
Evolution of Database Systems

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, first semester

Academic year 2017/18 (winter course)

1 / 45

Review of the Previous Lecture

• Mining of massive datasets,

• Operational and analytical database systems,

• Data mining: discovering models for data,

• Different aspects of data mining:
I ideas,
I data,
I computational power,
I human computation,
I statistics,
I algorithms.

• Many amazing implementations of data mining.

2 / 45

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 NoSQL

4 Processing of Massive Datasets

5 Summary

3 / 45

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 NoSQL

4 Processing of Massive Datasets

5 Summary

4 / 45

5 / 45

Data management

• Data is a vital organizational resource.

• Data needs to be managed like other important business assets.

• Most organizations could not survive without quality data about their
internal operations and external environment.

6 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:

I Allow users to create new databases and specify their schemas (logical
structure of data),

I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,
I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:

I Allow users to create new databases and specify their schemas (logical
structure of data),

I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,
I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:

I Allow users to create new databases and specify their schemas (logical
structure of data),

I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,
I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:
I Allow users to create new databases and specify their schemas (logical

structure of data),

I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,
I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:
I Allow users to create new databases and specify their schemas (logical

structure of data),
I Give users the ability of query the data and modify the data,

I Support the storage of very large amounts of data, allowing efficient
access to data for queries and database modifications,

I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:
I Allow users to create new databases and specify their schemas (logical

structure of data),
I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,

I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:
I Allow users to create new databases and specify their schemas (logical

structure of data),
I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,
I Enable durability, the recovery of the database in the face of failures,

I Control access to data from many users at once in isolation and ensure
the actions on data to be performed completely.

7 / 45

Database management system

• A database is a collection of information that exists over a long
period of time.

• A database management system (DBMS) is specialized software
responsible for managing the database.

• The DBMS is expected to:
I Allow users to create new databases and specify their schemas (logical

structure of data),
I Give users the ability of query the data and modify the data,
I Support the storage of very large amounts of data, allowing efficient

access to data for queries and database modifications,
I Enable durability, the recovery of the database in the face of failures,
I Control access to data from many users at once in isolation and ensure

the actions on data to be performed completely.

7 / 45

Data models

• Data model is an abstract model that defines how data is
represented and accessed.

I Logical data model – from a user’s point of view
I Physical data model – from a computer’s point of view.

• Data model defines:
I Data objects and types, relationships between data objects, and

constraints imposed on them.
I Operations for defining, searching and updating data.

8 / 45

Approaches to data management

• File management system

• Database management system

I Early database management systems (e.g. hierarchical or network data
models)

I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system

I Early database management systems (e.g. hierarchical or network data
models)

I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)

I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems

I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems
I Post-relational database systems

I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems
I Post-relational database systems
I Object-based database systems

I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Approaches to data management

• File management system

• Database management system
I Early database management systems (e.g. hierarchical or network data

models)
I Relational database systems
I Post-relational database systems
I Object-based database systems
I Multi-dimensional database systems

• NoSQL and BigData

• NewSQL

• The choice of the approach strongly depends on a given
application!

9 / 45

Two types of systems

• Operational systems:

I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:

I support knowledge workers (e.g., manager, executive, analyst) in
decision making,

I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,

I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:

I support knowledge workers (e.g., manager, executive, analyst) in
decision making,

I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).

I Main tasks: processing of a huge number of concurrent transactions,
and insuring data integrity.

• Analytical systems:

I support knowledge workers (e.g., manager, executive, analyst) in
decision making,

I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:

I support knowledge workers (e.g., manager, executive, analyst) in
decision making,

I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:

I support knowledge workers (e.g., manager, executive, analyst) in
decision making,

I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:
I support knowledge workers (e.g., manager, executive, analyst) in

decision making,

I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:
I support knowledge workers (e.g., manager, executive, analyst) in

decision making,
I Also referred to as on-line analytical processing (OLAP).

I Main tasks: effective processing of multidimensional queries
concerning huge volumes of data.

I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:
I support knowledge workers (e.g., manager, executive, analyst) in

decision making,
I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.

I Database systems of a write-once-read-many-times type.

10 / 45

Two types of systems

• Operational systems:
I Support day-to-day operations of an organization,
I Also referred to as on-line transaction processing (OLTP).
I Main tasks: processing of a huge number of concurrent transactions,

and insuring data integrity.

• Analytical systems:
I support knowledge workers (e.g., manager, executive, analyst) in

decision making,
I Also referred to as on-line analytical processing (OLAP).
I Main tasks: effective processing of multidimensional queries

concerning huge volumes of data.
I Database systems of a write-once-read-many-times type.

10 / 45

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 NoSQL

4 Processing of Massive Datasets

5 Summary

11 / 45

Analytical database systems

• Data warehouses,

• Business intelligence,

• Computational and analytical tools,

• Scientific databases.

12 / 45

Analytical database systems

13 / 45

Data warehouses

• Data warehouse is defined as a subject-oriented, integrated,
time-variant, and non-volatile collection of data in support of
management’s decision-making process.

I Subject oriented: oriented to the major subject areas of the
corporation that have been defined in the data model.

I Integrated: there is no consistency in encoding, naming conventions,
etc., among different data sources that are heterogeneous data sources
(when data is moved to the warehouse, it is converted).

I Non-volatile: warehouse data is loaded and accessed; update of data
does not occur in the data warehouse environment.

I Time-variant: the time horizon for the data warehouse is significantly
longer than that of operational systems.

14 / 45

Data warehouses

• Data warehouse is defined as a subject-oriented, integrated,
time-variant, and non-volatile collection of data in support of
management’s decision-making process.

I Subject oriented: oriented to the major subject areas of the
corporation that have been defined in the data model.

I Integrated: there is no consistency in encoding, naming conventions,
etc., among different data sources that are heterogeneous data sources
(when data is moved to the warehouse, it is converted).

I Non-volatile: warehouse data is loaded and accessed; update of data
does not occur in the data warehouse environment.

I Time-variant: the time horizon for the data warehouse is significantly
longer than that of operational systems.

14 / 45

Data warehouses

• Data warehouse is defined as a subject-oriented, integrated,
time-variant, and non-volatile collection of data in support of
management’s decision-making process.

I Subject oriented: oriented to the major subject areas of the
corporation that have been defined in the data model.

I Integrated: there is no consistency in encoding, naming conventions,
etc., among different data sources that are heterogeneous data sources
(when data is moved to the warehouse, it is converted).

I Non-volatile: warehouse data is loaded and accessed; update of data
does not occur in the data warehouse environment.

I Time-variant: the time horizon for the data warehouse is significantly
longer than that of operational systems.

14 / 45

Data warehouses

• Data warehouse is defined as a subject-oriented, integrated,
time-variant, and non-volatile collection of data in support of
management’s decision-making process.

I Subject oriented: oriented to the major subject areas of the
corporation that have been defined in the data model.

I Integrated: there is no consistency in encoding, naming conventions,
etc., among different data sources that are heterogeneous data sources
(when data is moved to the warehouse, it is converted).

I Non-volatile: warehouse data is loaded and accessed; update of data
does not occur in the data warehouse environment.

I Time-variant: the time horizon for the data warehouse is significantly
longer than that of operational systems.

14 / 45

Data warehouses

• Data warehouse is defined as a subject-oriented, integrated,
time-variant, and non-volatile collection of data in support of
management’s decision-making process.

I Subject oriented: oriented to the major subject areas of the
corporation that have been defined in the data model.

I Integrated: there is no consistency in encoding, naming conventions,
etc., among different data sources that are heterogeneous data sources
(when data is moved to the warehouse, it is converted).

I Non-volatile: warehouse data is loaded and accessed; update of data
does not occur in the data warehouse environment.

I Time-variant: the time horizon for the data warehouse is significantly
longer than that of operational systems.

14 / 45

Example

• University authorities decided to analyze teaching performance by
using the data collected in databases owned by the university
containing information about students, instructors, lectures, faculties,
etc.

• They would like to get answers for the following queries:

I What is the average score of students over academic years?
I What is the number of students over academic years?
I What is the average score by faculties, instructors, etc.?
I What is the distribution of students over faculties, semesters, etc.?
I . . .

15 / 45

Example

• University authorities decided to analyze teaching performance by
using the data collected in databases owned by the university
containing information about students, instructors, lectures, faculties,
etc.

• They would like to get answers for the following queries:
I What is the average score of students over academic years?
I What is the number of students over academic years?
I What is the average score by faculties, instructors, etc.?
I What is the distribution of students over faculties, semesters, etc.?
I . . .

15 / 45

Example

• An exemplary query could be the following:

SELECT Instructor, Academic_year, AVG(Grade)

FROM Data_Warehouse

GROUP BY Instructor, Academic_year

• And the result:

Academic year Name AVG(Grade)

2013/14 Stefanowski 4.2
2014/15 Stefanowski 4.5
2013/14 S lowiński 4.1
2014/15 S lowiński 4.3
2014/15 Dembczyński 4.6

16 / 45

Motivation

• The result is also commonly given as a pivot table:

AVG(Grade) Academic year

Name 2013/2014 2014/2015

Stefanowski 4.2 4.5
S lowiński 4.1 4.3
Dembczyński 4.6

17 / 45

Motivation

• The questions to be answered by the DW designer:

I Send queries to existing databases or design a new database for
analytical purposes?

I How to design a database for analytical queries?
I How to prepare an integrated view of data and move data from

operational to analytical system?

18 / 45

Motivation

• The questions to be answered by the DW designer:
I Send queries to existing databases or design a new database for

analytical purposes?

I How to design a database for analytical queries?
I How to prepare an integrated view of data and move data from

operational to analytical system?

18 / 45

Motivation

• The questions to be answered by the DW designer:
I Send queries to existing databases or design a new database for

analytical purposes?
I How to design a database for analytical queries?

I How to prepare an integrated view of data and move data from
operational to analytical system?

18 / 45

Motivation

• The questions to be answered by the DW designer:
I Send queries to existing databases or design a new database for

analytical purposes?
I How to design a database for analytical queries?
I How to prepare an integrated view of data and move data from

operational to analytical system?

18 / 45

Data warehouses

• OLAP and OLTP requirements are different

I OLTP: fast transaction processing is important, data must be
up-to-date, and consistent,

I OLAP: complex queries that consume lots of resources (CPUs, disk
bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse

I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,

I OLAP: complex queries that consume lots of resources (CPUs, disk
bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse

I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse

I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse

I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse

I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse

I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse
I Design a database schema for OLAP queries,

I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse
I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,

I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse
I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,

I Periodically refresh data in the data warehouse.

19 / 45

Data warehouses

• OLAP and OLTP requirements are different
I OLTP: fast transaction processing is important, data must be

up-to-date, and consistent,
I OLAP: complex queries that consume lots of resources (CPUs, disk

bandwidth), consistency can be relaxed, data does not have to be
up-to-date, but needs historical data,

I OLAP queries can slow down OLTP transactions.

• OLAP and OLTP in the same system is often impractical.

• Solution: build a data warehouse
I Design a database schema for OLAP queries,
I Copy and integrate data from different sources,
I Optimize data organization and tune system for OLAP,
I Periodically refresh data in the data warehouse.

19 / 45

There are typically a number of different dimensions from
which a given pool of data can be analyzed. This plural
perspective, or Multidimensional Conceptual View appears
to be the way most business persons naturally view their
enterprise.

E.F. Codd, S.B. Codd and C.T. Salley, 1993

20 / 45

Conceptual schemes of data warehouses

• Three main goals for logical design:
I Simplicity:

• Users should understand the design,
• Data model should match users’ conceptual model,
• Queries should be easy and intuitive to write.

I Expressiveness:
• Include enough information to answer all important queries,
• Include all relevant data (without irrelevant data).

I Performance:
• An efficient physical design should be possible to apply.

21 / 45

Three basic conceptual schemes

• Star schema,

• Snowflake schema,

• Fact constellations.

22 / 45

Star schema

• A single table in the middle connected to a number of dimension
tables.

23 / 45

Star schema

• A single table in the middle connected to a number of dimension
tables.

23 / 45

Star schema

• Measures, e.g. grades, price, quantity.

I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table

I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.

I Measures depend on a set of dimensions, e.g. student grade depends
on student, course, instructor, faculty, academic year, etc.

• Fact table

I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table

I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table

I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table
I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table
I Relates the dimensions to the measures.

• Dimension tables

I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table
I Relates the dimensions to the measures.

• Dimension tables
I Represent information about dimensions (student, academic year, etc.).

I Each dimension has a set of descriptive attributes.

24 / 45

Star schema

• Measures, e.g. grades, price, quantity.
I Measures should be aggregative.
I Measures depend on a set of dimensions, e.g. student grade depends

on student, course, instructor, faculty, academic year, etc.

• Fact table
I Relates the dimensions to the measures.

• Dimension tables
I Represent information about dimensions (student, academic year, etc.).
I Each dimension has a set of descriptive attributes.

24 / 45

Fact table

• Each fact table contains measurements about a process of interest.

• Each fact row contains foreign keys to dimension tables and numerical
measure columns.

• Any new fact is added to the fact table.

• The aggregated fact columns are the matter of the analysis.

25 / 45

Fact table

• Each fact table contains measurements about a process of interest.

• Each fact row contains foreign keys to dimension tables and numerical
measure columns.

• Any new fact is added to the fact table.

• The aggregated fact columns are the matter of the analysis.

25 / 45

Fact table

• Each fact table contains measurements about a process of interest.

• Each fact row contains foreign keys to dimension tables and numerical
measure columns.

• Any new fact is added to the fact table.

• The aggregated fact columns are the matter of the analysis.

25 / 45

Fact table

• Each fact table contains measurements about a process of interest.

• Each fact row contains foreign keys to dimension tables and numerical
measure columns.

• Any new fact is added to the fact table.

• The aggregated fact columns are the matter of the analysis.

25 / 45

Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.

26 / 45

Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.

26 / 45

Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.

26 / 45

Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.

26 / 45

Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.

26 / 45

Dimension tables

• Each dimension table corresponds to a real-world object or concept,
e.g. customer, product, region, employee, store, etc..

• Dimension tables contain many descriptive columns.

• Generally do not have too many rows (in comparison to the fact
table).

• Content is relatively static.

• The attributes of dimension tables are used for filtering and grouping.

• Dimension tables describe facts stored in the fact table.

26 / 45

Fact table vs. Dimension tables

• Fact table:

I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,

I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),

I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),

I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table

I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table
I wide,

I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table
I wide,
I small (few rows),

I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table
I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),

I static.

Facts contain numbers, dimensions contain labels

27 / 45

Fact table vs. Dimension tables

• Fact table:
I narrow,
I big (many rows),
I numeric (rows are described by numerical measures),
I dynamic (growing over time).

• Dimension table
I wide,
I small (few rows),
I descriptive (rows are described by descriptive attributes),
I static.

Facts contain numbers, dimensions contain labels

27 / 45

Denormalization

• Denormalization is the process of attempting to optimize the
performance of a database by adding redundant data or by grouping
data.

• Denormalization helps cover up the inefficiencies inherent in relational
database software.

• Normalize until it hurts, denormalize until it works :)

28 / 45

Denormalization

• Denormalization is the process of attempting to optimize the
performance of a database by adding redundant data or by grouping
data.

• Denormalization helps cover up the inefficiencies inherent in relational
database software.

• Normalize until it hurts, denormalize until it works :)

28 / 45

Denormalization

• Denormalization is the process of attempting to optimize the
performance of a database by adding redundant data or by grouping
data.

• Denormalization helps cover up the inefficiencies inherent in relational
database software.

• Normalize until it hurts, denormalize until it works :)

28 / 45

Data models in OLAP systems

• Relational,

• Multidimensional.

29 / 45

Multidimensional data model

• Retail sales data:

Location:Vancouver

Time Items
(quarters) TV Computer Phone Security

Q1 605 825 14 400

Q2 680 952 31 512

Q3 812 1023 30 501

Q4 927 1038 38 580

30 / 45

Multidimensional data model

• Similar information for other cities:
Location:Vancouver
Time Items
(quarters) TV Computer Phone Security
Q1 605 825 14 400
Q2 680 952 31 512
Q3 812 1023 30 501
Q4 927 1038 38 580

Location:Toronto
Time Items
(quarters) TV Computer Phone Security
Q1 1087 968 38 872
Q2 1130 1024 41 952
Q3 1034 1048 45 1002
Q4 1142 1091 52 984

Location:Chicago
Time Items
(quarters) TV Computer Phone Security
Q1 854 882 89 623
Q2 943 890 64 698
Q3 1023 924 59 789
Q4 1129 992 63 870

Location:New York
Time Items
(quarters) TV Computer Phone Security
Q1 818 746 43 591
Q2 894 769 52 682
Q3 940 795 58 728
Q4 978 864 59 784

31 / 45

Multidimensional cube

• More dimensions possible.

32 / 45

Different levels of aggregation

• Sales(time, product, *)

Time Items
(quarters) TV Computer Phone Security

Q1 3364 3421 184 2486

Q2 3647 3635 188 2817

Q3 3809 3790 186 3020

Q4 4176 3985 212 3218

• Sales(time, *, *); Sales(*, *, *)

33 / 45

Operators in multidimensional data model

• Roll up – summarize data
along a dimension hierarchy.

• Drill down – go from higher
level summary to lower level
summary or detailed data.

• Slice and dice – corresponds
to selection and projection.

• Pivot – reorient cube.

• Raking, Time functions, etc.

34 / 45

Exploring the cube

Time Items
(quarters) TV Computer Phone Security
Q1 3364 3421 184 2486
Q2 3647 3635 188 2817
Q3 3809 3790 186 3020
Q4 4176 3985 212 3218

⇔

Time Items
TV Computer Phone Security

Q1 3364 3421 184 2486
Q2 3647 3635 188 2817
Q3 3809 3790 186 3020

October 1172 960 105 1045
Q4 November 1005 1340 45 987

December 1999 1685 62 1186

35 / 45

OLTP vs. OLAP

OLTP OLAP

users clerk, IT professional knowledge worker

function day to day operations decision support

DB design application-oriented subject-oriented

Data current, up-to-date, de-
tailed, flat, relational

isolated, historical, summa-
rized, multidimensional, in-
tegrated, consolidated

usage repetitive ad-hoc

access read/write, lots of scans

unit of work short, simple transaction complex query

records accessed tens millions

#users thousands hundreds

db size 100MB-GB 100GB-TB

metric transaction throughput query throughput, response

36 / 45

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 NoSQL

4 Processing of Massive Datasets

5 Summary

37 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS

I Flexible schema (less restricted than typical RDBMS, but may not
support join operations)

I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS

I Flexible schema (less restricted than typical RDBMS, but may not
support join operations)

I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS

I Flexible schema (less restricted than typical RDBMS, but may not
support join operations)

I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS
I Flexible schema (less restricted than typical RDBMS, but may not

support join operations)

I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS
I Flexible schema (less restricted than typical RDBMS, but may not

support join operations)
I Quicker/cheaper to set up

I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS
I Flexible schema (less restricted than typical RDBMS, but may not

support join operations)
I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)

I Relaxed consistency → higher performance and availability, but fewer
guarantees (like ACID)

I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS
I Flexible schema (less restricted than typical RDBMS, but may not

support join operations)
I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)

I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS
I Flexible schema (less restricted than typical RDBMS, but may not

support join operations)
I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)

I No declarative query language (requires more programming, but new
paradigms like MapReduce appear)

38 / 45

What is NoSQL?

• Not every data management/analysis problem is best solved
exclusively using a traditional relational DBMS

• No means rather “Not only” and SQL states for “traditional
relational DBMS”.

• NoSQL systems are alternative to traditional relational DBMS
I Flexible schema (less restricted than typical RDBMS, but may not

support join operations)
I Quicker/cheaper to set up
I Massive scalability (scale-out instead of scale-up)
I Relaxed consistency → higher performance and availability, but fewer

guarantees (like ACID)
I Not all operations supported (e.g., join operation)
I No declarative query language (requires more programming, but new

paradigms like MapReduce appear)

38 / 45

NoSQL

• Different types of models:

I MapReduce frameworks,
I key-values stores,
I column stores and BigTable implementations,
I document-oriented databases,
I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

NoSQL

• Different types of models:
I MapReduce frameworks,

I key-values stores,
I column stores and BigTable implementations,
I document-oriented databases,
I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

NoSQL

• Different types of models:
I MapReduce frameworks,
I key-values stores,

I column stores and BigTable implementations,
I document-oriented databases,
I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

NoSQL

• Different types of models:
I MapReduce frameworks,
I key-values stores,
I column stores and BigTable implementations,

I document-oriented databases,
I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

NoSQL

• Different types of models:
I MapReduce frameworks,
I key-values stores,
I column stores and BigTable implementations,
I document-oriented databases,

I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

NoSQL

• Different types of models:
I MapReduce frameworks,
I key-values stores,
I column stores and BigTable implementations,
I document-oriented databases,
I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

NoSQL

• Different types of models:
I MapReduce frameworks,
I key-values stores,
I column stores and BigTable implementations,
I document-oriented databases,
I graph database systems.

• Design for different purposes, also for OLTP and OLAP.

39 / 45

BigData – a lot of Vs1

• Volume: the quantity of generated and stored data.

• Variety: the type and nature of the data.

• Velocity: the speed at which the data is generated and processed.

• Variability: inconsistency of the data.

• Veracity: the quality of captured data.

1
https://en.wikipedia.org/wiki/Big_data

40 / 45

https://en.wikipedia.org/wiki/Big_data

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 NoSQL

4 Processing of Massive Datasets

5 Summary

41 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization:

row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access:

hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas:

star schema, flexible schemas.

42 / 45

Processing of massive datasets

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

42 / 45

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 NoSQL

4 Processing of Massive Datasets

5 Summary

43 / 45

Summary

• Significant difference between operational and analytical systems.

• Different data models dedicated to particular applications.

• OLAP vs. OLTP.

• Relational model vs. multidimensional model.

• Star schema.

• NoSQL = “Not only traditional relational DBMS.”

• Processing of massive datasets.

44 / 45

Bibliography

• H. Garcia-Molina, J. D. Ullman, and J. Widom. Systemy baz danych. Kompletny
podrecznik. Wydanie II.

Helion, 2011

• R. Kimball and M. Ross. The Data Warehouse Toolkit: The Definitive Guide to
Dimensional Modeling, 3rd Edition.

John Wiley & Sons, 2013

• Nathan Marz and James Warren. Big Data: Principles and best practices of
scalable real-time data systems.

Manning Publications Co., 2015

45 / 45

	Evolution of database systems
	Analytical Database Systems
	NoSQL
	Processing of Massive Datasets
	Summary

