
Decision-theoretic machine learning

List of problems

In order to pass the course you need to solve some of the problems de-
scribed below from 4 different topics. For each solved problem you can get
max. 1 point. However, you cannot get more than 1 point from a given
topic. The final mark will be given according to the following rule:

• 3.0 points – 5.0

• 2.0 points – 4.0

• 1.0 points – 3.0

Your solutions should be sent (in a LATEX-generated PDF file) to both
instructors via email. Please use tag [DTML] in the title. The deadline is
June 30, 2019.

List of questions

Statistical learning theory

1. Consider the absolute value loss function defined as:

`(y, ŷ) = |y − ŷ|.

Show that if y is generated from some distribution P (y), then the
Bayes optimal decision y∗, i.e., the one minimizing the expected loss:

y∗ = arg min
ŷ

Ey∼P (y) [`(y, ŷ)] ,

is the median of distribution P , i.e. y∗ = median(y).

2. In binary classification with the zero-one loss function, the Bayes (op-
timal) classifier is given by:

h∗(x) = sgn(η(x)− 1/2), where η(x) = P (y = 1|x).

Derive the Bayes classifier for a loss function with classification costs
(cost-sensitive loss function):

`(y, ŷ) =


0 if y = ŷ,
1 if y = 1, ŷ = −1,
β if y = −1, ŷ = 1.
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Note: if β = 1, we get a standard zero-one loss; in this case the derived
Bayes classifier should agree with the Bayes classifier for the zero-one
loss.

3. Show that minimization of the zero-one loss within the class of linear
classifiers is NP-hard (propose a polynomial reduction to another NP-
hard problem).

4. Show that the loss functions below:

• squared loss: `(f) = (1− f)2,

• logistic loss: `(f) = log
(
1 + e−f

)
,

• hinge loss: `(f) = max{0, 1− f},
• exponential loss: `(f) = e−f .

are convex as functions of the margin f .

5. Show that if training examples (x, y) are generated by first drawing
a label y ∈ {−1, 1} from some distribution P (y) and then drawing
x|y ∼ N(µy,Σ) (i.e., each class has its own mean vector, but the

covariance matrix is shared between classes), then log η(x)
1−η(x) is a linear

function of x, where η(x) = P (y = 1|x). For simplicity, you can
assume that Σ is an identity matrix.

6. Prove that all loss functions below are classification calibrated. Fur-
thermore, derive the Bayes classifier for each loss:

• square loss: `(f) = (1− f)2,

• logistic loss: `(f) = log
(
1 + e−f

)
,

• hinge loss: `(f) = max{0, 1− f},
• exponential loss: `(f) = e−f .

7. Prove that the class of linear functions in Rn has the Vapnik-Chervonenkis
dimension equal to n+ 1.
Note: To prove that you need to show that there are some n+1 points
that can be shattered (the simpler part) and there does not exist a set
of n+2 points that can be shattered (the harder part). The knowledge
about linear algebra will be very useful.

Learning algorithms

1. Derive the splitting criterion of the decision tree growing algorithm for
the squared-error loss and 0/1 loss. Show that the value of the splitting
criterion can be updated incrementally when scanning examples one
by one in the sorted order of values on a given variable.
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2. Naive Bayes classifier is based on the assumption that features are
independent in a given class, i.e. for any class index k and any x =
(x1, . . . , xm),

P (x|y = k) =
m∏
j=1

P (xj |y = k) .

Does this assumption imply (or is implied by) the assumption that
features are unconditionally independent, i.e.:

P (x) =
m∏
j=1

P (xj) .

Justify your answer by either giving a counter-example (if the answer
is no) or providing a proof (if the answer is yes). Note: you need to
answer two questions here: whether the first assumption implies the
second, and whether the second assumption implied the first.

3. Is the Naive Bayes classifier is a linear classifier, i.e., whether it cor-
responds to a classification function:

h(x) = sgn(f(x)), where f(x) = w0 +

m∑
j=1

wjxj?

Justify your answer by providing explicit calculations. For simplicity,
restrict the answer to the case of binary features, i.e. when x ∈ {0, 1}.

4. The optimal solution to the linear regression problem is given by:

ŵ =

(
n∑
i=1

xix
>
i

)−1( n∑
i=1

yixi

)
.

What happens if the number of features m is larger than the number
of training examples n? Justify your answer. Furthermore, propose a
way to cope with this problem.

5. For the polynomial kernel of degree p = 2 given by the following
equation:

K2(xi,xj) = (1 + x>i xj)
2

derive the corresponding primal form of the feature map.

Bipartite ranking

1. Let f(x) be a ranker which assigns to each learning example x a ran-
dom number taken uniformly from [0, 1]. Given the prior probability
of positive class is equal to p = P (y = 1), compute the rank risk of
such f as well as its zero-one risk.
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2. It is shown on the slides that given a fixed empirical zero-one risk
L̂0/1(f) of f , f can have arbitrary bad (arbitrarily close to 1) empirical

rank risk L̂rnk(f). Try to find the opposite bound: assume that the
empirical rank risk L̂rnk(f) of f is given and equal to x. What is the
largest possible empirical zero-one risk of f? Write down the answer in
terms of x and p = P (y = 1) (the prior probability of positive class).

3. Reduction from ranking to pairwise binary classification presented on
the slides:

• What would happen if we did not impose a structure on the
function space f̃(x̃k) = f(xi)− f(xj) in the original reduction?

• What would happen in the reduction if we included the negative
examples as well? In other words, what would change if the data
transformation would produce a data set of the form: for any pair
(i, j) with i 6= j:

x̃k = (xi,xj), ỹk = sgn(yi − yj)

Note: these two questions are independent of each other.

4. Define:

K(x,x′) = η(x)(1− η(x′))
(
Jf(x) < f(x′)K +

1

2
Jf(x) = f(x′)K

)
,

where η(x) = P (y = 1|x). Show that the ranking risk can be rewritten
as:

Lrnk(f) =
1

p(1− p)
E(x,x′)

[
K(x,x′)

]
=

1

2p(1− p)
E(x,x′)

[
K(x,x′) +K(x′,x)

]
.

where p = P (y = 1) is the prior probability of positive class

5. Based on the result of the previous question, argue that the Bayes
ranker f∗(x) minimizes K(x,x′) + K(x′,x) for every (x,x′). Show
that this implies:

f∗(x) > f∗(x′) if and only if η(x) > η(x′),

i.e., the Bayes ranker f∗(x) is any strictly monotone transformation
of η(x).
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Multi-label classification

1. Show that the Hamming loss regret for multi-label classification can
be expressed by the 0/1 regret of individual binary classifiers trained
independently for all labels. Furthermore, express the 0/1 regret in
terms of the marginal probability.

2. Prove that the ordering of labels according to their decreasing marginal
probabilities gives the optimal solution for (unnormalized) rank loss.

3. Prove that structured support vector machines with Hamming loss as
the task loss and the scoring function of the following form:

f(x,y) =

m∑
i=1

fi(x, yi)

boil down to binary relevance with binary support vector machines.

4. Prove that conditional random fields with the scoring function of the
following form:

f(x,y) =

m∑
i=1

fi(x, yi)

boil down to binary relevance with logistic regression.

5. Derive the time complexity of the ε-inference algorithm used for pre-
diction under the subset 0/1 loss in probabilistic classifier chains.

5


