• If M is a matrix with element mij in row i and column j, and N is a
matrix with element njk in row j and column k, then the product:

P =MN

is the matrix P with element pik in row i and column k, where:

pik =

∑
j

mijnjk

46 / 54

Matrix Multiplication

• If M is a matrix with element mij in row i and column j, and N is a
matrix with element njk in row j and column k, then the product:

P =MN

is the matrix P with element pik in row i and column k, where:

pik =
∑
j

mijnjk

46 / 54

Matrix Multiplication

• We can think of a matrix M and N as a relation with three
attributes: the row number, the column number, and the value in
that row and column, i.e.,:

M(I, J, V) and N(J,K,W)

with the following tuples, respectively:

(i, j,mij) and (j, k, njk).

• In case of sparsity of M and N , this relational representation is very
efficient in terms of space.

• The product MN is almost a natural join followed by grouping and
aggregation.

47 / 54

Matrix Multiplication

• Map: Send each matrix element mij to the key value pair:

(j, (M, i,mij)) .

Analogously, send each matrix element njk to the key value pair:

(j, (N, k, njk)) .

• Reduce: For each key j, examine its list of associated values. For
each value that comes from M , say (M, i,mij), and each value that
comes from N , say (N, k, njk), produce the tuple

(i, k, v = mijnjk),

The output of the Reduce function is a key j paired with the list of all
the tuples of this form that we get from j:

(j, [(i1, k1, v1), (i2, k2, v2), . . . , (ip, kp, vp)]) .

48 / 54

Matrix Multiplication

• Map:

Send each matrix element mij to the key value pair:

(j, (M, i,mij)) .

Analogously, send each matrix element njk to the key value pair:

(j, (N, k, njk)) .

• Reduce: For each key j, examine its list of associated values. For
each value that comes from M , say (M, i,mij), and each value that
comes from N , say (N, k, njk), produce the tuple

(i, k, v = mijnjk),

The output of the Reduce function is a key j paired with the list of all
the tuples of this form that we get from j:

(j, [(i1, k1, v1), (i2, k2, v2), . . . , (ip, kp, vp)]) .

48 / 54

Matrix Multiplication

• Map: Send each matrix element mij to the key value pair:

(j, (M, i,mij)) .

Analogously, send each matrix element njk to the key value pair:

(j, (N, k, njk)) .

• Reduce:

For each key j, examine its list of associated values. For
each value that comes from M , say (M, i,mij), and each value that
comes from N , say (N, k, njk), produce the tuple

(i, k, v = mijnjk),

The output of the Reduce function is a key j paired with the list of all
the tuples of this form that we get from j:

(j, [(i1, k1, v1), (i2, k2, v2), . . . , (ip, kp, vp)]) .

48 / 54

Matrix Multiplication

• Map: Send each matrix element mij to the key value pair:

(j, (M, i,mij)) .

Analogously, send each matrix element njk to the key value pair:

(j, (N, k, njk)) .

• Reduce: For each key j, examine its list of associated values. For
each value that comes from M , say (M, i,mij), and each value that
comes from N , say (N, k, njk), produce the tuple

(i, k, v = mijnjk),

The output of the Reduce function is a key j paired with the list of all
the tuples of this form that we get from j:

(j, [(i1, k1, v1), (i2, k2, v2), . . . , (ip, kp, vp)]) .

48 / 54

Matrix Multiplication

• Map: From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((i1, k1), v1) , ((i2, k2), v2) , . . . , ((ip, kp), vp) .

• Reduce: For each key (i, k), produce the sum of the list of values
associated with this key. The result is a pair

((i, k), v) ,

where v is the value of the element in row i and column k of the
matrix

P =MN.

49 / 54

Matrix Multiplication

• Map:

From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((i1, k1), v1) , ((i2, k2), v2) , . . . , ((ip, kp), vp) .

• Reduce: For each key (i, k), produce the sum of the list of values
associated with this key. The result is a pair

((i, k), v) ,

where v is the value of the element in row i and column k of the
matrix

P =MN.

49 / 54

Matrix Multiplication

• Map: From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((i1, k1), v1) , ((i2, k2), v2) , . . . , ((ip, kp), vp) .

• Reduce:

For each key (i, k), produce the sum of the list of values
associated with this key. The result is a pair

((i, k), v) ,

where v is the value of the element in row i and column k of the
matrix

P =MN.

49 / 54

Matrix Multiplication

• Map: From the pairs that are output from the previous Reduce
function produce p key-value pairs:

((i1, k1), v1) , ((i2, k2), v2) , . . . , ((ip, kp), vp) .

• Reduce: For each key (i, k), produce the sum of the list of values
associated with this key. The result is a pair

((i, k), v) ,

where v is the value of the element in row i and column k of the
matrix

P =MN.

49 / 54

Matrix Multiplication with One Map-Reduce Step

• Map:

For each element mij of M , produce a key-value pair

((i, k), (M, j,mij)) ,

for k = 1, 2, . . ., up to the number of columns of N .
Also, for each element njk of N , produce a key-value pair

((i, k), (N, j, njk)) ,

for i = 1, 2, . . ., up to the number of rows of M .

50 / 54

Matrix Multiplication with One Map-Reduce Step

• Map: For each element mij of M , produce a key-value pair

((i, k), (M, j,mij)) ,

for k = 1, 2, . . ., up to the number of columns of N .
Also, for each element njk of N , produce a key-value pair

((i, k), (N, j, njk)) ,

for i = 1, 2, . . ., up to the number of rows of M .

50 / 54

Matrix Multiplication with One Map-Reduce Step

• Reduce:

Each key (i, k) will have an associated list with all the values

(M, j,mij) and (N, j, njk),

for all possible values of j. We connect the two values on the list that
have the same value of j, for each j:

I We sort by j the values that begin with M and sort by j the values
that begin with N , in separate lists,

I The jth values on each list must have their third components, mij and
njk extracted and multiplied,

I Then, these products are summed and the result is paired with (i, k) in
the output of the Reduce function.

51 / 54

Matrix Multiplication with One Map-Reduce Step

• Reduce: Each key (i, k) will have an associated list with all the values

(M, j,mij) and (N, j, njk),

for all possible values of j. We connect the two values on the list that
have the same value of j, for each j:

I We sort by j the values that begin with M and sort by j the values
that begin with N , in separate lists,

I The jth values on each list must have their third components, mij and
njk extracted and multiplied,

I Then, these products are summed and the result is paired with (i, k) in
the output of the Reduce function.

51 / 54

Outline

1 Motivation

2 MapReduce

3 Spark

4 Algorithms in Map-Reduce

5 Summary

52 / 54

Summary

• Computational burden → data partitioning, distributed systems.

• New data-intensive challenges like search engines.

• MapReduce: The overall idea and simple algorithms.

• Spark: MapReduce in practice.

• Algorithms Using Map-Reduce
I Relational-Algebra Operations,
I Matrix multiplication.

53 / 54

Bibliography

• A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2011
http://infolab.stanford.edu/~ullman/mmds.html

• J.Lin and Ch. Dyer. Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010
http://lintool.github.com/MapReduceAlgorithms/

• Ch. Lam. Hadoop in Action.

Manning Publications Co., 2011

• https://spark.apache.org

54 / 54

http://infolab.stanford.edu/~ullman/mmds.html
http://lintool.github.com/MapReduceAlgorithms/
https://spark.apache.org

	Motivation
	MapReduce
	Spark
	Algorithms in Map-Reduce
	Summary

