Processing of Very Large Data

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland

Software Development Technologies Master studies, first semester Academic year 2017/18 (winter course)

Review of the Previous Lecture

- Mining of massive datasets.
- Evolution of database systems.
- Dimensional modeling.
- ETL and OLAP systems.
- MapReduce in Spark

Processing of very large data

- Physical data organization: row-based, column-based, key-values stores, multi-dimensional arrays, etc.
- Partitioning and sharding (Map-Reduce, distributed databases).
- Data access: hashing and sorting (\rightarrow tree-based indexing).
- Advanced data structures: multi-dimensional indexes, inverted lists, bitmaps, special-purpose indexes.
- Summarization, materialization, and denormalization.
- Data compression.
- Approximate query processing.
- Probabilistic data structures and algorithms.
- Data schemas: star schema, flexible schemas.

Outline

- 1 Physical Storage
- 2 Denormalization and Summarization
- 3 Data Access
- 4 Data Partitioning
- 5 Summary

Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

- Row-based,
- Column-based,
- Key-values stores,
- Multi-dimensional arrays,
- Dense vs. sparse structures.

• The following table can be stored in different ways:

Year	Products	Sales	
2010	Mountain	5076	
2010	Road	4005	
2010	Touring	3560	
2011	Mountain	6503	
2011	Road	4503	
2011	Touring	3445	

• Row-based storage:

001: 2010, Mountain, 5076, **002**: 2010, Road, 4005, **003**: 2010, Touring, 3560, **004**: 2011, Mountain, 6503, **005**: 2011, Road, 4503 **006**: 2011, Touring, 3445.

• Row-based storage:

001: 2010, Mountain, 5076, **002**: 2010, Road, 4005, **003**: 2010, Touring, 3560, **004**: 2011, Mountain, 6503, **005**: 2011, Road, 4503 **006**: 2011, Touring, 3445.

• Column-based storage:

Y: 2010, 2010, 2010, 2011, 2011, 2011, **P**: Mountain, Road, Touring, Mountain, Road, Touring, **S**: 5076, 5004, 3560, 6503, 4503, 3445.

or

Y: 2010: 001, 002, 003, 2011: 004, 005, 006, P: Mountain: 001, 004, Road: 002, 005, Touring: 003, 006, S: 5076: 001, 4005, 002, 3560: 003, 6503: 004, 4503: 005, 3445: 006

• Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011, 006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring, 004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076, 002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

• Key-value pairs:

001,Y: 2010, 002,Y: 2010, 003,Y: 2010, 004,Y: 2011, 005,Y: 2011, 006,Y: 2011, 001,P: Mountain, 002,P: Road, 003,P: Touring, 004,P: Mountain, 005,P: Road, 006,P: Touring, 001,S: 5076, 002,S: 4005, 003,S: 3506, 004,S: 6503, 005,S: 4503, 006,S: 3445

• Multidimensional array:

Y: 2010, 2011, **P**: Mountain, Road, Touring, **S**: 5076, 4005, 3560, 6503, 4503, 3445

Outline

1 Physical Storage

2 Denormalization and Summarization

3 Data Access

4 Data Partitioning

5 Summary

• Relational and multidimensional model with summarizations:

Year	Products	Sales	
2010	Mountain	5076	
2010	Road	4005	
2010	Touring	3560	
2011	Mountain	6503	
2011	Road	4503	
2011	Touring	3445	
2010	*	12461	
2011	*	14451	
*	Mountain	n 11579	
*	Road	6503	
*	Touring 7005		
*	*	27092	

	Product	Mountain	Road	Touring	All
Year	2010 2011	5076 6503	4005 4503	3560 3445	12641 14451
	All	11579	8508	7005	27092

- Trade-off between query performance and load performance
- To improve performance of query processing:
 - Precompute as much as possible,
 - Build additional data structures like indexes.
- The costs of the above are:
 - Disk space,
 - Load time,
 - Processing time of building and updating of data structures.

• Typical techniques:

- Typical techniques:
 - Aggregate (summary) tables: aggregating fact tables across some dimensions,

- Typical techniques:
 - Aggregate (summary) tables: aggregating fact tables across some dimensions,
 - ► Dimension aggregates: for example, base date dimension, monthly aggregate dimension, yearly aggregate dimension,

- Typical techniques:
 - Aggregate (summary) tables: aggregating fact tables across some dimensions,
 - ► Dimension aggregates: for example, base date dimension, monthly aggregate dimension, yearly aggregate dimension,
 - ROLAP: Materialized views or indexed views,

- Typical techniques:
 - Aggregate (summary) tables: aggregating fact tables across some dimensions,
 - ► Dimension aggregates: for example, base date dimension, monthly aggregate dimension, yearly aggregate dimension,
 - ROLAP: Materialized views or indexed views,
 - MOLAP: Subcubes or aggregations.

• Store in data warehouse results useful for common queries.

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,
 - ► some.

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,
 - ► some.
- The problem relies in selection of cuboids to be materialized (size, sharing, access frequency):

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,
 - ► some.
- The problem relies in selection of cuboids to be materialized (size, sharing, access frequency):
 - \blacktriangleright high number of materialized cuboids \rightarrow huge size of data warehouse.

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,
 - ► some.
- The problem relies in selection of cuboids to be materialized (size, sharing, access frequency):
 - \blacktriangleright high number of materialized cuboids \rightarrow huge size of data warehouse.
 - \blacktriangleright small number of materialized cuboids \rightarrow slow query processing.

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,
 - some.
- The problem relies in selection of cuboids to be materialized (size, sharing, access frequency):
 - high number of materialized cuboids \rightarrow huge size of data warehouse.
 - \blacktriangleright small number of materialized cuboids \rightarrow slow query processing.
- Aggregates should be computed from previously computed aggregates, rather than from the base fact table.

- Store in data warehouse results useful for common queries.
- Three strategies to materialize cuboids:
 - ► every,
 - ► none,
 - ► some.
- The problem relies in selection of cuboids to be materialized (size, sharing, access frequency):
 - \blacktriangleright high number of materialized cuboids \rightarrow huge size of data warehouse.
 - \blacktriangleright small number of materialized cuboids \rightarrow slow query processing.
- Aggregates should be computed from previously computed aggregates, rather than from the base fact table.
- The problem appears with maintenance of the materialized views: recomputation and incremental updating.

View vs. materialized views

- View is a derived relation defined in terms of base (stored) relations.
- Materialized view (or indexed view) is a view stored in a database that is updated from the original base tables from time to time.

- Query rewrite: transforms a given query expressed in terms of base tables or views into a statement accessing one or more materialized views (e.g., aggregates) that are defined on the detail tables.
- The transformation is transparent to the end user or application, requiring no intervention and no reference to the materialized view in the query.

• Example: Materialized views in SQL

► Materialized view V:

SELECT p.name, p.year_of_release, sum(s.price) as price FROM Sales s, Product p WHERE s.product id = p.id AND p.year_of_release > 1990 GROUP BY p.name, p.year_of_release;

Materialized view V consists of:

- Join of the fact table with dimension table,
- Group by dimension attributes,
- Aggregation of measures included in fact table.

• Example: Materialized views in SQL

• Example: Materialized views in SQL

• Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

• Example: Materialized views in SQL

• Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

► Query rewrite

```
SELECT p.name, p.year_of_release, price
FROM V
WHERE year_of_release > 1991;
```

• Example: Materialized views in SQL

• Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

Query rewrite

SELECT p.name, p.year_of_release, price
FROM V
WHERE year_of_release > 1991;

► The query re-write is possible since the exact match holds:

• Example: Materialized views in SQL

• Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

```
SELECT p.name, p.year_of_release, price
FROM V
WHERE year_of_release > 1991;
```

- ► The query re-write is possible since the exact match holds:
 - all the projected columns are also in V,

• Example: Materialized views in SQL

• Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

```
SELECT p.name, p.year_of_release, price
FROM V
WHERE year_of_release > 1991;
```

- ► The query re-write is possible since the exact match holds:
 - all the projected columns are also in V,
 - the same aggregate functions are used on all measures,

• Example: Materialized views in SQL

Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

```
SELECT p.name, p.year_of_release, price
FROM V
WHERE year_of_release > 1991;
```

- ► The query re-write is possible since the exact match holds:
 - all the projected columns are also in V,
 - the same aggregate functions are used on all measures,
 - all selection conditions in the query imply the selection conditions in V,

• Example: Materialized views in SQL

• Exemplary query:

SELECT p.name, p.year_of_release, sum(s.price) as price
FROM Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1991
GROUP BY p.name, p.year_of_release;

```
SELECT p.name, p.year_of_release, price
FROM V
WHERE year_of_release > 1991;
```

- ► The query re-write is possible since the exact match holds:
 - all the projected columns are also in V,
 - the same aggregate functions are used on all measures,
 - all selection conditions in the query imply the selection conditions in V,
 - the attributes present in selection conditions that are strictly stronger than selection conditions defined in V, are also present in V.

• Example: Materialized views in SQL

• Example: Materialized views in SQL

• Exemplary query:

```
SELECT p.name, sum(s.price) FROM
Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1995
GROUP BY p.name;
```

• Example: Materialized views in SQL

• Exemplary query:

```
SELECT p.name, sum(s.price) FROM
Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1995
GROUP BY p.name;
```

```
SELECT name,sum(price)
FROM V
WHERE year_of_release > 1995
GROUP BY name;
```

• Example: Materialized views in SQL

Exemplary query:

```
SELECT p.name, sum(s.price) FROM
Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1995
GROUP BY p.name;
```

Query rewrite

```
SELECT name,sum(price)
FROM V
WHERE year_of_release > 1995
GROUP BY name;
```

► The query re-write is possible since the additional grouping can be performed on V (non-exact match):

• Example: Materialized views in SQL

• Exemplary query:

```
SELECT p.name, sum(s.price) FROM
Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1995
GROUP BY p.name;
```

```
SELECT name,sum(price)
FROM V
WHERE year_of_release > 1995
GROUP BY name;
```

- ► The query re-write is possible since the additional grouping can be performed on V (non-exact match):
 - all attributes involved in query are present in $\boldsymbol{V},$

• Example: Materialized views in SQL

• Exemplary query:

```
SELECT p.name, sum(s.price) FROM
Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1995
GROUP BY p.name;
```

```
SELECT name,sum(price)
FROM V
WHERE year_of_release > 1995
GROUP BY name;
```

- ► The query re-write is possible since the additional grouping can be performed on V (non-exact match):
 - all attributes involved in query are present in $\boldsymbol{V},$
 - selection conditions are stronger,

• Example: Materialized views in SQL

Exemplary query:

```
SELECT p.name, sum(s.price) FROM
Sales s, Product p
WHERE s.product_id = p.id AND p.year_of_release > 1995
GROUP BY p.name;
```

```
SELECT name,sum(price)
FROM V
WHERE year_of_release > 1995
GROUP BY name;
```

- ► The query re-write is possible since the additional grouping can be performed on V (non-exact match):
 - all attributes involved in query are present in $\boldsymbol{V},$
 - selection conditions are stronger,
 - grouping is more general.

$$V = Q(R) \,.$$

• Let V be the materialized view defined by a query Q over a set R of relations

$$V = Q(R) \, .$$

• When the relations in R are updated, then V becomes inconsistent.

$$V = Q(R) \,.$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.

$$V = Q(R) \,.$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and V.
- Different aspects:

$$V = Q(R) \, .$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and $V. \label{eq:rescaled}$
- Different aspects:
 - Immediate and delayed refresh.

$$V = Q(R) \,.$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and $V. \label{eq:rescaled}$
- Different aspects:
 - Immediate and delayed refresh.
 - Full refresh and view maintenance.

$$V = Q(R) \, .$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and $V. \label{eq:rescaled}$
- Different aspects:
 - Immediate and delayed refresh.
 - Full refresh and view maintenance.
 - Maintainable and partially maintainable views.

• Let V be the materialized view defined by a query Q over a set R of relations

$$V = Q(R) \, .$$

- When the relations in R are updated, then V becomes inconsistent.
- View refreshment is the process that reestablishes the consistency between R and $V. \label{eq:rescaled}$
- Different aspects:
 - Immediate and delayed refresh.
 - Full refresh and view maintenance.
 - Maintainable and partially maintainable views.
- Example: How to maintain the materialized view defined below?

V = SELECT min(A.a) FROM A

Outline

- 1 Physical Storage
- 2 Denormalization and Summarization
- 3 Data Access
- 4 Data Partitioning
- 5 Summary

Data access

- Hashing
- Sorting (\rightarrow tree-based indexing).

• **Group-by** is usually performed in the following way:

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,
 - All tuples with same grouping attributes will appear together in sorted list.

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,
 - All tuples with same grouping attributes will appear together in sorted list.
 - Hashing

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,
 - All tuples with same grouping attributes will appear together in sorted list.
 - Hashing
 - Hash by the grouping attributes,

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,
 - All tuples with same grouping attributes will appear together in sorted list.
 - Hashing
 - Hash by the grouping attributes,
 - All tuples with same grouping attributes will hash to same bucket,

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,
 - All tuples with same grouping attributes will appear together in sorted list.
 - Hashing
 - Hash by the grouping attributes,
 - All tuples with same grouping attributes will hash to same bucket,
 - Sort or re-hash within each bucket to resolve collisions.

- **Group-by** is usually performed in the following way:
 - Partition tuples on grouping attributes: tuples in same group are placed together, and in different groups separated,
 - ► Scan tuples in each partition and compute aggregate expressions.
- Two techniques for partitioning:
 - Sorting
 - Sort by the grouping attributes,
 - All tuples with same grouping attributes will appear together in sorted list.
 - Hashing
 - Hash by the grouping attributes,
 - All tuples with same grouping attributes will hash to same bucket,
 - Sort or re-hash within each bucket to resolve collisions.
- In OLAP queries use intermediate results to compute more general group-bys.

• **Example**: Grouping by sorting (Month, City):

Month	City	Sale	
March	Poznań	105	
March	Warszawa	135	
March	Poznań	50	
May	Warszawa	100	
April	Poznań	150	
April	Kraków	175	
May	Poznań	70	
May	Warszawa	75	

• **Example**: Grouping by sorting (Month, City):

Month	City	Sale		Month	City	Sale
March	Poznań	105		March	Poznań	105
March	Warszawa	135		March	Poznań	50
March	Poznań	50		March	Warszawa	135
May	Warszawa	100	\longrightarrow	April	Poznań	150
April	Poznań	150		April	Kraków	175
April	Kraków	175		May	Poznań	70
May	Poznań	70		May	Warszawa	75
May	Warszawa	75		May	Warszawa	100

• **Example**: Grouping by sorting (Month, City):

Month	City	Sale		Mon	th	City	Sale
March	Poznań	105		Marc	ch	Poznań	105
March	Warszawa	135		Marc	ch	Poznań	50
March	Poznań	50		Marc	ch	Warszawa	135
May	Warszawa	100	\longrightarrow	Apr	il	Poznań	150
April	Poznań	150		Apr	il	Kraków	175
April	Kraków	175		May	/	Poznań	70
May	Poznań	70		Ma	/	Warszawa	75
May	Warszawa	75		May		Warszawa	100
			- ↓ -			_	
	Μ	lonth	City	,	Sale	_	
	N	larch	Pozna	ań	155	_	
	Ν	larch	Warsza	wa	135		
	A	April	Pozna	ań	150		
	A	April	Krakó	Św	175		
	1	May	Pozna	ań	70		
	1	May	Warsza	awa	175		

Aggregates computed from aggregates

		Academic₋year	Name	AVG(Grade)
	-	2011/2	Stefanowski	4.2
		2011/2	Słowiński	4.1
All rows and columns		2012/3	Stefanowski	4.0
		2012/3	Słowiński	3.8
		2013/4	Stefanowski	3.9
		2013/4	Słowiński	3.6
		2013/4	Dembczyński	4.8
	-			
Academic_year	AVG(Gr	ade)	Name	AVG(Grade)
2011/2	4.15		Stefanowski	3.9
2012/3	2012/3 3.85		Słowiński	3.6
2013/4	3.8		Dembczyński	4.8

• Indexes allow efficient search on some attributes due to the way they are organized.

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).
- Index-only plans use small indexes in place of large relations.

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).
- Index-only plans use small indexes in place of large relations.
- Query processing on indexes without accessing base tables.

- Indexes allow efficient search on some attributes due to the way they are organized.
- An index is a "thin" copy of a relation (not all columns from the relation are included, the index is sorted in a particular way).
- Index-only plans use small indexes in place of large relations.
- Query processing on indexes without accessing base tables.
- Indexes on two and more columns.

- B-Trees,
- Inverted lists,
- Bitmap index,
- Bit-sliced index,
- Projection index,
- Join index.

• Bitmap indexes use bit arrays (commonly called "bitmaps") to encode values on a given attribute and answer queries by performing bitwise logical operations on these bitmaps.

• Bitmap indexes use bit arrays (commonly called "bitmaps") to encode values on a given attribute and answer queries by performing bitwise logical operations on these bitmaps.

Customer	City	Car
C1	Detroit	Ford
C2	Chicago	Honda
C3	Detroit	Honda
C4	Poznań	Ford
C5	Paris	BMW
C6	Paris	Nissan

• Bitmap indexes use bit arrays (commonly called "bitmaps") to encode values on a given attribute and answer queries by performing bitwise logical operations on these bitmaps.

		Custom	er	City	(Car	
		C1		Detroit	F	ord	
		C2		Chicago	Ho	onda	
		C3		Detroit	Ho	onda	
		C4		Poznań	F	ord	
		C5		Paris	В	MW	
		C6		Paris	Ni	ssan	
				\downarrow			
Customer	Chicago	Detroit F	Paris	: Poznań			
C1	0	1	0	0	-	Bitmap	Array of bytes
C2	1	0	0	0		Chicago	010000 (00)
C3	0	1	0	0	\rightarrow	Detroit	101000 (00)
C4	0	0	0	1		Paris	010011 (00)
C5	0	0	1	0		Poznań	000100 (00)
C6	0	0	1	0			

• Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,
- Works poorly for high cardinality domains since the number of bitmaps increases,

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,
- Works poorly for high cardinality domains since the number of bitmaps increases,
- Difficult to maintain need reorganization when relation sizes change (new bitmaps)

- Allows the use of efficient bit operations to answer some queries (hardware support for bitmap operations),
- Very efficient for certain types of queries: selection on two attributes,
- Usually bitmap indexes are compressed,
- Works poorly for high cardinality domains since the number of bitmaps increases,
- Difficult to maintain need reorganization when relation sizes change (new bitmaps)
- Can be used with B-Trees.

Compressing Bitmaps

- Compression Pros and Cons
 - Reduce storage space \rightarrow reduce number of I/Os required
 - \blacktriangleright Need to compress/uncompress \rightarrow increase CPU work required
 - \blacktriangleright Operate directly on compressed bitmap \rightarrow improved performance
- Bitmaps consist mostly of zeros
- Compression via run length encoding:
 - Example: 000000100001000000000001100000
 - ► Just record the length of sequences composed of zeros or ones:
 - ▶ Store this as "7,1,4,1,12,2,5",
 - ► alternatively: record the number of zeros between adjacent ones
 - ▶ Store this as "7,4,12,0,5".

Compressing Bitmaps

- Simple run length encoding is not sufficient and we need structured encoding:
 - Example: 000000100001000000000001100000
 - ▶ We can store this as "7,4,12,0,5"
 - But we cannot use a bitmap to encode the above since:
 - ► 11110011000101 could be read not only as 7,4,12,0,5: (111)(100)(1100)(0)(101),
 - ▶ but also as 3,25,8,2,1: (11)(11001)(1000)(10)(1).

$\gamma~{\rm codes}$

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101$
- Length is the length of offset.
- For 13 (offset 101), this is 3.
- Encode length in unary code: 1110.
- Gamma code of 13 is the concatenation of length and offset: 1110101.

Unary code

- Represent n as n 1s with a final 0.
- Unary code for 3 is 1110.

.

Gamma code examples

number	unary code	length	offset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110,000000001

Length of gamma code

- The length of offset is $\lfloor \log_2 G \rfloor$ bits.
- The length of length is $\lfloor \log_2 G \rfloor + 1$ bits,
- So the length of the entire code is $2\times \lfloor \log_2 G \rfloor + 1$ bits.
- γ codes are always of odd length.
- Gamma codes are within a factor of 2 of the optimal encoding length $\log_2 G.$
 - Assuming equal-probability gaps but the distribution is actually highly skewed.
 - ► We can use gamma codes for any distribution.
 - The code is universal.

Bitmap compression with BBC (Byte-Aligned Bitmap Code) codes

- Divide bitmap into bytes:
 - Gap bytes are all zeros
 - Tail bytes contain some ones
 - ► A chunk consists of some gap bytes followed by some tail bytes
- Encode chunks:
 - Header byte
 - Gap length bytes (sometimes)
 - Verbatim tail bytes (sometimes)

Exemplary bitmap:

- Number of gap bytes:
 - ▶ 0-6: Gap length stored in header byte
 - ► 7-127: One gap-length byte follows header byte
 - ► 128-32767: Two gap-length bytes follow header byte
- "Special" tail:
 - Tail consists of only 1 byte
 - ► The tail byte has only 1 non-zero bit
 - Non-special tails are stored verbatim (uncompressed)
- Number of tail bytes:
 - Number of tail bytes is stored in header byte
 - Special tails are encoded by indicating which bit is set

- Header byte:
 - ▶ Bits 1-3: length of (short) gap
 - Gaps of length 0-6 do not require gap length bytes
 - 111 = gap length > 6
 - Bit 4: Is the tail special?
 - Bits 5-8:
 - Number of verbatim bytes (if bit 4=0)
 - Index of non-zero bit in tail byte (if bit 4 = 1)

• Gap length bytes:

- Either one or two bytes
- Only present if bits 1-3 of header are 111
- ► Gap lengths of 7-127 encoded in single byte
- ► Gap lengths of 128-32767 encoded in 2 bytes
- ▶ 1st bit of 1st byte set to 1 to indicate 2-byte case
- Verbatim bytes:
 - ▶ 0-15 uncompressed tail bytes
 - Number is indicated in header

Exemplary bitmap:

Exemplary bitmap:

Bitmap after compression

01010100 11100010 00001101 01000000 00100010

Exemplary bitmap:

- Bitmap consists of two chunks:
 - Chunk 1
 - Bytes 1-3
 - Two gap bytes, one tail byte
 - Encoding: (010)(1)(0100)
 - No gap length bytes since gap length < 7
 - No verbatim bytes since tail is special

Bitmap after compression

01010100 11100010 00001101 01000000 00100010

Exemplary bitmap:

- Bitmap consists of two chunks:
 - Chunk 2
 - Bytes 4-18
 - 13 gap bytes, two tail bytes
 - One gap length byte gives gap length = 13
 - Two verbatim bytes for tail
 - Encoding: (111)(0)(0010) 00001101 01000000 00100010

Bitmap after compression

01010100 11100010 00001101 01000000 00100010

• Bit-sliced index is used for fact table measures and numerical (integer) attributes:

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
 - ► Efficient aggregation,

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
 - ► Efficient aggregation,
 - Efficient range filtering.

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
 - ► Efficient aggregation,
 - Efficient range filtering.
- Definition:

- Bit-sliced index is used for fact table measures and numerical (integer) attributes:
 - Efficient aggregation,
 - Efficient range filtering.

• Definition:

► Assume, that values of attribute a are integer numbers coded by n + 1 bits. In this case, attribute a can be stored as binary attributes a₀, a₁, ..., a_n, such that

$$a = \sum_{i=0}^{n} 2^{i} a_{i} = a_{0} + 2a_{1} + 2^{2} a_{2} \dots + 2^{n} a_{n}.$$

Each binary attribute a_i can be stored as bitmap index. Set of bitmap indexes of a_i , i = 0, ..., n, is the **bit-sliced index**.

• Example:

Amount	Bitmap
5	01 0 1
13	11 0 1
2	00 1 0
6	01 1 0
7	01 1 1

Bit-sliced index:

- ► B4: 01000
- ► B3: 11011
- ► B2: 00111
- ▶ B1: 11001

Bit-sliced index

• Example:

Computing the sum:

Amount		
5 13 2 6 7 Suma: 33	Bit-sliced index : B4: 01000 B3: 11011 B2: 00111 B1: 11001	Counting ones: 1 4 3 3

Final results: $1 \cdot 2^3 + 4 \cdot 2^2 + 3 \cdot 2^1 + 3 \cdot 2^0 = 8 + 16 + 6 + 3 = 33$

Bit-sliced index

• Example:

► Computing the sum:

Amount		
5 13 2 6 7	Bit-sliced index : B4: 01000 B3: 11011 B2: 00111 B1: 11001	Counting ones: 1 4 3 3
Suma: 33		

Final results: $1 \cdot 2^3 + 4 \cdot 2^2 + 3 \cdot 2^1 + 3 \cdot 2^0 = 8 + 16 + 6 + 3 = 33$ **Problem**: How to efficiently count the number of ones in a bitmap?

• Count the number of 1's in a bitmap:

- Count the number of 1's in a bitmap:
 - Treat the bitmap as a byte array.
 - ► Pre-compute lookup table with number of 1's in each byte.
 - Cycle through bitmap one byte at a time, accumulating count using lookup table.

- Count the number of 1's in a bitmap:
 - Treat the bitmap as a byte array.
 - ► Pre-compute lookup table with number of 1's in each byte.
 - Cycle through bitmap one byte at a time, accumulating count using lookup table.

• Pseudocode:

- Count the number of 1's in a bitmap:
 - Treat the bitmap as a byte array.
 - Pre-compute lookup table with number of 1's in each byte.
 - Cycle through bitmap one byte at a time, accumulating count using lookup table.

• Pseudocode:

- Treating bitmap as short int array \rightarrow even faster
 - ► Lookup table has 65536 entries instead of 256.
 - Bitmap of n bits \rightarrow only add n/16 numbers.

- Count the number of 1's in a bitmap
 - Use smartly properties of binary coding.
 - Making count to be linear with the number of ones.

- Count the number of 1's in a bitmap
 - Use smartly properties of binary coding.
 - Making count to be linear with the number of ones.

• Pseudocode

```
word = bitmap[i];
count = 0;
while (word != 0)
    word &= (word - 1);
    count++;
```

- Bit-sliced indexes allow range filtering
- Cost of applying range predicate independent of size of range (not true for bitmap indexes or B-Trees)
- Consider an algorithm for A < c:
 - ► A is the attribute that is indexed
 - ► c is some constant
 - ▶ Other operations (>,=, etc.) are similar.

• Pseudocode:

```
set B_{LT} = 0; set B_{EQ} = 1;
for each bit slice B_i from most to least signif. {
    if (bit i of constant c is 1) {
    B_{LT} = B_{LT} | (B_{EQ} \& \neg B_i);
    B_{EQ} = B_{EQ} \& B_i;
    } else {
    B_{EQ} = B_{EQ} \& \neg B_i;
    }
}
return BLT :
```

• Why does it work?

- ▶ B_{EQ}[j] = 1 for all rows j that match c on the most significant bits (and only those rows);
- A value x is less than c iff for some bit i:
 - x and c agree on all bits more significant than i,
 - and the i-th bit of x is 0, and the i-th bit of c is 1.

• Example:

Amount	Bits	Bit-sliced index:	B_{LT}	B_{EQ}
5 13 2 6 7	0101 1101 0010 0110 0111	Bit-sited index. B4: 01000 B3: 11011 B2: 00111 B1: 11001	00000	11111

• Example:

Amount	Bits	Bit-sliced index:	B_{LT}	B_{EQ}
5 13 2 6 7	0101 1101 0010 0110 0111	B4: 01000 B3: 11011 B2: 00111 B1: 11001	00000 00000	11111 10111

• Example:

Amount	Bits	Bit-sliced index:	B_{LT}	B_{EQ}
5 13 2 6 7	0101 1101 0010 0110 0111	B4: 01000 B3: 11011 B2: 00111 B1: 11001	00000 00000 00100	11111 10111 10011

• Example:

Amount	Bits	Bit-sliced index:	B_{LT}	B_{EQ}
5 13 2 6 7	0101 1101 0010 0110 0111	Bit-silced index: B4: 01000 B3: 11011 B2: 00111 B1: 11001	00000 00000 00100 10100	11111 10111 10011 00011

• Example:

Amount	Bits	Bit-sliced index:	B_{LT}	B_{EQ}
5 13 2 6 7	0101 1101 0010 0110 0111	B4: 01000 B3: 11011 B2: 00111 B1: 11001	00000 00000 00100 10100 10110	11111 10111 10011 00011 00001

• Example:

Amount	Bits	Bit-sliced index:	B_{LT}	B_{EQ}
13 2 6	0101 1101 0010 0110 0111	B4: 01000 B3: 11011 B2: 00111 B1: 11001	00000 00000 00100 10100 10110	11111 10111 10011 00011 00001

• Databases usually store data in horizontal format.

- Databases usually store data in horizontal format.
- Vertical format is more efficient for many analytical queries.

- Databases usually store data in horizontal format.
- Vertical format is more efficient for many analytical queries.
- Projection index uses vertical format:

- Databases usually store data in horizontal format.
- Vertical format is more efficient for many analytical queries.
- Projection index uses vertical format:
 - ► Logically: index entries are < Vaule, RID > pairs,

- Databases usually store data in horizontal format.
- Vertical format is more efficient for many analytical queries.
- Projection index uses vertical format:
 - ► Logically: index entries are < Vaule, RID > pairs,
 - ▶ Stored in same order as records in relation (sorted by *RID*),

- Databases usually store data in horizontal format.
- Vertical format is more efficient for many analytical queries.
- Projection index uses vertical format:
 - Logically: index entries are < Vaule, RID > pairs,
 - ▶ Stored in same order as records in relation (sorted by *RID*),
 - ► In practice: storing *RID* is unnecessary (array storage format, array index determined from *RID*).

Join index

• Join indexes map the tuples in the join result of two relations to the source tables.

FIU	uuci				
ld	Name	Category	Join ind	ex	
P1 P2	Milk Bread	Groceries Groceries	S1, S3, S S2, S4	S5, S6	6
Sale	S				
ld	Product	Customer	Date	Pric	e i
S1	P1	C1	D1	10	i
S2	P2	C1	D1	11	ا + +
S3	P1	C2	D1	40	· · · · · ·
S4	P2	C3	D1	8	< ¹
S5	P1	C2	D2	44	
S6	P1	C2	D2	4	· · · · · · · · · · · · · · · · · · ·

Product

- Dense and sparse dimensions
- Organize a multi-dimensional cube by properly setting dimension types.

- Dense and sparse dimensions
- Organize a multi-dimensional cube by properly setting dimension types.
- **Example**: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
 - Date and measures are rather dense,
 - Product and Localization are rather sparse.
 - Two extreme data cube organizations are possible.

- Example: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
 - Two extreme data cube organizations are possible.

		JAN			FEB			MAR	
	East	West	South	East	West	South	East	West	South
Prod. A		XXX	XXX		XXX	XXX		XXX	XXX
Rev. Prod. B	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. C	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. A		XXX	XXX		XXX	XXX		XXX	XXX
Exp. Prod. B	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. C	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. A		XXX	XXX		XXX	XXX		XXX	XXX
Net. Prod. B	XXX	XXX		XXX	XXX		XXX	XXX	
Prod. C	XXX	XXX		XXX	XXX		XXX	XXX	

- Example: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
 - Two extreme data cube organizations are possible.

		East			West			South	
	JAN	FEB	MAR	JAN	FEB	MAR	JAN	FEB	MAR
Rev.				XXX	XXX	XXX	XXX	XXX	XXX
Prod. A Exp.				XXX	XXX	XXX	XXX	XXX	XXX
Net.				XXX	XXX	XXX	XXX	XXX	XXX
Rev.	XXX	XXX	XXX	XXX	XXX	XXX			
Prod. B. Exp.	XXX	XXX	XXX	XXX	XXX	XXX			
Net.	XXX	XXX	XXX	XXX	XXX	XXX			
Rev.	XXX	XXX	XXX	XXX	XXX	XXX			
Prod. C. Exp.	XXX	XXX	XXX	XXX	XXX	XXX			
Net.	XXX	XXX	XXX	XXX	XXX	XXX			

- **Example**: Assume 3 dimensions, like Product, Localization, Date and several measures like Revenue, Expenses, Netto, etc.
 - Two extreme data cube organizations are possible.
 - The second organization allows to efficiently store the cube using 3×3 data chunks some of the chunks are empty.
 - The first organization is inefficient.

• Construct an index on sparse dimensions.

- Construct an index on sparse dimensions.
- Each leaf points to a multidimensional array that stores dense dimensions.

- Construct an index on sparse dimensions.
- Each leaf points to a multidimensional array that stores dense dimensions.
- The multidimensional arrays can be still compressed: bitmap compression, run-length encoding, etc.

Compression

• Example:

► A sparse array:

	Product	Mountain	Road	Touring
Day	1/1/2010			3
	2/1/2011		2	
	3/1/2011			5

can be stored as a sequence of non-missing values

3, 2, 5

Compression

• Example:

► A sparse array:

	Product	Mountain	Road	Touring
Day	1/1/2010 2/1/2011		2	3
	3/1/2011			5

can be stored as a sequence of non-missing values

3, 2, 5,

but we need add additional information about positions of these values:

Compression

• Example:

A sparse array:

	Product	Mountain	Road	Touring
Day	1/1/2010 2/1/2011		2	3
	3/1/2011			5

can be stored as a sequence of non-missing values

3, 2, 5,

but we need add additional information about positions of these values:

- Indexes: 3,5,9
- Gaps: 2,1,3
- Bitmaps: 001010001
- Run-length codes: Null, Null, 3, Null, 2, Null \times 3, 5
- Indexes and gaps can be further coded by prefix codes.

Query processing

• Rewriting a query into an equivalent form so that it is less expensive to evaluate and finding a plan for evaluating the query that incurs minimal cost are classical database problems.

Query processing

- Rewriting a query into an equivalent form so that it is less expensive to evaluate and finding a plan for evaluating the query that incurs minimal cost are classical database problems.
- Data warehouses having a well-defined structure allow one to apply a broad spectrum of optimization techniques.

• Typical query to data warehouse:

- Typical query to data warehouse:
 - ► Joins of the fact table with the dimensions,

- Typical query to data warehouse:
 - ► Joins of the fact table with the dimensions,
 - Filter condition on dimensions,

- Typical query to data warehouse:
 - ► Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.

- Typical query to data warehouse:
 - Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.
- Traditional processing for such queries:

- Typical query to data warehouse:
 - Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.
- Traditional processing for such queries:
 - ► Join,

- Typical query to data warehouse:
 - Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.
- Traditional processing for such queries:
 - ► Join,
 - Filtering,

- Typical query to data warehouse:
 - Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.
- Traditional processing for such queries:
 - ► Join,
 - Filtering,
 - Grouping,

- Typical query to data warehouse:
 - Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.
- Traditional processing for such queries:
 - ► Join,
 - Filtering,
 - Grouping,
 - Aggregation.

- Typical query to data warehouse:
 - ► Joins of the fact table with the dimensions,
 - Filter condition on dimensions,
 - Grouping and aggregation.
- Traditional processing for such queries:
 - ► Join,
 - Filtering,
 - Grouping,
 - Aggregation.
- Choice of the join algorithm and query processing strategy has large impact on query cost.

• Consider a scenario in which:

- Consider a scenario in which:
 - ► Fact table has 100 million rows,

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ▶ 3 dimension tables, each with 100 rows

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ▶ 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ▶ 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension
- Traditional processing for such a query:

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ► 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension
- Traditional processing for such a query:
 - ► Join fact to dimension A: Produce intermediate result with 10 million rows

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ► 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension
- Traditional processing for such a query:
 - ► Join fact to dimension A: Produce intermediate result with 10 million rows
 - Join result to dimension B: Produce intermediate result with 1 million rows

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ► 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension
- Traditional processing for such a query:
 - ► Join fact to dimension A: Produce intermediate result with 10 million rows
 - Join result to dimension B: Produce intermediate result with 1 million rows
 - ► Join result to dimension C: Produce intermediate result with 100 000 rows

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ► 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension
- Traditional processing for such a query:
 - ► Join fact to dimension A: Produce intermediate result with 10 million rows
 - Join result to dimension B: Produce intermediate result with 1 million rows
 - ► Join result to dimension C: Produce intermediate result with 100 000 rows
 - Perform grouping and aggregation

- Consider a scenario in which:
 - ► Fact table has 100 million rows,
 - ► 3 dimension tables, each with 100 rows
 - ► Filters select 10 rows from each dimension
- Traditional processing for such a query:
 - ► Join fact to dimension A: Produce intermediate result with 10 million rows
 - Join result to dimension B: Produce intermediate result with 1 million rows
 - ► Join result to dimension C: Produce intermediate result with 100 000 rows
 - Perform grouping and aggregation
- **Drawbacks**: Each join is expensive and intermediate results are quite large!

• Alternatively, one can perform Cartesian product over dimensions:

- Alternatively, one can perform Cartesian product over dimensions:
 - ► Join dimensions A and B: Result is Cartesian product of all combinations, i.e., 100 rows (10 A rows × 10 B rows)

- Alternatively, one can perform Cartesian product over dimensions:
 - ► Join dimensions A and B: Result is Cartesian product of all combinations, i.e., 100 rows (10 A rows × 10 B rows)
 - ► Join Cartesian product of A and B to dimension C: another Cartesian product with 1000 rows (10 A rows × 10 B rows × 10 C rows)

- Alternatively, one can perform Cartesian product over dimensions:
 - ► Join dimensions A and B: Result is Cartesian product of all combinations, i.e., 100 rows (10 A rows × 10 B rows)
 - ► Join Cartesian product of A and B to dimension C: another Cartesian product with 1000 rows (10 A rows × 10 B rows × 10 C rows)
 - ► Join Cartesian product of A, B, and C to fact table: Produce intermediate result with 100,000 rows

- Alternatively, one can perform Cartesian product over dimensions:
 - ► Join dimensions A and B: Result is Cartesian product of all combinations, i.e., 100 rows (10 A rows × 10 B rows)
 - ► Join Cartesian product of A and B to dimension C: another Cartesian product with 1000 rows (10 A rows × 10 B rows × 10 C rows)
 - ► Join Cartesian product of A, B, and C to fact table: Produce intermediate result with 100,000 rows
 - Perform grouping and aggregation

• Pros:

- Pros:
 - ► Computing Cartesian product is cheap: Few rows in dimension tables

- Pros:
 - ► Computing Cartesian product is cheap: Few rows in dimension tables
 - Only one expensive join rather than three

- Pros:
 - ► Computing Cartesian product is cheap: Few rows in dimension tables
 - Only one expensive join rather than three
- Cons:

- Pros:
 - ► Computing Cartesian product is cheap: Few rows in dimension tables
 - Only one expensive join rather than three
- Cons:
 - Only applicable for a small number of dimensions,

- Pros:
 - ► Computing Cartesian product is cheap: Few rows in dimension tables
 - Only one expensive join rather than three
- Cons:
 - Only applicable for a small number of dimensions,
 - ▶ and a small number of rows in each dimension satisfying filters

• Sometimes group by can be handled in two phases:

- Sometimes group by can be handled in two phases:
 - ► Perform partial aggregation early as a data reduction technique

- Sometimes group by can be handled in two phases:
 - ► Perform partial aggregation early as a data reduction technique
 - Finish up the aggregation after completing all joins

- Sometimes group by can be handled in two phases:
 - ► Perform partial aggregation early as a data reduction technique
 - Finish up the aggregation after completing all joins
- Advantages:

- Sometimes group by can be handled in two phases:
 - ► Perform partial aggregation early as a data reduction technique
 - Finish up the aggregation after completing all joins
- Advantages:
 - Early grouping and aggregation can reduce the size of intermediate results.

- Sometimes group by can be handled in two phases:
 - ► Perform partial aggregation early as a data reduction technique
 - Finish up the aggregation after completing all joins
- Advantages:
 - Early grouping and aggregation can reduce the size of intermediate results.
 - ► The scan for performing the join can be exploited for the grouping.

• Example:

SELECT st.district, sum(s.price)
FROM Sales s, Store st, Data d
WHERE s.store id = st.id AND s.date id = d.id AND d.year
= 2003
GROUP BY st.district;

- Assumptions:
 - Sales fact has 100 million rows
 - Store dimension has 100 rows
 - Date dimension has 1000 rows (365 in 2003)

• Traditional evaluation for this query:

- Traditional evaluation for this query:
 - ► Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,

- Traditional evaluation for this query:
 - ► Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ▶ Join result with Store: Result has 36.5 million rows

- Traditional evaluation for this query:
 - ▶ Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ▶ Join result with Store: Result has 36.5 million rows
 - Group by st.district and compute aggregates.

- Traditional evaluation for this query:
 - ► Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ▶ Join result with Store: Result has 36.5 million rows
 - ► Group by st.district and compute aggregates.
- Better strategy relies on:

- Traditional evaluation for this query:
 - ▶ Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ► Join result with Store: Result has 36.5 million rows
 - ► Group by st.district and compute aggregates.
- Better strategy relies on:
 - Group sales by (store id, date id) and compute aggregates: Result has 100 000 rows

- Traditional evaluation for this query:
 - ► Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ► Join result with Store: Result has 36.5 million rows
 - Group by st.district and compute aggregates.
- Better strategy relies on:
 - ➤ Group sales by (store id, date id) and compute aggregates: Result has 100 000 rows
 - ▶ Join result with Date dimension, filtered based on Year: Result has 36 500 rows

- Traditional evaluation for this query:
 - ► Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ▶ Join result with Store: Result has 36.5 million rows
 - Group by st.district and compute aggregates.
- Better strategy relies on:
 - ➤ Group sales by (store id, date id) and compute aggregates: Result has 100 000 rows
 - ▶ Join result with Date dimension, filtered based on Year: Result has 36 500 rows
 - ► Join result with Store dimension: Result has 36 500 rows

- Traditional evaluation for this query:
 - ► Join of the fact table Sales with the dimension tables Date, filtering based on Year: Result has 36.5 million rows,
 - ▶ Join result with Store: Result has 36.5 million rows
 - Group by st.district and compute aggregates.
- Better strategy relies on:
 - ➤ Group sales by (store id, date id) and compute aggregates: Result has 100 000 rows
 - ▶ Join result with Date dimension, filtered based on Year: Result has 36 500 rows
 - ► Join result with Store dimension: Result has 36 500 rows
 - Group by District and compute aggregates.

- Pros:
 - ► Initial aggregation can be fast with appropriate index

- Pros:
 - ► Initial aggregation can be fast with appropriate index
 - Result of early aggregation significantly smaller than fact table: fewer rows and fewer columns

- Initial aggregation can be fast with appropriate index
- Result of early aggregation significantly smaller than fact table: fewer rows and fewer columns
- Joins to dimension tables are cheaper (intermediate result is much smaller than fact table)

- ► Initial aggregation can be fast with appropriate index
- Result of early aggregation significantly smaller than fact table: fewer rows and fewer columns
- ► Joins to dimension tables are cheaper (intermediate result is much smaller than fact table)
- Cons:

- ► Initial aggregation can be fast with appropriate index
- Result of early aggregation significantly smaller than fact table: fewer rows and fewer columns
- ► Joins to dimension tables are cheaper (intermediate result is much smaller than fact table)
- Cons:
 - Cannot take advantage of data reduction due to filters

- ► Initial aggregation can be fast with appropriate index
- Result of early aggregation significantly smaller than fact table: fewer rows and fewer columns
- ► Joins to dimension tables are cheaper (intermediate result is much smaller than fact table)
- Cons:
 - Cannot take advantage of data reduction due to filters
 - Two aggregation steps instead of one

Outline

- 1 Physical Storage
- 2 Denormalization and Summarization
- 3 Data Access
- 4 Data Partitioning
- 5 Summary

Motivation

- Computational burden \rightarrow divide and conquer

Motivation

- Computational burden \rightarrow divide and conquer
 - Data partitioning

Motivation

- Computational burden \rightarrow divide and conquer
 - Data partitioning
 - Distributed systems

• In general, partitioning divides tables and indexes into a smaller pieces, enabling these database objects to be managed and accessed at a finer level of granularity.

- In general, partitioning divides tables and indexes into a smaller pieces, enabling these database objects to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables.

- In general, partitioning divides tables and indexes into a smaller pieces, enabling these database objects to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables.
- Partitioning can provide benefits by improving manageability, performance, and availability.

- In general, partitioning divides tables and indexes into a smaller pieces, enabling these database objects to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables.
- Partitioning can provide benefits by improving manageability, performance, and availability.
- Partitioning is transparent for database queries.

- In general, partitioning divides tables and indexes into a smaller pieces, enabling these database objects to be managed and accessed at a finer level of granularity.
- Partitioning concerns tables in distributed systems like MapReduce (sometimes referred to as sharding), distributed and parallel databases, but also conventional tables.
- Partitioning can provide benefits by improving manageability, performance, and availability.
- Partitioning is transparent for database queries.
- Horizontal vs. vertical vs. chunk partitioning.

• Table or index is subdivided into smaller pieces.

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.
- Each partition has its own name, and may have its own storage characteristics (e.g. table compression).

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.
- Each partition has its own name, and may have its own storage characteristics (e.g. table compression).
- From the perspective of a database administrator, a partitioned object has multiple pieces which can be managed either collectively or individually.

- Table or index is subdivided into smaller pieces.
- Each piece of database object is called a partition.
- Each partition has its own name, and may have its own storage characteristics (e.g. table compression).
- From the perspective of a database administrator, a partitioned object has multiple pieces which can be managed either collectively or individually.
- From the perspective of the application, however, a partitioned table is identical to a non-partitioned table.

• Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
 - ► Hash partitioning: Rows divided into partitions using a hash function

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
 - ► Hash partitioning: Rows divided into partitions using a hash function
 - ► Range partitioning: Each partition holds a range of attribute values

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
 - ► Hash partitioning: Rows divided into partitions using a hash function
 - ► Range partitioning: Each partition holds a range of attribute values
 - List partitioning: Rows divided according to lists of values that describe the partition

Data partitioning

- Tables are partitioned using a 'partitioning key', a set of columns which determines in which partition a given row will reside.
- Different techniques for partitioning tables:
 - ► Hash partitioning: Rows divided into partitions using a hash function
 - ► Range partitioning: Each partition holds a range of attribute values
 - List partitioning: Rows divided according to lists of values that describe the partition
 - Composite Partitioning: partitions data using the range method, and within each partition, subpartitions it using the hash or list method.

Data partitioning

• Example:

```
CREATE TABLE sales_list (
  salesman_id NUMBER(5),
  salesman_name VARCHAR2(30),
  sales_state VARCHAR2(20),
  sales_amount NUMBER(10).
  sales date DATE)
  PARTITION BY LIST(sales_state)
  (
    PARTITION sales_west VALUES('California', 'Hawaii'),
    PARTITION sales_east VALUES ('New York', 'Virginia'),
    PARTITION sales_central VALUES('Texas', 'Illinois')
    PARTITION sales_other VALUES(DEFAULT)
);
```

• External-memory sorting:

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses *k* memory units):

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses *k* memory units):
 - Read to main memory

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses *k* memory units):
 - Read to main memory
 - Sort partition

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo
 - Perform *k*-way merge sort using the output buffer to store globally sorted data.

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo
 - Perform *k*-way merge sort using the output buffer to store globally sorted data.
 - Write output buffer to disk if it is filled.

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo
 - Perform *k*-way merge sort using the output buffer to store globally sorted data.
 - Write output buffer to disk if it is filled.
 - If the *i*th input buffer is exhausted, read next portion from *i*th partition.

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo
 - Perform *k*-way merge sort using the output buffer to store globally sorted data.
 - Write output buffer to disk if it is filled.
 - If the *i*th input buffer is exhausted, read next portion from *i*th partition.
- Remark that $k \ge \sqrt{n}$ (otherwise we need additional merge passes).

- External-memory sorting:
 - ► Let data be of size *n* and main memory be of size *k* + 1 units (*k* input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo
 - Perform *k*-way merge sort using the output buffer to store globally sorted data.
 - Write output buffer to disk if it is filled.
 - If the *i*th input buffer is exhausted, read next portion from *i*th partition.
- Remark that $k \ge \sqrt{n}$ (otherwise we need additional merge passes).
- External-memory sorting is used in merge-join of large data sets.

- External-memory sorting:
 - Let data be of size n and main memory be of size k + 1 units (k input and one output buffer).
 - Partition data into n/k parts (does not have to be made explicitly).
 - ► For each partition (each uses k memory units):
 - Read to main memory
 - Sort partition
 - Write sorted partition to disk
 - ► Read the first k/n of data from each sorted partition to main memory (use all k input buffers).
 - ► Ďo
 - Perform *k*-way merge sort using the output buffer to store globally sorted data.
 - Write output buffer to disk if it is filled.
 - If the *i*th input buffer is exhausted, read next portion from *i*th partition.
- Remark that $k \ge \sqrt{n}$ (otherwise we need additional merge passes).
- External-memory sorting is used in merge-join of large data sets.
- Similarly one can generalize hash-join to the so-called partitioned hash-join.

• Maintenance operations can be focused on particular portions of tables,

- Maintenance operations can be focused on particular portions of tables,
- Partial compression,

- Maintenance operations can be focused on particular portions of tables,
- Partial compression,
- Partial backups,

- Maintenance operations can be focused on particular portions of tables,
- Partial compression,
- Partial backups,
- Data recovery can concern partitions,

- Maintenance operations can be focused on particular portions of tables,
- Partial compression,
- Partial backups,
- Data recovery can concern partitions,
- "Divide and conquer" approach to data management.

• Partition fact table:

- Partition fact table:
 - ► Fact tables are big,

- Partition fact table:
 - ► Fact tables are big,
 - Process queries in parallel for each partition,

- Partition fact table:
 - ► Fact tables are big,
 - ▶ Process queries in parallel for each partition,
 - Divide the work among the nodes in the cluster,

- Partition fact table:
 - ► Fact tables are big,
 - Process queries in parallel for each partition,
 - Divide the work among the nodes in the cluster,
 - ► Specific queries would access only few partitions.

- Partition fact table:
 - ► Fact tables are big,
 - Process queries in parallel for each partition,
 - Divide the work among the nodes in the cluster,
 - ► Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:

- Partition fact table:
 - ► Fact tables are big,
 - Process queries in parallel for each partition,
 - Divide the work among the nodes in the cluster,
 - Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
 - Dimension tables are small,

- Partition fact table:
 - Fact tables are big,
 - ▶ Process queries in parallel for each partition,
 - Divide the work among the nodes in the cluster,
 - ► Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
 - Dimension tables are small,
 - Storing multiple copies of them is cheap,

- Partition fact table:
 - Fact tables are big,
 - ▶ Process queries in parallel for each partition,
 - Divide the work among the nodes in the cluster,
 - Specific queries would access only few partitions.
- Replicate dimension tables across cluster nodes:
 - Dimension tables are small,
 - Storing multiple copies of them is cheap,
 - No communication needed for parallel joins

• One big dimension:

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension
- Reducing load time via partitioning

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension
- Reducing load time via partitioning
 - Often fact tables are partitioned on Date

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension
- Reducing load time via partitioning
 - Often fact tables are partitioned on Date
 - Also indexes, aggregate tables, etc.

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension
- Reducing load time via partitioning
 - Often fact tables are partitioned on Date
 - Also indexes, aggregate tables, etc.
 - Newly loaded records go into the last partition

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension
- Reducing load time via partitioning
 - Often fact tables are partitioned on Date
 - Also indexes, aggregate tables, etc.
 - Newly loaded records go into the last partition
 - Only indexes and aggregates for that partition need to be updated

- One big dimension:
 - ► Sometimes one dimension table is quite big (e.g. customer)
 - Partition the big dimension table
 - Partition fact table on key of big dimension
- Reducing load time via partitioning
 - Often fact tables are partitioned on Date
 - Also indexes, aggregate tables, etc.
 - Newly loaded records go into the last partition
 - Only indexes and aggregates for that partition need to be updated
 - All other partitions remain unchanged

- Expiring old data
 - Often older data is less useful / relevant for data analysts

- Expiring old data
 - ► Often older data is less useful / relevant for data analysts
 - ► To reduce data warehouse size, old data is often deleted

- ► Often older data is less useful / relevant for data analysts
- ► To reduce data warehouse size, old data is often deleted
- If data is partitioned on date, simply delete or compress the oldest partition

- ► Often older data is less useful / relevant for data analysts
- To reduce data warehouse size, old data is often deleted
- If data is partitioned on date, simply delete or compress the oldest partition
- Multi-table joins

- ► Often older data is less useful / relevant for data analysts
- ► To reduce data warehouse size, old data is often deleted
- If data is partitioned on date, simply delete or compress the oldest partition
- Multi-table joins
 - ► Join can be applied with two tables partitioned on the join key,

- ► Often older data is less useful / relevant for data analysts
- To reduce data warehouse size, old data is often deleted
- If data is partitioned on date, simply delete or compress the oldest partition
- Multi-table joins
 - ► Join can be applied with two tables partitioned on the join key,
 - ► A large join is then broken into smaller joins that occur between each of the partitions, completing the overall join in less time.

Outline

- 1 Physical Storage
- 2 Denormalization and Summarization
- 3 Data Access
- 4 Data Partitioning
- 5 Summary

Summary

- Physical storage,
- Denormalization and summarization,
- Data access,
- Data partitioning.

Bibliography

- J. Han and M. Kamber. *Data Mining: Concepts and Techniques*. Morgan Kaufmann Publishers, second edition edition, 2006
- https://graphics.stanford.edu/~seander/bithacks.html