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Multi-label classification

• A classification problem in which we consider more than one binary
output variables.
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Image annotation: cloud? sky? tree?
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Ecology: Prediction of the presence or absence of species
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Gene function prediction

7 / 111



Document tagging
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Multi-label classification

• Multi-label classification: For a feature vector x predict accurately
a vector of responses y using a function h(x):

x = (x1, x2, . . . , xp)
h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ Y = {0, 1}m
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Multi-label classification

• Training data: {(x1,y1), (x2,y2), . . . , (xn,yn)}.
• Predict a vector y = (y1, y2, . . . , ym) for a given x.

x1 x2 y1 y2 . . . ym

x1 5.0 4.5 1 1 0
x2 2.0 2.5 0 1 0
...

...
...

...
...

...
xn 3.0 3.5 0 1 1

x 4.0 2.5 ? ? ?
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Multi-label classification

• Example x is coming from an unknown input distribution P (x).

• True outcome y is generated from P (y |x).

• Predicted outcome is given by ŷ = h(x).

• The (task) loss of a single prediction is `(y, ŷ).
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Multi-label classification

• The overall goal is to minimize the risk:

L`(h) = E(x,y)(`(y,h(x))

• The optimal prediction function, the so-called Bayes classifier, is:

h∗` = arg min
h

L`(h)

• The regret of a classifier h with respect to ` is defined as:

Reg`(h) = L`(h)− L`(h∗` ) = L`(h)− L∗`
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Multi-label classification

• We use training examples {xi,yi}n1 to find either:
I a good approximation of h∗, or
I a good estimation of P (y |x) (or a function of it).

• In the second case, we need to apply an inference procedure to
approximate h∗.
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Main challenges

• Appropriate modeling of dependencies between labels

y1, y2, . . . , ym

• A multitude of multivariate loss functions defined over the output
vector

`(y,h(x))
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Label interdependence

• Marginal and conditional dependence:

P (y) 6=
m∏
i=1

P (yi) P (y |x) 6=
m∏
i=1

P (yi |x)

marginal (in)dependence 6� conditional (in)dependence
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Label interdependence

• Marginal dependence 6→ conditional dependence

I Consider two independent labels y1 and y2 generated by the same
logistic model:

P (yi = 1|x) = (1 + exp(−φf(x)))−1,

where φ controls the Bayes error rate.
I Thus, the two labels are conditionally independent, having the

conditional distribution:

P (y|x) = P (y1|x)P (y2|x).

I Depending on the value of φ, however, they will be stronger or weaker
marginally dependent.

I For φ→∞ (Bayes error rate tends to 0), the marginal dependence
increases towards the deterministic one (y1 = y2).
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Label interdependence

• Marginal dependence 6← conditional dependence

I Consider two labels y1 and y2 and a single binary feature x1 with the
joint distribution P (x1, y1, y2) given as:

x1 y1 y2 P x1 y1 y2 P

0 0 0 0.25 1 0 0 0
0 0 1 0 1 0 1 0.25
0 1 0 0 1 1 0 0.25
0 1 1 0.25 1 1 1 0

I The labels are conditionally dependent, since:

P (y1 = 0|x1 = 1)P (y2 = 0|x1 = 1) = 0.5× 0.5 = 0.25,

but the joint probability is

P (y1 = 0, y2 = 0|x1 = 1) = 0.

In fact y1 = y2 for x1 =0 and y2 = 1− y1 for x1 = 1.
I However, the labels are marginally independent, since

P (y1) = P (y2) = 0.5, and P (y1, y2) = P (y1)P (y2).
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Label interdependence

• Deterministic dependencies:
I Consider labels y1 and y2 with the following conditional distribution for

a given x:

P (y1 = 1, y2 = 1 |x) = 1,

P (y1 = 0, y2 = 1 |x) = 0,

P (y1 = 1, y2 = 0 |x) = 0,

P (y1 = 0, y2 = 0 |x) = 0.

I Are y1 and y2 conditionally dependent?

I No, since it holds:

P (y1, y2 |x) = P (y1 |x)P (y2 |x)
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Label interdependence

• Model similarities:
I Similarities in the structural parts gi(x) of the models:

fi(x) = gi(x) + εi, for i = 1, . . . ,m

• Structure imposed (domain knowledge) on targets
I Chains,
I Hierarchies,
I General graphs,
I . . .
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Label interdependence

• Interdependence vs. hypothesis and feature space:
I Regularization constraints the hypothesis space.
I Modeling dependencies may increase the expressiveness of the model.
I Using a more complex model on individual labels may also help.
I Comparison of models is difficult in general, as they differ in many

respects (e.g., complexity)!
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Multivariate loss functions

• Decomposable and non-decomposable losses over examples

L =

n∑
i=1

`(yi,h(xi)) L 6=
n∑
i=1

`(yi,h(xi))

• Decomposable and non-decomposable losses over labels

`(y,h(x)) =

m∑
i=1

`(yi, hi(x)) `(y,h(x)) 6=
m∑
i=1

`(yi, hi(x))

• Different formulations of loss functions possible:
I Set-based losses.
I Ranking-based losses.
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Multi-label loss functions

• Subset 0/1 loss: `0/1(y,h) = Jy 6= hK

• Hamming loss: `H(y,h) =
1

m

m∑
i=1

Jyi 6= hiK

• F-measure-based loss: `F (y,h) = 1−
2
∑m

i=1 yihi∑m
i=1 yi +

∑m
i=1 hi

• Rank loss: `rnk(y,h) = w(y)
∑
yi>yj

(
Jhi < hjK +

1

2
Jhi = hjK

)
• . . .
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Relations between losses

• The set-based loss function `(y,h) should fulfill some basic
conditions:

I `(y,h) = 0 if and only if y = h.
I `(y,h) is maximal when yi 6= hi for every i = 1, . . . ,m.
I Should be monotonically non-decreasing with respect to the number of
yi 6= hi.

• In case of deterministic data (no-noise): the optimal prediction
should have the same form for all loss functions and the risk for this
prediction should be 0.

• In case of non-deterministic data (noise): the optimal prediction
and its risk can be different for different losses.
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Learning and inference with multi-label losses

• The loss functions, like Hamming loss or subset 0/1 loss, often
referred to as task losses, are usually neither convex nor
differentiable.

• Therefore learning is a hard optimization problem.

• Two approaches try to make this task easier
I Reduction.
I Surrogate loss minimization.

• Two phases in solving multi-label problems:
I Learning: Estimate parameters of a scoring function f(x,y).
I Inference: Use the scoring function f(x,y) to classify new instances by

finding the best y for a given x.
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Reduction

LEARNING min ˜̀(y′,x′, f)

(x,y)→ (x′, y′)

{(x,y)}ni=1

f(x′, y′)

Inferencex ŷ

• Reduce the original problem
into simple problems, for
which efficient algorithmic
solutions are available.

• Reduction to one or a
sequence of problems.

• Plug-in rule classifiers.
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Structured loss minimization

LEARNING min ˜̀(y,x, f)

{(x,y)}ni=1

f(x,y)

Inferencex ŷ

• Replace the task loss by a
surrogate loss that is easier
to cope with.

• Surrogate loss is typically a
differentiable approximation
of the task loss or a convex
upper bound of it.
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Statistical consistency

• Analysis of algorithms in terms of their infinite sample performance.1

• We say that a proxy loss ˜̀ is consistent (calibrated) with the task
loss ` when the following holds:

Reg ˜̀(h)→ 0⇒ Reg`(h)→ 0 .

• The definition concerns both surrogate loss minimization and
reduction:

I Surrogate loss minimization: ˜̀= surrogate loss.
I Reduction: ˜̀= loss used in the reduced problem.

1 A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods. JMLR,
8:1007–1025, 2007

D. McAllester and J. Keshet. Generalization bounds and consistency for latent structural probit
and ramp loss. In NIPS, pages 2205–2212, 2011

W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199-200:22–44, 2013
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Basic reductions: Binary relevance

• Binary relevance: Decomposes the problem to m binary
classification problems:

(x,y) −→ (x, y = yi), i = 1, . . . ,m

X1 X2 Y1 Y2 . . . Ym

x1 5.0 4.5 1 1 0
x2 2.0 2.5 0 1 0
...

...
...

...
...

...
xn 3.0 3.5 0 1 1

• Seems to be very simplistic.

• Ignores any dependencies.

• Is it good for any loss function?
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Basic reductions: Label powerset

• Label powerset: Treats each label combination as a new meta-class
in multi-class classification:

(x,y) −→ (x, y = metaclass(y))

X1 X2 Y1 Y2 . . . Ym

x1 5.0 4.5 1 1 0
x2 2.0 2.5 0 1 0
...

...
...

...
...

...
xn 3.0 3.5 0 1 1

• Any multi-class classification algorithm can be used, but the number
of classes is huge.

• Takes other labels into account, but ignores internal structure of
classes (label vectors).

30 / 111
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What about task losses minimized by BR and LP?
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Synthetic data

• Two independent models:

f1(x) =
1

2
x1 +

1

2
x2, f2(x) =

1

2
x1 −

1

2
x2

• Logistic model to get labels:

P (yi = 1) =
1

1 + exp(−2fi)
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Synthetic data

• Two dependent models:

f1(x) =
1

2
x1 +

1

2
x2 f2(y1,x) = y1 +

1

2
x1 −

1

2
x2 −

2

3
• Logistic model to get labels:

P (yi = 1) =
1

1 + exp(−2fi)
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Results for two performance measures

• Hamming loss: `H(y,h) = 1
m

∑m
i=1Jyi 6= hiK ,

• Subset 0/1 loss: `0/1(y,h) = Jy 6= hK .

Conditional independence

classifier Hamming loss subset 0/1 loss

BR LR
LP LR

Conditional dependence

classifier Hamming loss subset 0/1 loss

BR LR
LP LR
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Conditional independence

classifier Hamming loss subset 0/1 loss

BR LR 0.4232 0.6723
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Conditional dependence

classifier Hamming loss subset 0/1 loss
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Linear + XOR synthetic data
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Figure: Problem with two targets: shapes (4 vs. ◦) and colors (� vs. �).
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Linear + XOR synthetic data

classifier Hamming subset 0/1
loss loss

BR LR 0.2399(±.0097) 0.4751(±.0196)
LP LR 0.0143(±.0020) 0.0195(±.0011)

Bayes Optimal 0 0
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classifier Hamming subset 0/1
loss loss

BR LR 0.2399(±.0097) 0.4751(±.0196)
LP LR 0.0143(±.0020) 0.0195(±.0011)
BR MLRules 0.0011(±.0002) 0.0020(±.0003)

Bayes Optimal 0 0
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Linear + XOR synthetic data

• BR LR uses two linear classifiers:
cannot handle the label color (�
vs. �) – the XOR problem.

• LP LR uses four linear classifiers
to solve 4-class problem (M, N,
◦, •): extends the hypothesis
space.

• BR MLRules uses two non-linear
classifiers (based on decision
rules): XOR problem is not a
problem.

• There is no noise in the data.

• Easy to perform unfair
comparison.
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Multi-label loss functions

• The conditional risk in multi-label classification of h at x:

L`(h |x) = Ey [`(y,h(x))] =
∑
y∈Y

P (y |x)`(y,h(x))

• The risk-minimizing classifier for a given x:

h∗(x) = arg min
h

L`(h |x)

• Let us start with Hamming loss and subset 0/1 loss . . .2

2 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On loss minimization and
label dependence in multi-label classification. Machine Learning, 88:5–45, 2012
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Hamming loss vs. subset 0/1 loss

• The risk minimizer for the Hamming loss is

the marginal mode:

h∗i (x) = arg max
yi∈{0,1}

P (yi |x) , i = 1, . . . ,m,

while for the subset 0/1 loss is the joint mode:

h∗(x) = arg max
y∈Y

P (y |x) .

• Marginal mode vs. joint mode.

y P (y)

0 0 0 0 0.30
0 1 1 1 0.17
1 0 1 1 0.18
1 1 0 1 0.17
1 1 1 0 0.18

Marginal mode: 1 1 1 1
Joint mode: 0 0 0 0
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Equivalence of risk minimizers and mutual risk bounds

• The risk minimizers for `H and `0/1 are equivalent,

h∗H(x) = h∗0/1(x) ,

under specific conditions, for example, when:

I Targets y1, . . . , ym are conditionally independent, i.e,

P (y|x) =

m∏
i=1

P (yi|x) .

I The probability of the joint mode satisfies

P (h∗0/1(x)|x) > 0.5 .

• The following bounds hold for any P (y |x) and h:

1

m
L0/1(h |x) ≤ LH(h |x) ≤ L0/1(h |x)
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Regret analysis

• The previous results may suggest that one of the loss functions can
be used as a proxy (surrogate) for the other:

I For some situations both risk minimizers coincide.
I One can provide mutual bounds for both loss functions.

• However, the regret analysis of the worst case shows that
minimization of the subset 0/1 loss may result in a large error
for the Hamming loss and vice versa.
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Regret analysis

• The regret of a classifier with respect to ` is defined as:

Reg`(h) = L`(h)− L`(h∗` ) ,

where h∗` is the Bayes classifier for a given loss `.

• Regret measures how worse is h by comparison with the optimal
classifier for a given loss.

• To simplify the analysis we will consider the conditional regret:

Reg`(h |x) = L`(h |x)− L`(h∗` |x) .

• We will analyze the regret between:
I the Bayes classifier for Hamming loss h∗H
I the Bayes classifier for subset 0/1 loss h∗0/1

with respect to both functions.

• It is a bit an unusual analysis.
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Regret analysis

• The following upper bound holds:

Reg0/1(h
∗
H |x) = L0/1(h

∗
H |x)− L0/1(h

∗
0/1 |x) < 0.5

• Moreover, this bound is tight.

• Example:

y P (y)

0 0 0 0 0.02
0 0 1 1 0.49
1 1 0 0 0.49

Marginal mode: 0 0 0 0
Joint mode: 0 0 1 1 or 1 1 0 0
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Regret analysis

• The following upper bound holds m > 3:

RegH(h∗0/1 |x) = LH(h∗0/1 |x)− LH(h∗H |x) <
m− 2

m+ 2

• Moreover, this bound is tight.

• Example:

y P (y)

0 0 0 0 0.170
0 1 1 1 0.166
1 0 1 1 0.166
1 1 0 1 0.166
1 1 1 0 0.166
1 1 1 1 0.166

Marginal mode: 1 1 1 1
Joint mode: 0 0 0 0

44 / 111



Relations between losses

• The risk minimizers of Hamming and subset 0/1 loss are different:
marginal mode vs. joint mode.

• Under specific conditions, like label independence or high probability
of the joint mode (> 0.5), these two risk minimizers are equivalent.

• The risks of these loss functions are mutually upper bounded.

• Minimization of the subset 0/1 loss may cause a high regret for the
Hamming loss and vice versa.
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BR vs. LP

• Binary relevance (BR)
I BR is consistent for Hamming loss without any additional

assumptions on label (in)dependence.
I If this would not be true, then we could not optimally solve binary

classification problems!!!
I For other losses, one should take additional assumptions:

• For subset 0/1 loss: label independence, high probability of the joint
mode (> 0.5), . . .

I Learning and inference is linear in m (however, faster algorithms exist).
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BR vs. LP

• Label powerset (LP)

I LP is consistent for the subset 0/1 loss.
I In its basic formulation it is not consistent for Hamming loss.
I However, if used with a probabilistic multi-class classifier, it estimates

the joint conditional distribution for a given x: inference for any loss
would be then possible.

I Similarly, by reducing to cost-sensitive multi-class classification LP can
be used with almost any loss function.

I LP may gain from the implicit expansion of the feature or hypothesis
space.

I Unfortunately, learning and inference is basically exponential in m
(however, this complexity is constrained by the number of training
examples).
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Relations between losses

• Both are commonly used.

• Hamming loss:
I Not too many labels.
I Well-balanced labels.
I Application: Gene function

prediction.

• Subset 0/1 loss:
I Very restrictive.
I Small number of labels.
I Low noise problems.
I Application: Prediction of

diseases of a patient.
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Beyond LP

• Classical multi-class classification algorithms:
I k-nearest neighbors,
I Decision trees,
I Logistic regression,
I Multi-class SVMs,
I . . .

• Reduction algorithms:
I 1 vs All,
I 1 vs 1 and Weighted All-Pairs (WAP),
I Directed acyclic graphs (DAG),
I ECOC, PECOC, SECOC,
I Filter Trees,
I Conditional Probability Trees,
I . . .

• Can we adapt these algorithms to multi-label classification and
different task losses in a more direct way?
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Beyond LP

• Naive reduction to 1 vs. All:

(x,y) −→ (x, y = metaclass(y))

• Reduction of multi-class classification to binary classification:

(x, y = metaclass(y)) −→ {(x, y, 1)} ∪ {(x, y′, 0) : ∀y′ 6= y}

• But we can reduce directly multi-label classification to binary
classification:

(x,y) −→ {(x,y, 1)} ∪ {(x,y′, 0) : ∀y′ 6= y}

• We can exploit now the internal structure of label vectors!!!
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Internal structure of classes

• The model can be given by a scoring function f(x,y).

• Different forms of f(x,y) are possible, for example:

f(x,y) =
m∑
i=1

fi(x, yi) +
∑
yk,yl

fk,l(yk, yl) ,

where the second term models pairwise interactions.

• Prediction is given by:

h(x) = arg max
y∈Y

f(x,y)
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Internal structure of classes

• Generalization of logistic regression and SVMs for f(x,y):
I Conditional random fields (CRFs),3

I Structured support vector machines (SSVMs).4

3 John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282–289, 2001

4 Y. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for struc-
tured and interdependent output variables. JMLR, 6:1453–1484, 2005
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CRFs and SSVMs

• CRFs use logistic loss as a surrogate:

˜̀
log(y,x, f) = − logP (y|x) = log

∑
y∈Y

exp(f(x,y))

− f(x,y) .

• SSVMs minimize the structured hinge loss:

˜̀
h(y,x, f) = max

y′∈Y
{Jy′ 6= yK + f(x,y′)} − f(x,y) .

f

−1 0 1 2

f(x,y)f(x,y′) 1 + f(x,y′)

+1

• SSVMs and CRFs are quite similar to each other:
I max vs. soft-max
I margin vs. no-margin
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CRFs and SSVMs

• Follow the general LP strategy, but can exploit the internal structure
of classes within scoring function f(x,y).

• Convex optimization problem, but its hardness depends on the
structure of f(x,y).

• Similarly, the inference (also known as decoding problem) is hard in
the general case.

• For sequence and tree structures, the problem can be solved in
polynomial time.
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CRFs and SSVMs for different task losses

• In SSVMs, task loss `(y,y′) can be used for margin rescaling:

˜̀
h(y,x, f) = max

y′∈Y
{`(y,y′) + f(x,y′)} − f(x,y) .

• SSVMs with Hamming loss and

f(x,y) =

m∑
i=1

fi(x, yi)

decompose to BR with SVMs.

Question

Prove why this is true.

• In general SSVMs are inconsistent.5

5 W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199-200:22–44, 2013

A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods. JMLR,
8:1007–1025, 2007

D. McAllester. Generalization Bounds and Consistency for Structured Labeling in Predicting
Structured Data. MIT Press, 2007 56 / 111
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CRFs and SSVMs for different task losses

• CRFs are tailored for the subset 0/1 loss and cannot directly take
other task losses into account.

• CRFs with the scoring function of the form

f(x,y) =

m∑
i=1

fi(x, yi)

minimize Hamming loss (→ BR with logistic regression).

Question

Prove why this is true.

• Some works on incorporating margin into CRFs.6

6 P. Pletscher, C.S. Ong, and J.M. Buhmann. Entropy and margin maximization for structured
output learning. In ECML/PKDD. Springer, 2010

Q. Shi, M. Reid, and T. Caetano. Hybrid model of conditional random field and support vector
machine. In Workshop at NIPS, 2009

K. Gimpel and N. Smith. Softmax-margin crfs: Training log-linear models with cost functions.
In HLT, pages 733–736, 2010
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SSVMs vs. BR

Table: SSVMs with pairwise term7 vs. BR with LR8.

Dataset SSVM Best BR LR

Scene 0.101±.003 0.102±.003
Yeast 0.202±.005 0.199±.005
Synth1 0.069±.001 0.067±.002
Synth2 0.058±.001 0.084±.001

• There is almost no difference between both algorithms.

7 Thomas Finley and Thorsten Joachims. Training structural SVMs when exact inference is
intractable. In ICML. Omnipress, 2008

8 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. An analysis of chaining in
multi-label classification. In ECAI, 2012
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Probabilistic classifier chains

• Probabilistic classifier chains (PCCs)9 are an efficient reduction
method similar to conditional probability trees.10

• They estimate the joint conditional distribution P (y |x) as CRFs.

• Their idea is to repeatedly apply the product rule of probability:

P (y |x) =

m∏
i=1

P (yi |x, y1, . . . , yi−1) .

• Example:

P (y1, y2 |x) =
P (y1,x)

P (x)

P (y1, y2,x)

P (y1,x)
= P (y1 |x)P (y2 | y1,x) .

9 J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification.
Machine Learning Journal, 85:333–359, 2011

K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via
probabilistic classifier chains. In ICML, pages 279–286. Omnipress, 2010

10 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009
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Probabilistic classifier chains

• PCCs follow a reduction to a sequence of subproblems:

(x,y) −→ (x′ = (x, y1, . . . , yi−1), y = yi), i = 1, . . . ,m

• Learning of PCCs relies on constructing probabilistic classifiers for
estimating

P (yi|x, y1, . . . , yi−1) ,

independently for each i = 1, . . . ,m.

• Let us denote these estimates by

Q(yi|x, y1, . . . , yi−1) .

• The final model is:

Q(y |x) =

m∏
i=1

Q(yi |x, y1, . . . , yi−1) .
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Probabilistic classifier chains

• We can use scoring functions of the form fi(x
′, yi) and train logistic

regression (or any probabilistic classifier) to get Q(yi|x′).

• By using the linear models, the overall scoring function takes the form:

f(x,y) =

m∑
i=1

fi(x, yi) +
∑
yk,yl

fk,l(yk, yl)

• Theoretically the order of labels does not matter, but practically it
may.
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Probabilistic classifier chains

• PCCs enable estimation of probability of any label vector y.

• To get such an estimate it is enough to compute:

Q(y |x) =

m∏
i=1

Q(yi|x, y1, . . . , yi−1)

• There is, however, a problem how to compute the optimal decision
h(x) (with respect to Q) for a given loss function.
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Probabilistic classifier chains

• Inference in PCCs:
I Greedy search,
I Advanced search techniques: beam search, uniform-cost search,
I Exhaustive search,
I Sampling + inference.
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Greedy search

• Greedy search follows the chain by using predictions from previous
steps as inputs in the consecutive steps:

I f1 : x 7→ ŷ1
I f2 : x, ŷ1 7→ ŷ2
I f3 : x, ŷ1, y2 7→ ŷ3
I . . .
I fm : x, ŷ1, ŷ2, . . . , ŷm−1 7→ ŷm

• Greedy search is fast (O(m)).

• Does not require probabilistic classifiers.

• The resulting ŷ is neither the joint nor the marginal mode.

• Optimal if labels are independent or the probability of the joint mode
> 0.5.
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Greedy search

• Greedy search fails for the joint mode and the marginal mode:

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1
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Advanced search techniques

• Advanced search techniques: beam search,11 a variant of uniform-cost
search.12

• Finding the joint mode relies on finding the most probable path in the
tree.

• The use of a priority queue and a cut point gives a fast algorithm
with provable guarantees.

11 A. Kumar, S. Vembu, A.K. Menon, and C. Elkan. Beam search algorithms for multilabel
learning. In Machine Learning, 2013

12 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. An analysis of chaining in
multi-label classification. In ECAI, 2012
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Advanced search techniques

• Uniform-cost search

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q:
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Advanced search techniques

• Uniform-cost search

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: [(1,1),0.36], [(1,0),0.24]
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Advanced search techniques

• Uniform-cost search

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: [(0,0),0.4], [(1,1),0.36], [(1,0),0.24], [(0,1),0.0]
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Advanced search techniques

• Uniform-cost search

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: Solution is found
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Advanced search techniques

• ε-approximation inference:13

I Insert items to priority queue Q with partial probabilities > ε.
I If solution has not been found, then perform greedy search from nodes

without survived children.

13 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. An analysis of chaining in
multi-label classification. In ECAI, 2012
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q:
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: root
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: ε = 0.5
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: [(1),0.6], ε = 0.5, [(0),0.4]
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: ε = 0.5, [(0),0.4]
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: ε = 0.5, [(0),0.4], [(1,1),0.36], [(1,0),0.24]
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: Start the greedy search from (1).
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ε-approximation inference

• ε = 0.5

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Priority list Q: Suboptimal solution (1,1) is found.
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ε-approximation inference

• For ε = 0.5, it is equivalent to greedy search.

• For ε = 0.0, it is equivalent to uniform-cost search.

• For a given ε, the following guarantees can be given:

Theorem: Let ε = 2−c, where 1 ≤ c ≤ m. To get the label vector ŷ
the algorithm needs O(m2c) calls to node classifiers with a guarantee
that:

Q(y∗ |x)−Q(ŷ |x) ≤ ε− 2−m

Question

Prove this result.
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ε-approximation inference

• The ε-approximate inference will always find the joint mode if its
probability mass ≥ ε.

• In other words, the algorithm with ε = 0 finds the solution in a linear
time of 1/pmax, where pmax is the probability mass of the joint mode.

• For problems with low noise (high values of pmax), this method
should work very fast.

• Greedy search has very bad guarantees:

Q(y∗ |x)−Q(ŷ |x) ≤ 0.5− 2−m .
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Regret bound for PCC

• The typical approach for estimating probabilities of y is minimization
of the logistic loss:

`log(y,x, f) = − logQ(y |x) ,

where f is a model that delivers estimate Q(y |x) of P (y |x).

• By using the chain rule of probability, we get:

`log(y,x, f) = − log

m∏
i=1

Q(yi |x, y1, . . . , yi−1)

= −
m∑
i=1

logQ(yi |x, y1, . . . , yi−1) = −
m∑
i=1

logQi(y) ,

where we use the notation Qi(y) = Q(yi |x, y1, . . . , yi−1).

• This is a sum of univariate log losses on a path from the root to the
leaf corresponding to y.
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Regret bound for PCC

• Theorem: For all distributions and all PCCs trained with logistic
regression f and used with the ε-approximate inference algorithm,

Reg0/1(PCCε(f)) ≤
√

2mReglog(f) + ε

where Reglog(f) is the average logistic regret over the paths from the
root to the leafs.
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PCC for other losses

• Exhaustive search:
I Compute the entire distribution Q(y |x) by traversing the probability

tree.
I Use an appropriate inference for a given loss ` on the estimated joint

distribution:
ŷ = arg max

h∈Y

∑
y∈Y

Q(y |x)`(y,h(x))

I This approach is extremely costly.

• Ancestral sampling:
I Sampling can be easily performed by using the probability tree.
I Make inference based on the empirical distribution.
I Hamming loss: estimate marginal probabilities.
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Probabilistic classifier chains

• Exhaustive search and ancestral sampling:

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=1.0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y2=1 | y1=0,x)=0.0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

• Sample: (1,1), (1,0), (0,0), (0,0), (1,1), (0,0), (1,0), (1,1), (0,0) . . .
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Probabilistic classifier chains

Table: PCC vs. SSVMs on Hamming loss and PCC vs. BR on subset 0/1 loss.

Dataset PCC SSVM Best PCC BR
Hamming loss subset 0/1 loss

Scene 0.104±.004 0.101±.003 0.385±.014 0.509±.014
Yeast 0.203±.005 0.202±.005 0.761±.014 0.842±.012
Synth1 0.067±.001 0.069±.001 0.239±.006 0.240±.006
Synth2 0.000±.000 0.058±.001 0.000±.000 0.832±.004
Reuters 0.060±.002 0.045±.001 0.598±.009 0.689±.008
Mediamill 0.172±.001 0.182±.001 0.885±.003 0.902±.003
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Recurrent classifiers

• PCCs are similar to Maximum Entropy Markov Models (MEMMs)14

introduced for sequence learning:
I One logistic classifier that takes dependences up to the k-th degree.
I Inference by dynamic programming.

• Searn15 is another approach that is based on recurrent classifiers:
I Linear inference.
I Learning is performed in the iterative way to solve the egg and the

chicken problem: output of the classifier is also used as input to the
classifier.

14 A. K. McCallum, D. Freitag, and F. (2000) Pereira. Maximum entropy markov models for
information extraction and segmentation. In ICML, 2000

15 H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learn-
ing, 75:297–325, 2009
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Output search space

• More advanced search techniques.

• Popular topic in structured output prediction.

• Search techniques for different task losses.16

16 J.R. Doppa, A. Fern, and P. Tadepalli. Structured prediction via output space search. JMLR,
15:1317–1350, 2014
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PCC for multi-class classification

• PCC can be used for multi-class classification:
I Map each class label to a label vector: binary coding, hierarchical

clustering, . . .
I The same idea as in conditional probability trees (CPT).17

I Label tree classifiers for efficient multi-class classification.18

17 A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, pages 51–58, 2009

18 S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In
NIPS, pages 163–171. Curran Associates, Inc., 2010

J. Deng, S. Satheesh, A. C. Berg, and Fei Fei F. Li. Fast and balanced: Efficient label tree
learning for large scale object recognition. In NIPS, pages 567–575. 2011
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PCC for multi-class classification

• We assign each class an integer from 0 to k − 1 and code it by its
binary representation on m bits.

• Example: k = 4, Y = {0, 1, 2, 3}.
• k leaves, one for each class.

x

P (0 |x)

P (0 | 0,x)

y=002=0

0

P (1 | 0,x)

y=012=1

1

0

P (1 |x)

P (0 | 1,x)

y=102=2

0

P (1 | 1,x)

y=112=3

1

1
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Consistent and efficient label tree classifiers

• PCC: fast learning but inference can be costly.

• Greedy search is the most efficient, but is not consistent.

• How to ensure a linear inference in m for any loss?
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Filter trees

• Filter trees (FT)19 have been originally introduced for cost-sensitive
multi-class classification, but can be easily adapted to multi-label
classification.

• They use a bottom-up learning algorithm to train the label tree.

• Based on a single elimination tournament on the set of
classes/label combinations.

19 A. Beygelzimer, J. Langford, and P. D. Ravikumar. Error-correcting tournaments. In ALT,
pages 247–262, 2009
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Filter trees

• Filter trees (FT)19 have been originally introduced for cost-sensitive
multi-class classification, but can be easily adapted to multi-label
classification.

• They use a bottom-up learning algorithm to train the label tree.

• Based on a single elimination tournament on the set of
classes/label combinations.

19 A. Beygelzimer, J. Langford, and P. D. Ravikumar. Error-correcting tournaments. In ALT,
pages 247–262, 2009
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Filter trees : Example

f(root)

f(root,0)

f(root,0,0)

0 1

0

f(root,0,1)

0

↑
(x,y)

1

1

0

f(root,1)

f(root,1,0)

0 1

0

f(root,1,1)

0 1

1

1
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Filter trees : Example
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Filter trees

• FT are trained to predict yi+1 based on previous labels.

• FT implicitly transforms the underlying distribution P over
multi-class/multi-label examples into a specific distribution PFT

over weighted binary examples.

• The inference procedure of FT is straight-forward and uses the
greedy search.

• FT are consistent for any cost function.
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Filter trees

• Filter tree training:

1: Input: training set {(xi,yi)}ni=1, importance-weighted binary
learner Learn

2: for each non-leaf node v = (root, y1, . . . , yi−1) in the order from
leaves to root do

3: Sv = ∅
4: for each traning example (x,y) do
5: Let yl and yr be the two label vectors input to v
6: yi ← arg minl,r{`(y,yl), `(y,yr)}
7: w = |`(y,yl)− `(y,yr)|
8: Sv ← Sv ∪ (x, yi, w)
9: end for

10: fv = Learn(Sv)
11: end for
12: return f = {fv}
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Filter trees

• Different training schemes possible:
I Train a classifier in each node,
I Train a classifier on each level,
I Train one global binary classifier (in several loops).

• The tree in multi-label classification is given naturally, but the order
of labels may influence the performance.

• In general case, training can be costly (O(2m)), but efficient variants
for multi-label classification exist.20

• Prediction is always linear in the number of labels (O(m)).

20 Chun-Liang Li and Hsuan-Tien Lin. Condensed filter tree for cost-sensitive multi-label classifi-
cation. In ICML, pages 423–431, 2014
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Filter trees

• Filter trees for the subset 0/1 loss use a training example only on one
path from a leaf to the root.

• Therefore, training in this case is also linear in the number of labels
(O(m)).

• Moreover, all misclassified examples are filter out, i.e.,
f(root,y1,...yi)(x) predicts yi+1 given that all classifiers below predict
the subsequent labels correctly:

f(root,y1,...yi) : x 7→ (yi+1 | yj+1 = f(root,y1,...yj) : j = i+ 1, . . . ,m− 1)
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Filter trees: Consistency

• Consistency of FT for a single x:

f(root) = ?

f(root,0) = ?

P (y=(0, 0) |x)=0.4

y2 = 0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

f(root,1) = ?

P (y=(1, 0) |x)=0.24

y2 = 0

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

88 / 111



Filter trees: Consistency

• Consistency of FT for a single x:

f(root) = ?

f(root,0) = 0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

f(root,1) = ?

P (y=(1, 0) |x)=0.24

y2 = 0

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

88 / 111



Filter trees: Consistency

• Consistency of FT for a single x:

f(root) = ?

f(root,0) = 0

P (y=(0, 0) |x)=0.4

y2 = 0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

f(root,1) = 1

P (y=(1, 0) |x)=0.24

y2 = 0

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

88 / 111



Filter trees: Consistency

• Consistency of FT for a single x:

f(root) = ?

f(root,0) = 0

Examples (0, 1) filtered out

P (y=(0, 0) |x)=0.4

y2 = 0

P (y=(0, 1) |x)=0.0

y2 = 1

y1 = 0

f(root,1) = 1

Examples (1, 0) filtered out

P (y=(1, 0) |x)=0.24

y2 = 0

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1
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y2 = 1

y1 = 0

f(root,1) = 1

Examples (1, 0) filtered out

P (y=(1, 0) |x)=0.24
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Regret bound for filter trees

• Let fv be a classifier for the binary classification problem induced at
node v.

• The average binary regret is defined as:

Reg0/1(f, P
FT) =

1∑
vWv

∑
v

Reg0/1(fv, P
FT
v )Wv,

where
Wv = E(x,y)wv(x,y).

• Theorem:21 For all distributions and all FT classifiers trained with a
binary classifier f , and any cost-matrix-based task loss `,

Reg`(FT(f)) ≤ Reg0/1(f, P
FT)

∑
v

Wv .

21 A. Beygelzimer, J. Langford, and P. D. Ravikumar. Error-correcting tournaments. In ALT,
pages 247–262, 2009
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Regret bound for filter trees

• For subset 0/1 loss, we have∑
v

wv(x,y) ≤ m,

since each training example (x,y) will appear in training at most
once per level with importance weight 1.

• The regret bound has then the form:

Reg`(FT(f)) ≤ mReg0/1(f, P
FT) .
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Outline

1 Multi-label classification

2 Simple approaches to multi-label classification

3 Beyond simple approaches

4 Other task losses

5 Rank loss minimization

6 Summary
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Maximization of the F-measure

• Applications: Information retrieval, document tagging, and NLP.

• JRS 2012 Data Mining
Competition: Indexing
documents from
MEDLINE or PubMed
Central databases with
concepts from the
Medical Subject
Headings ontology.
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Maximization of the F-measure

• The Fβ-measure-based loss function (Fβ-loss):

`Fβ (y,h(x)) = 1− Fβ(y,h(x))

= 1−
(1 + β2)

∑m
i=1 yihi(x)

β2
∑m

i=1 yi +
∑m

i=1 hi(x)
∈ [0, 1] .

• Provides a better balance between relevant and irrelevant labels.

• However, it is not easy to optimize.
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SSVMs for Fβ-based loss

• SSVMs can be used to minimize Fβ-based loss.

• Rescale the margin by `F (y,y′).

• Two algorithms:22

RML SML
No label interactions: Submodular interactions:

f(y,x) =
m∑
i=1

fi(yi,x) f(y,x) =
m∑
i=1

fi(yi,x)+
∑
yk,yl

fk,l(yk, yl)

Quadratic learning and linear
prediction

More complex (graph-cut and ap-
proximate algorithms)

• Both are inconsistent.

22 J. Petterson and T. S. Caetano. Reverse multi-label learning. In NIPS, pages 1912–1920, 2010

J. Petterson and T. S. Caetano. Submodular multi-label learning. In NIPS, pages 1512–1520,
2011
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Plug-in rule approach

• Plug estimates of required parameters into the Bayes classifier:23

h∗ = arg min
h∈Y

E
[
`Fβ (Y ,h)

]
= arg max

h∈Y

∑
y∈Y

P (y)
(β + 1)

∑m
i=1 yihi

β2
∑m

i=1 yi +
∑m

i=1 hi

• No closed form solution for this optimization problem.

• The problem cannot be solved naively by brute-force search:
I This would require to check all possible combinations of labels (2m)
I To sum over 2m number of elements for computing the expected value.
I The number of parameters to be estimated (P (y)) is 2m.

23 W. Waegeman, K. Dembczynski, W. Cheng A. Jachnik, and E. Hüllermeier. On the Bayes-
optimality of F-measure maximizers. Minor revision, 2014
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Plug-in rule approach

• Approximation needed?

Not really. The exact solution is tractable!

LFP: EFP:

Assumes label independence. No assumptions.

Linear number of parameters:
P (yi = 1).

Quadratic number of parameters:
P (yi = 1, s =

∑
i yi).

Inference based on dynamic pro-
gramming.24

Inference based on matrix multipli-
cation and top k selection.25

Reduction to LR for each label. Reduction to multinomial LR for
each label.

• EFP is consistent.26

24 N. Ye, K. Chai, W. Lee, and H. Chieu. Optimizing F-measures: a tale of two approaches. In
ICML, 2012

25 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. An exact algorithm for F-
measure maximization. In NIPS, volume 25, 2011

26 K. Dembczynski, A. Jachnik, W. Kotlowski, W. Waegeman, and E. Hüllermeier. Optimizing
the F-measure in multi-label classification: Plug-in rule approach versus structured loss mini-
mization. In ICML, 2013
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Maximization of the F-measure
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Multi-label ranking

Multi-label classification

politics 0
economy 0
business 0
sport 1
tennis 1
soccer 0
show-business 0
celebrities 1

...
England 1
USA 1
Poland 1
Lithuania 0
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Multi-label ranking

Multi-label ranking

tennis

≺

sport

≺

England

≺

Poland

≺

USA
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...

≺
politics
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Multi-label ranking

• Ranking loss:

`rnk(y,f) = w(y)
∑

(i,j) : yi>yj

(
Jfi(x) < fj(x)K +

1

2
Jfi(x) = fj(x)K

)
,

where w(y) < wmax is a weight function.

X1 X2 Y1 Y2 . . . Ym

x 4.0 2.5 1 0 0
h2 > h1 > . . . > hm
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Multi-label ranking

• Ranking loss:

`rnk(y,f) = w(y)
∑

(i,j) : yi>yj

(
Jfi(x) < fj(x)K +

1

2
Jfi(x) = fj(x)K

)
,

where w(y) < wmax is a weight function.

The weight function w(y) is usually used to normalize the range
of rank loss to [0, 1]:

w(y) =
1

n+n−
,

i.e., it is equal to the inverse of the total number of pairwise
comparisons between labels.
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Pairwise surrogate losses

• The most intuitive approach is to use pairwise convex surrogate
losses of the form

˜̀
φ(y,f) =

∑
(i,j) : yi>yj

w(y)φ(fi − fj) ,

where φ is
I an exponential function (BoosTexter)27: φ(f) = e−f ,
I logistic function (LLLR)28: φ(f) = log(1 + e−f ) ,
I or hinge function (RankSVM)29: φ(f) = max(0, 1− f) .

27 R. E. Schapire and Y. Singer. BoosTexter: A Boosting-based System for Text Categorization.
Machine Learning, 39(2/3):135–168, 2000

28 O. Dekel, Ch. Manning, and Y. Singer. Log-linear models for label ranking. In NIPS. MIT
Press, 2004

29 A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS, pages
681–687, 2001
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Multi-label ranking

• This approach is, however, inconsistent for the most commonly used
convex surrogates.30

• The consistent classifier can be, however, obtained by using
univariate loss functions31 . . .

30 J. Duchi, L. Mackey, and M. Jordan. On the consistency of ranking algorithms. In ICML, pages
327–334, 2010

W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199-200:22–44, 2013

31 K. Dembczynski, W. Kotlowski, and E. Hüllermeier. Consistent multilabel ranking through
univariate losses. In ICML, 2012
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Reduction to weighted binary relevance

• The Bayes ranker can be obtained by sorting labels according to:

∆1
i =

∑
y : yi=1

w(y)P (y |x) .

• For w(y) ≡ 1, ∆u
i reduces to marginal probabilities P (yi = u |x).

• The solution can be obtained with BR or its weighted variant in a
general case.
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Reduction to weighted binary relevance

• Consider the sum of univariate (weighted) losses:

˜̀
exp(y,f) = w(y)

m∑
i=1

e−y
′fi ,

˜̀
log(y,f) = w(y)

m∑
i=1

log
(

1 + e−y
′fi
)
.

where y′ = 2yi − 1.

• The risk minimizer of these losses is:

f∗i (x) =
1

c
log

∆1
i

∆0
i

=
1

c
log

∆1
i

W −∆1
i

,

which is a strictly increasing transformation of ∆1
i , where

W = Ey[w(y) |x] =
∑
y

w(y)P (y |x) .
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Reduction to weighted binary relevance

• Vertical reduction: Solving m independent classification problems.

• Standard algorithms, like AdaBoost and logistic regression, can be
adapted to this setting.

• AdaBoost.MH follows this approach for w = 1.32

• Besides its simplicity and efficiency, this approach is consistent
(regret bounds have also been derived).33

32 R. E. Schapire and Y. Singer. BoosTexter: A Boosting-based System for Text Categorization.
Machine Learning, 39(2/3):135–168, 2000

33 K. Dembczynski, W. Kotlowski, and E. Hüllermeier. Consistent multilabel ranking through
univariate losses. In ICML, 2012
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Weighted binary relevance
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Figure: WBR LR vs. LLLR. Left: independent data. Right: dependent data.

• Label independence: the methods perform more or less en par.

• Label dependence: WBR shows small but consistent improvements.
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Benchmark data

Table: WBR-AdaBoost vs. AdaBoost.MR (left) and WBR-LR vs LLLR (right).

dataset AB.MR WBR-AB LLLR WBR-LR

image 0.2081 0.2041 0.2047 0.2065
emotions 0.1703 0.1699 0.1743 0.1657
scene 0.0720 0.0792 0.0861 0.0793
yeast 0.2072 0.1820 0.1728 0.1736
mediamill 0.0665 0.0609 0.0614 0.0472

• WBR is at least competitive to state-of-the-art algorithms defined on
pairwise surrogates.
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Summary

• Multi-label classification.

• Simple approaches to multi-label classification.

• Task losses minimized by BR and LP.

• CRFs and SSVMs.

• PCC and Filter trees.

• Approaches for other loss functions: F-measure and rank loss.
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Open challenges

• Learning and inference algorithms for any task loss and output
structure.

• Consistency of the algorithms.

• Large-scale datasets: number of instances, features, and labels.
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Conclusions

• Take-away message:
I Two main issues: loss minimization and label dependence.
I Two main approaches: surrogate loss minimization and reduction.
I Consistency of algorithms.
I High regret between solutions for different losses.
I Proper modeling of label dependence for different loss functions.
I Be careful with empirical evaluations.
I Independent models can perform quite well.

• For more check:

http://www.cs.put.poznan.pl/kdembczynski
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