
Processing of Very Large Data

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Software Development Technologies
Master studies, first semester

Academic year 2017/18 (winter course)

1 / 77



Review of the Previous Lecture

• Mining of massive datasets.

• Evolution of database systems.

• Dimensional modeling.

• ETL and OLAP systems.

• MapReduce in Spark

2 / 77



Processing of very large data

• Physical data organization: row-based, column-based, key-values
stores, multi-dimensional arrays, etc.

• Partitioning and sharding (Map-Reduce, distributed databases).

• Data access: hashing and sorting (→ tree-based indexing).

• Advanced data structures: multi-dimensional indexes, inverted lists,
bitmaps, special-purpose indexes.

• Summarization, materialization, and denormalization.

• Data compression.

• Approximate query processing.

• Probabilistic data structures and algorithms.

• Data schemas: star schema, flexible schemas.

3 / 77



Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

4 / 77



Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

5 / 77



Physical storage

• Row-based,

• Column-based,

• Key-values stores,

• Multi-dimensional arrays,

• Dense vs. sparse structures.

6 / 77



Physical storage

• The following table can be stored in different ways:

Year Products Sales

2010 Mountain 5076
2010 Road 4005
2010 Touring 3560
2011 Mountain 6503
2011 Road 4503
2011 Touring 3445

7 / 77



Physical storage

• Row-based storage:

001: 2010, Mountain, 5076, 002: 2010, Road, 4005, 003: 2010,
Touring, 3560, 004: 2011, Mountain, 6503, 005: 2011, Road, 4503
006: 2011, Touring, 3445.

• Column-based storage:

Y: 2010, 2010, 2010, 2011, 2011, 2011, P: Mountain, Road, Touring,
Mountain, Road, Touring, S: 5076, 5004, 3560, 6503, 4503, 3445.

or

Y: 2010: 001, 002, 003, 2011: 004, 005, 006, P: Mountain: 001,
004, Road: 002, 005, Touring: 003, 006, S: 5076: 001, 4005, 002,
3560: 003, 6503: 004, 4503: 005, 3445: 006

8 / 77



Physical storage

• Row-based storage:

001: 2010, Mountain, 5076, 002: 2010, Road, 4005, 003: 2010,
Touring, 3560, 004: 2011, Mountain, 6503, 005: 2011, Road, 4503
006: 2011, Touring, 3445.

• Column-based storage:

Y: 2010, 2010, 2010, 2011, 2011, 2011, P: Mountain, Road, Touring,
Mountain, Road, Touring, S: 5076, 5004, 3560, 6503, 4503, 3445.

or

Y: 2010: 001, 002, 003, 2011: 004, 005, 006, P: Mountain: 001,
004, Road: 002, 005, Touring: 003, 006, S: 5076: 001, 4005, 002,
3560: 003, 6503: 004, 4503: 005, 3445: 006

8 / 77



Physical storage

• Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011,
006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring,
004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076,
002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

• Multidimensional array:

Y: 2010, 2011, P: Mountain, Road, Touring, S: 5076, 4005, 3560,
6503, 4503, 3445

9 / 77



Physical storage

• Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011,
006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring,
004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076,
002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

• Multidimensional array:

Y: 2010, 2011, P: Mountain, Road, Touring, S: 5076, 4005, 3560,
6503, 4503, 3445

9 / 77



Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

10 / 77



Denormalization and summarization

• Relational and multidimensional model with summarizations:

Year Products Sales

2010 Mountain 5076
2010 Road 4005
2010 Touring 3560
2011 Mountain 6503
2011 Road 4503
2011 Touring 3445
2010 * 12461
2011 * 14451

* Mountain 11579
* Road 6503
* Touring 7005
* * 27092

Product Mountain Road Touring All

Year 2010 5076 4005 3560 12641
2011 6503 4503 3445 14451

All 11579 8508 7005 27092

11 / 77



Denormalization and summarization

• Trade-off between query performance and load performance

• To improve performance of query processing:
I Precompute as much as possible,
I Build additional data structures like indexes.

• The costs of the above are:
I Disk space,
I Load time,
I Processing time of building and updating of data structures.

12 / 77



Denormalization and summarization

• Typical techniques:

I Aggregate (summary) tables: aggregating fact tables across some
dimensions,

I Dimension aggregates: for example, base date dimension, monthly
aggregate dimension, yearly aggregate dimension,

I ROLAP: Materialized views or indexed views,
I MOLAP: Subcubes or aggregations.

13 / 77



Denormalization and summarization

• Typical techniques:
I Aggregate (summary) tables: aggregating fact tables across some

dimensions,

I Dimension aggregates: for example, base date dimension, monthly
aggregate dimension, yearly aggregate dimension,

I ROLAP: Materialized views or indexed views,
I MOLAP: Subcubes or aggregations.

13 / 77



Denormalization and summarization

• Typical techniques:
I Aggregate (summary) tables: aggregating fact tables across some

dimensions,
I Dimension aggregates: for example, base date dimension, monthly

aggregate dimension, yearly aggregate dimension,

I ROLAP: Materialized views or indexed views,
I MOLAP: Subcubes or aggregations.

13 / 77



Denormalization and summarization

• Typical techniques:
I Aggregate (summary) tables: aggregating fact tables across some

dimensions,
I Dimension aggregates: for example, base date dimension, monthly

aggregate dimension, yearly aggregate dimension,
I ROLAP: Materialized views or indexed views,

I MOLAP: Subcubes or aggregations.

13 / 77



Denormalization and summarization

• Typical techniques:
I Aggregate (summary) tables: aggregating fact tables across some

dimensions,
I Dimension aggregates: for example, base date dimension, monthly

aggregate dimension, yearly aggregate dimension,
I ROLAP: Materialized views or indexed views,
I MOLAP: Subcubes or aggregations.

13 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:

I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:

I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,

I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,

I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.

I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



Denormalization and summarization

• Store in data warehouse results useful for common queries.

• Three strategies to materialize cuboids:
I every,
I none,
I some.

• The problem relies in selection of cuboids to be materialized (size,
sharing, access frequency):

I high number of materialized cuboids → huge size of data warehouse.
I small number of materialized cuboids → slow query processing.

• Aggregates should be computed from previously computed
aggregates, rather than from the base fact table.

• The problem appears with maintenance of the materialized views:
recomputation and incremental updating.

14 / 77



View vs. materialized views

• View is a derived relation defined in terms of base (stored) relations.

• Materialized view (or indexed view) is a view stored in a database
that is updated from the original base tables from time to time.

15 / 77



Query re-write

• Query rewrite: transforms a given query expressed in terms of base
tables or views into a statement accessing one or more materialized
views (e.g., aggregates) that are defined on the detail tables.

• The transformation is transparent to the end user or application,
requiring no intervention and no reference to the materialized view in
the query.

16 / 77



Query re-write

• Example: Materialized views in SQL
I Materialized view V :

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1990

GROUP BY p.name, p.year of release;

I Materialized view V consists of:
• Join of the fact table with dimension table,
• Group by dimension attributes,
• Aggregation of measures included in fact table.

17 / 77



Query re-write

• Example: Materialized views in SQL

I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:

• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:

• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:

• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:

• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:
• all the projected columns are also in V ,

• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:
• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,

• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:
• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,

• the attributes present in selection conditions that are strictly stronger
than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, p.year of release, sum(s.price) as price

FROM Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1991

GROUP BY p.name, p.year of release;

I Query rewrite

SELECT p.name, p.year of release, price

FROM V

WHERE year of release > 1991;

I The query re-write is possible since the exact match holds:
• all the projected columns are also in V ,
• the same aggregate functions are used on all measures,
• all selection conditions in the query imply the selection conditions in V ,
• the attributes present in selection conditions that are strictly stronger

than selection conditions defined in V , are also present in V .

18 / 77



Query re-write

• Example: Materialized views in SQL

I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):

• all attributes involved in query are present in V ,
• selection conditions are stronger,
• grouping is more general.

19 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):

• all attributes involved in query are present in V ,
• selection conditions are stronger,
• grouping is more general.

19 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):

• all attributes involved in query are present in V ,
• selection conditions are stronger,
• grouping is more general.

19 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):

• all attributes involved in query are present in V ,
• selection conditions are stronger,
• grouping is more general.

19 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):
• all attributes involved in query are present in V ,

• selection conditions are stronger,
• grouping is more general.

19 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):
• all attributes involved in query are present in V ,
• selection conditions are stronger,

• grouping is more general.

19 / 77



Query re-write

• Example: Materialized views in SQL
I Exemplary query:

SELECT p.name, sum(s.price) FROM

Sales s, Product p

WHERE s.product id = p.id AND p.year of release > 1995

GROUP BY p.name;

I Query rewrite

SELECT name,sum(price)

FROM V

WHERE year of release > 1995

GROUP BY name;

I The query re-write is possible since the additional grouping can be
performed on V (non-exact match):
• all attributes involved in query are present in V ,
• selection conditions are stronger,
• grouping is more general.

19 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:

I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.

I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.
I Full refresh and view maintenance.

I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Maintenance of materialized views

• Let V be the materialized view defined by a query Q over a set R of
relations

V = Q(R) .

• When the relations in R are updated, then V becomes inconsistent.

• View refreshment is the process that reestablishes the consistency
between R and V .

• Different aspects:
I Immediate and delayed refresh.
I Full refresh and view maintenance.
I Maintainable and partially maintainable views.

• Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

20 / 77



Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

21 / 77



Data access

• Hashing

• Sorting (→ tree-based indexing).

22 / 77



Grouping

• Group-by is usually performed in the following way:

I Partition tuples on grouping attributes: tuples in same group are
placed together, and in different groups separated,

I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:

I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,

I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:

I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:

I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:

I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,

• All tuples with same grouping attributes will appear together in sorted
list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing

• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing
• Hash by the grouping attributes,

• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing
• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,

• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing
• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Group-by is usually performed in the following way:
I Partition tuples on grouping attributes: tuples in same group are

placed together, and in different groups separated,
I Scan tuples in each partition and compute aggregate expressions.

• Two techniques for partitioning:
I Sorting

• Sort by the grouping attributes,
• All tuples with same grouping attributes will appear together in sorted

list.

I Hashing
• Hash by the grouping attributes,
• All tuples with same grouping attributes will hash to same bucket,
• Sort or re-hash within each bucket to resolve collisions.

• In OLAP queries use intermediate results to compute more general
group-bys.

23 / 77



Grouping

• Example: Grouping by sorting (Month, City):

Month City Sale

March Poznań 105
March Warszawa 135
March Poznań 50
May Warszawa 100
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75

−→

Month City Sale

March Poznań 105
March Poznań 50
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75
May Warszawa 100

↓
Month City Sale

March Poznań 155
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 175

24 / 77



Grouping

• Example: Grouping by sorting (Month, City):

Month City Sale

March Poznań 105
March Warszawa 135
March Poznań 50
May Warszawa 100
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75

−→

Month City Sale

March Poznań 105
March Poznań 50
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75
May Warszawa 100

↓
Month City Sale

March Poznań 155
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 175

24 / 77



Grouping

• Example: Grouping by sorting (Month, City):

Month City Sale

March Poznań 105
March Warszawa 135
March Poznań 50
May Warszawa 100
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75

−→

Month City Sale

March Poznań 105
March Poznań 50
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 75
May Warszawa 100

↓
Month City Sale

March Poznań 155
March Warszawa 135
April Poznań 150
April Kraków 175
May Poznań 70
May Warszawa 175

24 / 77



Aggregates computed from aggregates

All rows and columns

Academic year Name AVG(Grade)

2011/2 Stefanowski 4.2
2011/2 S lowiński 4.1
2012/3 Stefanowski 4.0
2012/3 S lowiński 3.8
2013/4 Stefanowski 3.9
2013/4 S lowiński 3.6
2013/4 Dembczyński 4.8

Academic year AVG(Grade)

2011/2 4.15
2012/3 3.85
2013/4 3.8

Name AVG(Grade)

Stefanowski 3.9
S lowiński 3.6
Dembczyński 4.8

AVG(Grade)

3.95

25 / 77



Indexes

• Indexes allow efficient search on some attributes due to the way they
are organized.

• An index is a “thin” copy of a relation (not all columns from the
relation are included, the index is sorted in a particular way).

• Index-only plans use small indexes in place of large relations.

• Query processing on indexes – without accessing base tables.

• Indexes on two and more columns.

26 / 77



Indexes

• Indexes allow efficient search on some attributes due to the way they
are organized.

• An index is a “thin” copy of a relation (not all columns from the
relation are included, the index is sorted in a particular way).

• Index-only plans use small indexes in place of large relations.

• Query processing on indexes – without accessing base tables.

• Indexes on two and more columns.

26 / 77



Indexes

• Indexes allow efficient search on some attributes due to the way they
are organized.

• An index is a “thin” copy of a relation (not all columns from the
relation are included, the index is sorted in a particular way).

• Index-only plans use small indexes in place of large relations.

• Query processing on indexes – without accessing base tables.

• Indexes on two and more columns.

26 / 77



Indexes

• Indexes allow efficient search on some attributes due to the way they
are organized.

• An index is a “thin” copy of a relation (not all columns from the
relation are included, the index is sorted in a particular way).

• Index-only plans use small indexes in place of large relations.

• Query processing on indexes – without accessing base tables.

• Indexes on two and more columns.

26 / 77



Indexes

• Indexes allow efficient search on some attributes due to the way they
are organized.

• An index is a “thin” copy of a relation (not all columns from the
relation are included, the index is sorted in a particular way).

• Index-only plans use small indexes in place of large relations.

• Query processing on indexes – without accessing base tables.

• Indexes on two and more columns.

26 / 77



Indexes

• B-Trees,

• Inverted lists,

• Bitmap index,

• Bit-sliced index,

• Projection index,

• Join index.

27 / 77



Bitmap index

• Bitmap indexes use bit arrays (commonly called ”bitmaps”) to encode
values on a given attribute and answer queries by performing bitwise
logical operations on these bitmaps.

Customer City Car

C1 Detroit Ford
C2 Chicago Honda
C3 Detroit Honda
C4 Poznań Ford
C5 Paris BMW
C6 Paris Nissan

↓
Customer Chicago Detroit Paris Poznań

C1 0 1 0 0
C2 1 0 0 0
C3 0 1 0 0
C4 0 0 0 1
C5 0 0 1 0
C6 0 0 1 0

→

Bitmap Array of bytes

Chicago 010000 (00)
Detroit 101000 (00)
Paris 010011 (00)

Poznań 000100 (00)

28 / 77



Bitmap index

• Bitmap indexes use bit arrays (commonly called ”bitmaps”) to encode
values on a given attribute and answer queries by performing bitwise
logical operations on these bitmaps.

Customer City Car

C1 Detroit Ford
C2 Chicago Honda
C3 Detroit Honda
C4 Poznań Ford
C5 Paris BMW
C6 Paris Nissan

↓
Customer Chicago Detroit Paris Poznań

C1 0 1 0 0
C2 1 0 0 0
C3 0 1 0 0
C4 0 0 0 1
C5 0 0 1 0
C6 0 0 1 0

→

Bitmap Array of bytes

Chicago 010000 (00)
Detroit 101000 (00)
Paris 010011 (00)

Poznań 000100 (00)

28 / 77



Bitmap index

• Bitmap indexes use bit arrays (commonly called ”bitmaps”) to encode
values on a given attribute and answer queries by performing bitwise
logical operations on these bitmaps.

Customer City Car

C1 Detroit Ford
C2 Chicago Honda
C3 Detroit Honda
C4 Poznań Ford
C5 Paris BMW
C6 Paris Nissan

↓
Customer Chicago Detroit Paris Poznań

C1 0 1 0 0
C2 1 0 0 0
C3 0 1 0 0
C4 0 0 0 1
C5 0 0 1 0
C6 0 0 1 0

→

Bitmap Array of bytes

Chicago 010000 (00)
Detroit 101000 (00)
Paris 010011 (00)

Poznań 000100 (00)

28 / 77



Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.

29 / 77



Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.

29 / 77



Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.

29 / 77



Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.

29 / 77



Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.

29 / 77



Bitmap index

• Allows the use of efficient bit operations to answer some queries
(hardware support for bitmap operations),

• Very efficient for certain types of queries: selection on two attributes,

• Usually bitmap indexes are compressed,

• Works poorly for high cardinality domains since the number of
bitmaps increases,

• Difficult to maintain – need reorganization when relation sizes change
(new bitmaps)

• Can be used with B-Trees.

29 / 77



Compressing Bitmaps

• Compression Pros and Cons
I Reduce storage space → reduce number of I/Os required
I Need to compress/uncompress → increase CPU work required
I Operate directly on compressed bitmap → improved performance

• Bitmaps consist mostly of zeros

• Compression via run length encoding:
I Example: 00000001000010000000000001100000
I Just record the length of sequences composed of zeros or ones:
I Store this as “7,1,4,1,12,2,5”,
I alternatively: record the number of zeros between adjacent ones
I Store this as “7,4,12,0,5”.

30 / 77



Compressing Bitmaps

• Simple run length encoding is not sufficient and we need structured
encoding:

I Example: 00000001000010000000000001100000
I We can store this as “7,4,12,0,5”
I But we cannot use a bitmap to encode the above since:
I 11110011000101 could be read not only as 7,4,12,0,5:

(111)(100)(1100)(0)(101),
I but also as 3,25,8,2,1: (11)(11001)(1000)(10)(1).

31 / 77



γ codes

• Represent a gap G as a pair of length and offset.

• Offset is the gap in binary, with the leading bit chopped off.

• For example 13 → 1101 → 101

• Length is the length of offset.

• For 13 (offset 101), this is 3.

• Encode length in unary code: 1110.

• Gamma code of 13 is the concatenation of length and offset:
1110101.

32 / 77



Unary code

• Represent n as n 1s with a final 0.

• Unary code for 3 is 1110.

• Unary code for 40 is 11111111111111111111111111111111111111110
.

33 / 77



Gamma code examples

number unary code length offset γ code
0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

34 / 77



Length of gamma code

• The length of offset is blog2Gc bits.

• The length of length is blog2Gc+ 1 bits,

• So the length of the entire code is 2× blog2Gc+ 1 bits.

• γ codes are always of odd length.

• Gamma codes are within a factor of 2 of the optimal encoding length
log2G.

I Assuming equal-probability gaps – but the distribution is actually
highly skewed.

I We can use gamma codes for any distribution.
I The code is universal.

35 / 77



Bitmap compression with BBC (Byte-Aligned Bitmap Code) codes

• Divide bitmap into bytes:
I Gap bytes are all zeros
I Tail bytes contain some ones
I A chunk consists of some gap bytes followed by some tail bytes

• Encode chunks:
I Header byte
I Gap length bytes (sometimes)
I Verbatim tail bytes (sometimes)

Exemplary bitmap:

00000000 00000000 00010000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 01000000 00100010

36 / 77



Bitmap compression with BBC codes

• Number of gap bytes:
I 0-6: Gap length stored in header byte
I 7-127: One gap-length byte follows header byte
I 128-32767: Two gap-length bytes follow header byte

• “Special” tail:
I Tail consists of only 1 byte
I The tail byte has only 1 non-zero bit
I Non-special tails are stored verbatim (uncompressed)

• Number of tail bytes:
I Number of tail bytes is stored in header byte
I Special tails are encoded by indicating which bit is set

37 / 77



Bitmap compression with BBC codes

• Header byte:
I Bits 1-3: length of (short) gap

• Gaps of length 0-6 do not require gap length bytes
• 111 = gap length > 6

I Bit 4: Is the tail special?
I Bits 5-8:

• Number of verbatim bytes (if bit 4=0)
• Index of non-zero bit in tail byte (if bit 4 = 1)

38 / 77



Bitmap compression with BBC codes

• Gap length bytes:
I Either one or two bytes
I Only present if bits 1-3 of header are 111
I Gap lengths of 7-127 encoded in single byte
I Gap lengths of 128-32767 encoded in 2 bytes
I 1st bit of 1st byte set to 1 to indicate 2-byte case

• Verbatim bytes:
I 0-15 uncompressed tail bytes
I Number is indicated in header

39 / 77



Bitmap compression with BBC codes

Exemplary bitmap:

00000000 00000000 00010000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 01000000 00100010

40 / 77



Bitmap compression with BBC codes

Exemplary bitmap:

00000000 00000000 00010000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 01000000 00100010

Bitmap after compression

01010100 11100010 00001101 01000000 00100010

40 / 77



Bitmap compression with BBC codes

Exemplary bitmap:

00000000 00000000 00010000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 01000000 00100010

• Bitmap consists of two chunks:
I Chunk 1

• Bytes 1-3
• Two gap bytes, one tail byte
• Encoding: (010)(1)(0100)
• No gap length bytes since gap length < 7
• No verbatim bytes since tail is special

Bitmap after compression

01010100 11100010 00001101 01000000 00100010

40 / 77



Bitmap compression with BBC codes

Exemplary bitmap:

00000000 00000000 00010000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 01000000 00100010

• Bitmap consists of two chunks:
I Chunk 2

• Bytes 4-18
• 13 gap bytes, two tail bytes
• One gap length byte gives gap length = 13
• Two verbatim bytes for tail
• Encoding: (111)(0)(0010) 00001101 01000000 00100010

Bitmap after compression

01010100 11100010 00001101 01000000 00100010

40 / 77



Bit-sliced index

• Bit-sliced index is used for fact table measures and numerical
(integer) attributes:

I Efficient aggregation,
I Efficient range filtering.

• Definition:

I Assume, that values of attribute a are integer numbers coded by n+ 1
bits. In this case, attribute a can be stored as binary attributes
a0, a1, . . . , an, such that

a =

n∑
i=0

2iai = a0 + 2a1 + 22a2 · · ·+ 2nan.

Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.

41 / 77



Bit-sliced index

• Bit-sliced index is used for fact table measures and numerical
(integer) attributes:

I Efficient aggregation,

I Efficient range filtering.

• Definition:

I Assume, that values of attribute a are integer numbers coded by n+ 1
bits. In this case, attribute a can be stored as binary attributes
a0, a1, . . . , an, such that

a =

n∑
i=0

2iai = a0 + 2a1 + 22a2 · · ·+ 2nan.

Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.

41 / 77



Bit-sliced index

• Bit-sliced index is used for fact table measures and numerical
(integer) attributes:

I Efficient aggregation,
I Efficient range filtering.

• Definition:

I Assume, that values of attribute a are integer numbers coded by n+ 1
bits. In this case, attribute a can be stored as binary attributes
a0, a1, . . . , an, such that

a =

n∑
i=0

2iai = a0 + 2a1 + 22a2 · · ·+ 2nan.

Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.

41 / 77



Bit-sliced index

• Bit-sliced index is used for fact table measures and numerical
(integer) attributes:

I Efficient aggregation,
I Efficient range filtering.

• Definition:

I Assume, that values of attribute a are integer numbers coded by n+ 1
bits. In this case, attribute a can be stored as binary attributes
a0, a1, . . . , an, such that

a =
n∑

i=0

2iai = a0 + 2a1 + 22a2 · · ·+ 2nan.

Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.

41 / 77



Bit-sliced index

• Bit-sliced index is used for fact table measures and numerical
(integer) attributes:

I Efficient aggregation,
I Efficient range filtering.

• Definition:
I Assume, that values of attribute a are integer numbers coded by n+ 1

bits. In this case, attribute a can be stored as binary attributes
a0, a1, . . . , an, such that

a =

n∑
i=0

2iai = a0 + 2a1 + 22a2 · · ·+ 2nan.

Each binary attribute ai can be stored as bitmap index. Set of bitmap
indexes of ai, i = 0, . . . , n, is the bit-sliced index.

41 / 77



Bit-sliced index

• Example:

Amount

5
13
2
6
7

Bitmap

0101
1101
0010
0110
0111

Bit-sliced index:
I B4: 01000
I B3: 11011
I B2: 00111
I B1: 11001

42 / 77



Bit-sliced index

• Example:
I Computing the sum:

Amount

5
13
2
6
7
Suma: 33

Bit-sliced index: Counting ones:
B4: 01000 1
B3: 11011 4
B2: 00111 3
B1: 11001 3

Final results: 1 · 23 + 4 · 22 + 3 · 21 + 3 · 20 = 8 + 16 + 6 + 3 = 33

Problem: How to efficiently count the number of ones in a bitmap?

43 / 77



Bit-sliced index

• Example:
I Computing the sum:

Amount

5
13
2
6
7
Suma: 33

Bit-sliced index: Counting ones:
B4: 01000 1
B3: 11011 4
B2: 00111 3
B1: 11001 3

Final results: 1 · 23 + 4 · 22 + 3 · 21 + 3 · 20 = 8 + 16 + 6 + 3 = 33

Problem: How to efficiently count the number of ones in a bitmap?

43 / 77



Fast bitmap count

• Count the number of 1’s in a bitmap:

I Treat the bitmap as a byte array.
I Pre-compute lookup table with number of 1’s in each byte.
I Cycle through bitmap one byte at a time, accumulating count using

lookup table.

• Pseudocode:
numSetBits[0] = 0;

numSetBits[1] = 1;

numSetBits[2] = 1;

numSetBits[3] = 2;

. . .
numSetBits[255] = 8;

count = 0;

for (int i = 0; i < n/8; i++)

count += numSetBits[bitmap[i]];

• Treating bitmap as short int array → even faster
I Lookup table has 65536 entries instead of 256.
I Bitmap of n bits → only add n/16 numbers.

44 / 77



Fast bitmap count

• Count the number of 1’s in a bitmap:
I Treat the bitmap as a byte array.
I Pre-compute lookup table with number of 1’s in each byte.
I Cycle through bitmap one byte at a time, accumulating count using

lookup table.

• Pseudocode:
numSetBits[0] = 0;

numSetBits[1] = 1;

numSetBits[2] = 1;

numSetBits[3] = 2;

. . .
numSetBits[255] = 8;

count = 0;

for (int i = 0; i < n/8; i++)

count += numSetBits[bitmap[i]];

• Treating bitmap as short int array → even faster
I Lookup table has 65536 entries instead of 256.
I Bitmap of n bits → only add n/16 numbers.

44 / 77



Fast bitmap count

• Count the number of 1’s in a bitmap:
I Treat the bitmap as a byte array.
I Pre-compute lookup table with number of 1’s in each byte.
I Cycle through bitmap one byte at a time, accumulating count using

lookup table.

• Pseudocode:
numSetBits[0] = 0;

numSetBits[1] = 1;

numSetBits[2] = 1;

numSetBits[3] = 2;

. . .
numSetBits[255] = 8;

count = 0;

for (int i = 0; i < n/8; i++)

count += numSetBits[bitmap[i]];

• Treating bitmap as short int array → even faster
I Lookup table has 65536 entries instead of 256.
I Bitmap of n bits → only add n/16 numbers.

44 / 77



Fast bitmap count

• Count the number of 1’s in a bitmap:
I Treat the bitmap as a byte array.
I Pre-compute lookup table with number of 1’s in each byte.
I Cycle through bitmap one byte at a time, accumulating count using

lookup table.

• Pseudocode:
numSetBits[0] = 0;

numSetBits[1] = 1;

numSetBits[2] = 1;

numSetBits[3] = 2;

. . .
numSetBits[255] = 8;

count = 0;

for (int i = 0; i < n/8; i++)

count += numSetBits[bitmap[i]];

• Treating bitmap as short int array → even faster
I Lookup table has 65536 entries instead of 256.
I Bitmap of n bits → only add n/16 numbers.

44 / 77



Fast bitmap count

• Count the number of 1’s in a bitmap
I Use smartly properties of binary coding.
I Making count to be linear with the number of ones.

• Pseudocode
word = bitmap[i];

count = 0;

while (word != 0)

word &= (word - 1);

count++;

45 / 77



Fast bitmap count

• Count the number of 1’s in a bitmap
I Use smartly properties of binary coding.
I Making count to be linear with the number of ones.

• Pseudocode
word = bitmap[i];

count = 0;

while (word != 0)

word &= (word - 1);

count++;

45 / 77



Range filtering with bit-sliced indexes

• Bit-sliced indexes allow range filtering

• Cost of applying range predicate independent of size of range (not
true for bitmap indexes or B-Trees)

• Consider an algorithm for A < c:
I A is the attribute that is indexed
I c is some constant
I Other operations (>,=, etc.) are similar.

46 / 77



Range filtering with bit-sliced indexes

• Pseudocode:

set BLT = 0; set BEQ = 1;
for each bit slice Bi from most to least signif. {

if (bit i of constant c is 1) {
BLT = BLT |(BEQ&¬Bi);
BEQ = BEQ&Bi;

} else {
BEQ = BEQ&¬Bi;

}
}
return BLT ;

• Why does it work?
I BEQ[j] = 1 for all rows j that match c on the most significant bits

(and only those rows);
I A value x is less than c iff for some bit i:

• x and c agree on all bits more significant than i,
• and the i-th bit of x is 0, and the i-th bit of c is 1.

47 / 77



Range filtering with bit-sliced indexes

• Example:
I Range filtering “Amount < 7” (7 = 0111b):

Amount Bits

5 0101
13 1101
2 0010
6 0110
7 0111

Bit-sliced index:
B4: 01000
B3: 11011
B2: 00111
B1: 11001

BLT BEQ

00000 11111

00000 10111
00100 10011
10100 00011
10110 00001

48 / 77



Range filtering with bit-sliced indexes

• Example:
I Range filtering “Amount < 7” (7 = 0111b):

Amount Bits

5 0101
13 1101
2 0010
6 0110
7 0111

Bit-sliced index:
B4: 01000
B3: 11011
B2: 00111
B1: 11001

BLT BEQ

00000 11111
00000 10111

00100 10011
10100 00011
10110 00001

48 / 77



Range filtering with bit-sliced indexes

• Example:
I Range filtering “Amount < 7” (7 = 0111b):

Amount Bits

5 0101
13 1101
2 0010
6 0110
7 0111

Bit-sliced index:
B4: 01000
B3: 11011
B2: 00111
B1: 11001

BLT BEQ

00000 11111
00000 10111
00100 10011

10100 00011
10110 00001

48 / 77



Range filtering with bit-sliced indexes

• Example:
I Range filtering “Amount < 7” (7 = 0111b):

Amount Bits

5 0101
13 1101
2 0010
6 0110
7 0111

Bit-sliced index:
B4: 01000
B3: 11011
B2: 00111
B1: 11001

BLT BEQ

00000 11111
00000 10111
00100 10011
10100 00011

10110 00001

48 / 77



Range filtering with bit-sliced indexes

• Example:
I Range filtering “Amount < 7” (7 = 0111b):

Amount Bits

5 0101
13 1101
2 0010
6 0110
7 0111

Bit-sliced index:
B4: 01000
B3: 11011
B2: 00111
B1: 11001

BLT BEQ

00000 11111
00000 10111
00100 10011
10100 00011
10110 00001

48 / 77



Range filtering with bit-sliced indexes

• Example:
I Range filtering “Amount < 7” (7 = 0111b):

Amount Bits

5 0101
13 1101
2 0010
6 0110
7 0111

Bit-sliced index:
B4: 01000
B3: 11011
B2: 00111
B1: 11001

BLT BEQ

00000 11111
00000 10111
00100 10011
10100 00011
10110 00001

48 / 77



Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:

I Logically: index entries are < V aule,RID > pairs,
I Stored in same order as records in relation (sorted by RID),
I In practice: storing RID is unnecessary (array storage format, array

index determined from RID).

49 / 77



Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:

I Logically: index entries are < V aule,RID > pairs,
I Stored in same order as records in relation (sorted by RID),
I In practice: storing RID is unnecessary (array storage format, array

index determined from RID).

49 / 77



Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:

I Logically: index entries are < V aule,RID > pairs,
I Stored in same order as records in relation (sorted by RID),
I In practice: storing RID is unnecessary (array storage format, array

index determined from RID).

49 / 77



Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:
I Logically: index entries are < V aule,RID > pairs,

I Stored in same order as records in relation (sorted by RID),
I In practice: storing RID is unnecessary (array storage format, array

index determined from RID).

49 / 77



Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:
I Logically: index entries are < V aule,RID > pairs,
I Stored in same order as records in relation (sorted by RID),

I In practice: storing RID is unnecessary (array storage format, array
index determined from RID).

49 / 77



Projection index

• Databases usually store data in horizontal format.

• Vertical format is more efficient for many analytical queries.

• Projection index uses vertical format:
I Logically: index entries are < V aule,RID > pairs,
I Stored in same order as records in relation (sorted by RID),
I In practice: storing RID is unnecessary (array storage format, array

index determined from RID).

49 / 77



Join index

• Join indexes map the tuples in the join result of two relations to the
source tables.

Product

Id Name Category Join index

P1 Milk Groceries S1, S3, S5, S6
P2 Bread Groceries S2, S4

Sales

Id Product Customer Date Price

S1 P1 C1 D1 10
S2 P2 C1 D1 11
S3 P1 C2 D1 40
S4 P2 C3 D1 8
S5 P1 C2 D2 44
S6 P1 C2 D2 4

50 / 77



Storing and accessing multidimensional cubes

• Dense and sparse dimensions

• Organize a multi-dimensional cube by properly setting dimension
types.

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Date and measures are rather dense,
I Product and Localization are rather sparse.
I Two extreme data cube organizations are possible.

51 / 77



Storing and accessing multidimensional cubes

• Dense and sparse dimensions

• Organize a multi-dimensional cube by properly setting dimension
types.

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Date and measures are rather dense,
I Product and Localization are rather sparse.
I Two extreme data cube organizations are possible.

51 / 77



Storing and accessing multidimensional cubes

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Two extreme data cube organizations are possible.

JAN FEB MAR
East West South East West South East West South

Prod. A XXX XXX XXX XXX XXX XXX
Rev. Prod. B XXX XXX XXX XXX XXX XXX

Prod. C XXX XXX XXX XXX XXX XXX
Prod. A XXX XXX XXX XXX XXX XXX

Exp. Prod. B XXX XXX XXX XXX XXX XXX
Prod. C XXX XXX XXX XXX XXX XXX
Prod. A XXX XXX XXX XXX XXX XXX

Net. Prod. B XXX XXX XXX XXX XXX XXX
Prod. C XXX XXX XXX XXX XXX XXX

52 / 77



Storing and accessing multidimensional cubes

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Two extreme data cube organizations are possible.

East West South
JAN FEB MAR JAN FEB MAR JAN FEB MAR

Rev. XXX XXX XXX XXX XXX XXX
Prod. A Exp. XXX XXX XXX XXX XXX XXX

Net. XXX XXX XXX XXX XXX XXX
Rev. XXX XXX XXX XXX XXX XXX

Prod. B. Exp. XXX XXX XXX XXX XXX XXX
Net. XXX XXX XXX XXX XXX XXX
Rev. XXX XXX XXX XXX XXX XXX

Prod. C. Exp. XXX XXX XXX XXX XXX XXX
Net. XXX XXX XXX XXX XXX XXX

52 / 77



Storing and accessing multidimensional cubes

• Example: Assume 3 dimensions, like Product, Localization, Date and
several measures like Revenue, Expenses, Netto, etc.

I Two extreme data cube organizations are possible.

• The second organization allows to efficiently store the cube using 3× 3
data chunks — some of the chunks are empty.

• The first organization is inefficient.

52 / 77



Storing and accessing multidimensional cubes

• Construct an index on sparse dimensions.

• Each leaf points to a multidimensional array that stores dense
dimensions.

• The multidimensional arrays can be still compressed: bitmap
compression, run-length encoding, etc.

53 / 77



Storing and accessing multidimensional cubes

• Construct an index on sparse dimensions.

• Each leaf points to a multidimensional array that stores dense
dimensions.

• The multidimensional arrays can be still compressed: bitmap
compression, run-length encoding, etc.

53 / 77



Storing and accessing multidimensional cubes

• Construct an index on sparse dimensions.

• Each leaf points to a multidimensional array that stores dense
dimensions.

• The multidimensional arrays can be still compressed: bitmap
compression, run-length encoding, etc.

53 / 77



Compression

• Example:
I A sparse array:

Product Mountain Road Touring

Day 1/1/2010 3
2/1/2011 2
3/1/2011 5

can be stored as a sequence of non-missing values

3, 2, 5

,

but we need add additional information about positions of these values:
• Indexes: 3,5,9
• Gaps: 2,1,3
• Bitmaps: 001010001
• Run-length codes: Null, Null, 3, Null, 2, Null×3, 5
• Indexes and gaps can be further coded by prefix codes.

54 / 77



Compression

• Example:
I A sparse array:

Product Mountain Road Touring

Day 1/1/2010 3
2/1/2011 2
3/1/2011 5

can be stored as a sequence of non-missing values

3, 2, 5,

but we need add additional information about positions of these values:

• Indexes: 3,5,9
• Gaps: 2,1,3
• Bitmaps: 001010001
• Run-length codes: Null, Null, 3, Null, 2, Null×3, 5
• Indexes and gaps can be further coded by prefix codes.

54 / 77



Compression

• Example:
I A sparse array:

Product Mountain Road Touring

Day 1/1/2010 3
2/1/2011 2
3/1/2011 5

can be stored as a sequence of non-missing values

3, 2, 5,

but we need add additional information about positions of these values:
• Indexes: 3,5,9
• Gaps: 2,1,3
• Bitmaps: 001010001
• Run-length codes: Null, Null, 3, Null, 2, Null×3, 5
• Indexes and gaps can be further coded by prefix codes.

54 / 77



Query processing

• Rewriting a query into an equivalent form so that it is less expensive
to evaluate and finding a plan for evaluating the query that incurs
minimal cost are classical database problems.

• Data warehouses having a well-defined structure allow one to apply a
broad spectrum of optimization techniques.

55 / 77



Query processing

• Rewriting a query into an equivalent form so that it is less expensive
to evaluate and finding a plan for evaluating the query that incurs
minimal cost are classical database problems.

• Data warehouses having a well-defined structure allow one to apply a
broad spectrum of optimization techniques.

55 / 77



Query processing

• Typical query to data warehouse:

I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:

I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,

I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:

I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,

I Grouping and aggregation.

• Traditional processing for such queries:

I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:

I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:

I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:
I Join,

I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:
I Join,
I Filtering,

I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:
I Join,
I Filtering,
I Grouping,

I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:
I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Query processing

• Typical query to data warehouse:
I Joins of the fact table with the dimensions,
I Filter condition on dimensions,
I Grouping and aggregation.

• Traditional processing for such queries:
I Join,
I Filtering,
I Grouping,
I Aggregation.

• Choice of the join algorithm and query processing strategy has large
impact on query cost.

56 / 77



Dimension Cartesian product

• Consider a scenario in which:

I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:

I Join fact to dimension A: Produce intermediate result with 10 million
rows

I Join result to dimension B: Produce intermediate result with 1 million
rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,

I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:

I Join fact to dimension A: Produce intermediate result with 10 million
rows

I Join result to dimension B: Produce intermediate result with 1 million
rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows

I Filters select 10 rows from each dimension

• Traditional processing for such a query:

I Join fact to dimension A: Produce intermediate result with 10 million
rows

I Join result to dimension B: Produce intermediate result with 1 million
rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:

I Join fact to dimension A: Produce intermediate result with 10 million
rows

I Join result to dimension B: Produce intermediate result with 1 million
rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:

I Join fact to dimension A: Produce intermediate result with 10 million
rows

I Join result to dimension B: Produce intermediate result with 1 million
rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:
I Join fact to dimension A: Produce intermediate result with 10 million

rows

I Join result to dimension B: Produce intermediate result with 1 million
rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:
I Join fact to dimension A: Produce intermediate result with 10 million

rows
I Join result to dimension B: Produce intermediate result with 1 million

rows

I Join result to dimension C: Produce intermediate result with 100 000
rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:
I Join fact to dimension A: Produce intermediate result with 10 million

rows
I Join result to dimension B: Produce intermediate result with 1 million

rows
I Join result to dimension C: Produce intermediate result with 100 000

rows

I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:
I Join fact to dimension A: Produce intermediate result with 10 million

rows
I Join result to dimension B: Produce intermediate result with 1 million

rows
I Join result to dimension C: Produce intermediate result with 100 000

rows
I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Consider a scenario in which:
I Fact table has 100 million rows,
I 3 dimension tables, each with 100 rows
I Filters select 10 rows from each dimension

• Traditional processing for such a query:
I Join fact to dimension A: Produce intermediate result with 10 million

rows
I Join result to dimension B: Produce intermediate result with 1 million

rows
I Join result to dimension C: Produce intermediate result with 100 000

rows
I Perform grouping and aggregation

• Drawbacks: Each join is expensive and intermediate results are quite
large!

57 / 77



Dimension Cartesian product

• Alternatively, one can perform Cartesian product over dimensions:

I Join dimensions A and B: Result is Cartesian product of all
combinations, i.e., 100 rows (10 A rows × 10 B rows)

I Join Cartesian product of A and B to dimension C: another Cartesian
product with 1000 rows (10 A rows × 10 B rows × 10 C rows)

I Join Cartesian product of A, B, and C to fact table: Produce
intermediate result with 100,000 rows

I Perform grouping and aggregation

58 / 77



Dimension Cartesian product

• Alternatively, one can perform Cartesian product over dimensions:
I Join dimensions A and B: Result is Cartesian product of all

combinations, i.e., 100 rows (10 A rows × 10 B rows)

I Join Cartesian product of A and B to dimension C: another Cartesian
product with 1000 rows (10 A rows × 10 B rows × 10 C rows)

I Join Cartesian product of A, B, and C to fact table: Produce
intermediate result with 100,000 rows

I Perform grouping and aggregation

58 / 77



Dimension Cartesian product

• Alternatively, one can perform Cartesian product over dimensions:
I Join dimensions A and B: Result is Cartesian product of all

combinations, i.e., 100 rows (10 A rows × 10 B rows)
I Join Cartesian product of A and B to dimension C: another Cartesian

product with 1000 rows (10 A rows × 10 B rows × 10 C rows)

I Join Cartesian product of A, B, and C to fact table: Produce
intermediate result with 100,000 rows

I Perform grouping and aggregation

58 / 77



Dimension Cartesian product

• Alternatively, one can perform Cartesian product over dimensions:
I Join dimensions A and B: Result is Cartesian product of all

combinations, i.e., 100 rows (10 A rows × 10 B rows)
I Join Cartesian product of A and B to dimension C: another Cartesian

product with 1000 rows (10 A rows × 10 B rows × 10 C rows)
I Join Cartesian product of A, B, and C to fact table: Produce

intermediate result with 100,000 rows

I Perform grouping and aggregation

58 / 77



Dimension Cartesian product

• Alternatively, one can perform Cartesian product over dimensions:
I Join dimensions A and B: Result is Cartesian product of all

combinations, i.e., 100 rows (10 A rows × 10 B rows)
I Join Cartesian product of A and B to dimension C: another Cartesian

product with 1000 rows (10 A rows × 10 B rows × 10 C rows)
I Join Cartesian product of A, B, and C to fact table: Produce

intermediate result with 100,000 rows
I Perform grouping and aggregation

58 / 77



Dimension Cartesian product

• Pros:

I Computing Cartesian product is cheap: Few rows in dimension tables
I Only one expensive join rather than three

• Cons:

I Only applicable for a small number of dimensions,
I and a small number of rows in each dimension satisfying filters

59 / 77



Dimension Cartesian product

• Pros:
I Computing Cartesian product is cheap: Few rows in dimension tables

I Only one expensive join rather than three

• Cons:

I Only applicable for a small number of dimensions,
I and a small number of rows in each dimension satisfying filters

59 / 77



Dimension Cartesian product

• Pros:
I Computing Cartesian product is cheap: Few rows in dimension tables
I Only one expensive join rather than three

• Cons:

I Only applicable for a small number of dimensions,
I and a small number of rows in each dimension satisfying filters

59 / 77



Dimension Cartesian product

• Pros:
I Computing Cartesian product is cheap: Few rows in dimension tables
I Only one expensive join rather than three

• Cons:

I Only applicable for a small number of dimensions,
I and a small number of rows in each dimension satisfying filters

59 / 77



Dimension Cartesian product

• Pros:
I Computing Cartesian product is cheap: Few rows in dimension tables
I Only one expensive join rather than three

• Cons:
I Only applicable for a small number of dimensions,

I and a small number of rows in each dimension satisfying filters

59 / 77



Dimension Cartesian product

• Pros:
I Computing Cartesian product is cheap: Few rows in dimension tables
I Only one expensive join rather than three

• Cons:
I Only applicable for a small number of dimensions,
I and a small number of rows in each dimension satisfying filters

59 / 77



Early aggregation

• Sometimes group by can be handled in two phases:

I Perform partial aggregation early as a data reduction technique
I Finish up the aggregation after completing all joins

• Advantages:

I Early grouping and aggregation can reduce the size of intermediate
results.

I The scan for performing the join can be exploited for the grouping.

60 / 77



Early aggregation

• Sometimes group by can be handled in two phases:
I Perform partial aggregation early as a data reduction technique

I Finish up the aggregation after completing all joins

• Advantages:

I Early grouping and aggregation can reduce the size of intermediate
results.

I The scan for performing the join can be exploited for the grouping.

60 / 77



Early aggregation

• Sometimes group by can be handled in two phases:
I Perform partial aggregation early as a data reduction technique
I Finish up the aggregation after completing all joins

• Advantages:

I Early grouping and aggregation can reduce the size of intermediate
results.

I The scan for performing the join can be exploited for the grouping.

60 / 77



Early aggregation

• Sometimes group by can be handled in two phases:
I Perform partial aggregation early as a data reduction technique
I Finish up the aggregation after completing all joins

• Advantages:

I Early grouping and aggregation can reduce the size of intermediate
results.

I The scan for performing the join can be exploited for the grouping.

60 / 77



Early aggregation

• Sometimes group by can be handled in two phases:
I Perform partial aggregation early as a data reduction technique
I Finish up the aggregation after completing all joins

• Advantages:
I Early grouping and aggregation can reduce the size of intermediate

results.

I The scan for performing the join can be exploited for the grouping.

60 / 77



Early aggregation

• Sometimes group by can be handled in two phases:
I Perform partial aggregation early as a data reduction technique
I Finish up the aggregation after completing all joins

• Advantages:
I Early grouping and aggregation can reduce the size of intermediate

results.
I The scan for performing the join can be exploited for the grouping.

60 / 77



Early aggregation

• Example:

SELECT st.district, sum(s.price)

FROM Sales s, Store st, Data d

WHERE s.store id = st.id AND s.date id = d.id AND d.year

= 2003

GROUP BY st.district;

I Assumptions:
• Sales fact has 100 million rows
• Store dimension has 100 rows
• Date dimension has 1000 rows (365 in 2003)

61 / 77



Early aggregation

• Traditional evaluation for this query:

I Join of the fact table Sales with the dimension tables Date, filtering
based on Year: Result has 36.5 million rows,

I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:

I Group sales by (store id, date id) and compute aggregates:
Result has 100 000 rows

I Join result with Date dimension, filtered based on Year: Result has 36
500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,

I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:

I Group sales by (store id, date id) and compute aggregates:
Result has 100 000 rows

I Join result with Date dimension, filtered based on Year: Result has 36
500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows

I Group by st.district and compute aggregates.

• Better strategy relies on:

I Group sales by (store id, date id) and compute aggregates:
Result has 100 000 rows

I Join result with Date dimension, filtered based on Year: Result has 36
500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:

I Group sales by (store id, date id) and compute aggregates:
Result has 100 000 rows

I Join result with Date dimension, filtered based on Year: Result has 36
500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:

I Group sales by (store id, date id) and compute aggregates:
Result has 100 000 rows

I Join result with Date dimension, filtered based on Year: Result has 36
500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:
I Group sales by (store id, date id) and compute aggregates:

Result has 100 000 rows

I Join result with Date dimension, filtered based on Year: Result has 36
500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:
I Group sales by (store id, date id) and compute aggregates:

Result has 100 000 rows
I Join result with Date dimension, filtered based on Year: Result has 36

500 rows

I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:
I Group sales by (store id, date id) and compute aggregates:

Result has 100 000 rows
I Join result with Date dimension, filtered based on Year: Result has 36

500 rows
I Join result with Store dimension: Result has 36 500 rows

I Group by District and compute aggregates.

62 / 77



Early aggregation

• Traditional evaluation for this query:
I Join of the fact table Sales with the dimension tables Date, filtering

based on Year: Result has 36.5 million rows,
I Join result with Store: Result has 36.5 million rows
I Group by st.district and compute aggregates.

• Better strategy relies on:
I Group sales by (store id, date id) and compute aggregates:

Result has 100 000 rows
I Join result with Date dimension, filtered based on Year: Result has 36

500 rows
I Join result with Store dimension: Result has 36 500 rows
I Group by District and compute aggregates.

62 / 77



Early aggregation

• Pros:

I Initial aggregation can be fast with appropriate index
I Result of early aggregation significantly smaller than fact table: fewer

rows and fewer columns
I Joins to dimension tables are cheaper (intermediate result is much

smaller than fact table)

• Cons:

I Cannot take advantage of data reduction due to filters
I Two aggregation steps instead of one

63 / 77



Early aggregation

• Pros:
I Initial aggregation can be fast with appropriate index

I Result of early aggregation significantly smaller than fact table: fewer
rows and fewer columns

I Joins to dimension tables are cheaper (intermediate result is much
smaller than fact table)

• Cons:

I Cannot take advantage of data reduction due to filters
I Two aggregation steps instead of one

63 / 77



Early aggregation

• Pros:
I Initial aggregation can be fast with appropriate index
I Result of early aggregation significantly smaller than fact table: fewer

rows and fewer columns

I Joins to dimension tables are cheaper (intermediate result is much
smaller than fact table)

• Cons:

I Cannot take advantage of data reduction due to filters
I Two aggregation steps instead of one

63 / 77



Early aggregation

• Pros:
I Initial aggregation can be fast with appropriate index
I Result of early aggregation significantly smaller than fact table: fewer

rows and fewer columns
I Joins to dimension tables are cheaper (intermediate result is much

smaller than fact table)

• Cons:

I Cannot take advantage of data reduction due to filters
I Two aggregation steps instead of one

63 / 77



Early aggregation

• Pros:
I Initial aggregation can be fast with appropriate index
I Result of early aggregation significantly smaller than fact table: fewer

rows and fewer columns
I Joins to dimension tables are cheaper (intermediate result is much

smaller than fact table)

• Cons:

I Cannot take advantage of data reduction due to filters
I Two aggregation steps instead of one

63 / 77



Early aggregation

• Pros:
I Initial aggregation can be fast with appropriate index
I Result of early aggregation significantly smaller than fact table: fewer

rows and fewer columns
I Joins to dimension tables are cheaper (intermediate result is much

smaller than fact table)

• Cons:
I Cannot take advantage of data reduction due to filters

I Two aggregation steps instead of one

63 / 77



Early aggregation

• Pros:
I Initial aggregation can be fast with appropriate index
I Result of early aggregation significantly smaller than fact table: fewer

rows and fewer columns
I Joins to dimension tables are cheaper (intermediate result is much

smaller than fact table)

• Cons:
I Cannot take advantage of data reduction due to filters
I Two aggregation steps instead of one

63 / 77



Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

64 / 77



Motivation

• Computational burden → divide and conquer

I Data partitioning
I Distributed systems

65 / 77



Motivation

• Computational burden → divide and conquer
I Data partitioning

I Distributed systems

65 / 77



Motivation

• Computational burden → divide and conquer
I Data partitioning
I Distributed systems

65 / 77



Data partitioning

• In general, partitioning divides tables and indexes into a smaller
pieces, enabling these database objects to be managed and accessed
at a finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.

66 / 77



Data partitioning

• In general, partitioning divides tables and indexes into a smaller
pieces, enabling these database objects to be managed and accessed
at a finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.

66 / 77



Data partitioning

• In general, partitioning divides tables and indexes into a smaller
pieces, enabling these database objects to be managed and accessed
at a finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.

66 / 77



Data partitioning

• In general, partitioning divides tables and indexes into a smaller
pieces, enabling these database objects to be managed and accessed
at a finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.

66 / 77



Data partitioning

• In general, partitioning divides tables and indexes into a smaller
pieces, enabling these database objects to be managed and accessed
at a finer level of granularity.

• Partitioning concerns tables in distributed systems like MapReduce
(sometimes referred to as sharding), distributed and parallel
databases, but also conventional tables.

• Partitioning can provide benefits by improving manageability,
performance, and availability.

• Partitioning is transparent for database queries.

• Horizontal vs. vertical vs. chunk partitioning.

66 / 77



Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.

67 / 77



Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.

67 / 77



Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.

67 / 77



Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.

67 / 77



Data partitioning

• Table or index is subdivided into smaller pieces.

• Each piece of database object is called a partition.

• Each partition has its own name, and may have its own storage
characteristics (e.g. table compression).

• From the perspective of a database administrator, a partitioned object
has multiple pieces which can be managed either collectively or
individually.

• From the perspective of the application, however, a partitioned table
is identical to a non-partitioned table.

67 / 77



Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:

I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition
I Composite Partitioning: partitions data using the range method, and

within each partition, subpartitions it using the hash or list method.

68 / 77



Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:

I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition
I Composite Partitioning: partitions data using the range method, and

within each partition, subpartitions it using the hash or list method.

68 / 77



Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:
I Hash partitioning: Rows divided into partitions using a hash function

I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition
I Composite Partitioning: partitions data using the range method, and

within each partition, subpartitions it using the hash or list method.

68 / 77



Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:
I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values

I List partitioning: Rows divided according to lists of values that describe
the partition

I Composite Partitioning: partitions data using the range method, and
within each partition, subpartitions it using the hash or list method.

68 / 77



Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:
I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition

I Composite Partitioning: partitions data using the range method, and
within each partition, subpartitions it using the hash or list method.

68 / 77



Data partitioning

• Tables are partitioned using a ’partitioning key’, a set of columns
which determines in which partition a given row will reside.

• Different techniques for partitioning tables:
I Hash partitioning: Rows divided into partitions using a hash function
I Range partitioning: Each partition holds a range of attribute values
I List partitioning: Rows divided according to lists of values that describe

the partition
I Composite Partitioning: partitions data using the range method, and

within each partition, subpartitions it using the hash or list method.

68 / 77



Data partitioning

• Example:

CREATE TABLE sales list (

salesman id NUMBER(5),

salesman name VARCHAR2(30),

sales state VARCHAR2(20),

sales amount NUMBER(10),

sales date DATE)

PARTITION BY LIST(sales state)

(

PARTITION sales west VALUES(’California’, ’Hawaii’),

PARTITION sales east VALUES (’New York’, ’Virginia’),

PARTITION sales central VALUES(’Texas’, ’Illinois’)

PARTITION sales other VALUES(DEFAULT)

)

);

69 / 77



Partitioning and sorting

• External-memory sorting:

I Let data be of size n and main memory be of size k + 1 units (k input
and one output buffer).

I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).

I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).

I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory

• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition

• Write sorted partition to disk
I Read the first k/n of data from each sorted partition to main memory

(use all k input buffers).
I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do

• Perform k-way merge sort using the output buffer to store globally
sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do
• Perform k-way merge sort using the output buffer to store globally

sorted data.

• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do
• Perform k-way merge sort using the output buffer to store globally

sorted data.
• Write output buffer to disk if it is filled.

• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do
• Perform k-way merge sort using the output buffer to store globally

sorted data.
• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do
• Perform k-way merge sort using the output buffer to store globally

sorted data.
• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do
• Perform k-way merge sort using the output buffer to store globally

sorted data.
• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.

• Similarly one can generalize hash-join to the so-called partitioned
hash-join.

70 / 77



Partitioning and sorting

• External-memory sorting:
I Let data be of size n and main memory be of size k + 1 units (k input

and one output buffer).
I Partition data into n/k parts (does not have to be made explicitly).
I For each partition (each uses k memory units):

• Read to main memory
• Sort partition
• Write sorted partition to disk

I Read the first k/n of data from each sorted partition to main memory
(use all k input buffers).

I Do
• Perform k-way merge sort using the output buffer to store globally

sorted data.
• Write output buffer to disk if it is filled.
• If the ith input buffer is exhausted, read next portion from ith partition.

• Remark that k ≥
√
n (otherwise we need additional merge passes).

• External-memory sorting is used in merge-join of large data sets.
• Similarly one can generalize hash-join to the so-called partitioned

hash-join.
70 / 77



Partitioning and manageability

• Maintenance operations can be focused on particular portions of
tables,

• Partial compression,

• Partial backups,

• Data recovery can concern partitions,

• ”Divide and conquer” approach to data management.

71 / 77



Partitioning and manageability

• Maintenance operations can be focused on particular portions of
tables,

• Partial compression,

• Partial backups,

• Data recovery can concern partitions,

• ”Divide and conquer” approach to data management.

71 / 77



Partitioning and manageability

• Maintenance operations can be focused on particular portions of
tables,

• Partial compression,

• Partial backups,

• Data recovery can concern partitions,

• ”Divide and conquer” approach to data management.

71 / 77



Partitioning and manageability

• Maintenance operations can be focused on particular portions of
tables,

• Partial compression,

• Partial backups,

• Data recovery can concern partitions,

• ”Divide and conquer” approach to data management.

71 / 77



Partitioning and manageability

• Maintenance operations can be focused on particular portions of
tables,

• Partial compression,

• Partial backups,

• Data recovery can concern partitions,

• ”Divide and conquer” approach to data management.

71 / 77



Data partitioning and data warehouses

• Partition fact table:

I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,

I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,

I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,

I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:

I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:
I Dimension tables are small,

I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:
I Dimension tables are small,
I Storing multiple copies of them is cheap,

I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• Partition fact table:
I Fact tables are big,
I Process queries in parallel for each partition,
I Divide the work among the nodes in the cluster,
I Specific queries would access only few partitions.

• Replicate dimension tables across cluster nodes:
I Dimension tables are small,
I Storing multiple copies of them is cheap,
I No communication needed for parallel joins

72 / 77



Data partitioning and data warehouses

• One big dimension:

I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning

I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)

I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning

I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table

I Partition fact table on key of big dimension

• Reducing load time via partitioning

I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning

I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning

I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning
I Often fact tables are partitioned on Date

I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning
I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.

I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning
I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition

I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning
I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated

I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• One big dimension:
I Sometimes one dimension table is quite big (e.g. customer)
I Partition the big dimension table
I Partition fact table on key of big dimension

• Reducing load time via partitioning
I Often fact tables are partitioned on Date
I Also indexes, aggregate tables, etc.
I Newly loaded records go into the last partition
I Only indexes and aggregates for that partition need to be updated
I All other partitions remain unchanged

73 / 77



Data partitioning and data warehouses

• Expiring old data

I Often older data is less useful / relevant for data analysts
I To reduce data warehouse size, old data is often deleted
I If data is partitioned on date, simply delete or compress the oldest

partition

• Multi-table joins

I Join can be applied with two tables partitioned on the join key,
I A large join is then broken into smaller joins that occur between each

of the partitions, completing the overall join in less time.

74 / 77



Data partitioning and data warehouses

• Expiring old data
I Often older data is less useful / relevant for data analysts

I To reduce data warehouse size, old data is often deleted
I If data is partitioned on date, simply delete or compress the oldest

partition

• Multi-table joins

I Join can be applied with two tables partitioned on the join key,
I A large join is then broken into smaller joins that occur between each

of the partitions, completing the overall join in less time.

74 / 77



Data partitioning and data warehouses

• Expiring old data
I Often older data is less useful / relevant for data analysts
I To reduce data warehouse size, old data is often deleted

I If data is partitioned on date, simply delete or compress the oldest
partition

• Multi-table joins

I Join can be applied with two tables partitioned on the join key,
I A large join is then broken into smaller joins that occur between each

of the partitions, completing the overall join in less time.

74 / 77



Data partitioning and data warehouses

• Expiring old data
I Often older data is less useful / relevant for data analysts
I To reduce data warehouse size, old data is often deleted
I If data is partitioned on date, simply delete or compress the oldest

partition

• Multi-table joins

I Join can be applied with two tables partitioned on the join key,
I A large join is then broken into smaller joins that occur between each

of the partitions, completing the overall join in less time.

74 / 77



Data partitioning and data warehouses

• Expiring old data
I Often older data is less useful / relevant for data analysts
I To reduce data warehouse size, old data is often deleted
I If data is partitioned on date, simply delete or compress the oldest

partition

• Multi-table joins

I Join can be applied with two tables partitioned on the join key,
I A large join is then broken into smaller joins that occur between each

of the partitions, completing the overall join in less time.

74 / 77



Data partitioning and data warehouses

• Expiring old data
I Often older data is less useful / relevant for data analysts
I To reduce data warehouse size, old data is often deleted
I If data is partitioned on date, simply delete or compress the oldest

partition

• Multi-table joins
I Join can be applied with two tables partitioned on the join key,

I A large join is then broken into smaller joins that occur between each
of the partitions, completing the overall join in less time.

74 / 77



Data partitioning and data warehouses

• Expiring old data
I Often older data is less useful / relevant for data analysts
I To reduce data warehouse size, old data is often deleted
I If data is partitioned on date, simply delete or compress the oldest

partition

• Multi-table joins
I Join can be applied with two tables partitioned on the join key,
I A large join is then broken into smaller joins that occur between each

of the partitions, completing the overall join in less time.

74 / 77



Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

75 / 77



Summary

• Physical storage,

• Denormalization and summarization,

• Data access,

• Data partitioning.

76 / 77



Bibliography

• J. Han and M. Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, second edition edition, 2006

• https://graphics.stanford.edu/~seander/bithacks.html

77 / 77

https://graphics.stanford.edu/~seander/bithacks.html

	Physical Storage
	Denormalization and Summarization
	Data Access
	Data Partitioning
	Summary

