Decision-theoretic Machine Learning

Krzysztof Dembczyński and Wojciech Kotłowski

Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland

Poznań University of Technology, Summer 2019

Agenda

- 1 Introduction to Machine Learning
- 2 Binary Classification
- 3 Bipartite Ranking
- Multi-Label Classification

Outline

- 1 Statistical decision theory for supervised learning
- 2 Learning paradigms and principles
- 3 Examples of learning algorithms
- 4 Summary

Outline

- 1 Statistical decision theory for supervised learning
- 2 Learning paradigms and principles
- 3 Examples of learning algorithms
- 4 Summary

Test example \boldsymbol{x}

Training data $\{oldsymbol{x}_i, y_i\}_1^n$

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
 - lacktriangle usually a feature vector, $\mathcal{X} \subseteq \mathbb{R}^d$.

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
 - usually a feature vector, $\mathcal{X} \subseteq \mathbb{R}^d$.
- Outcome $y \in \mathcal{Y}$ drawn from a distribution $P(y \mid x)$.
 - ► target of our prediction: class label, real value, label vector, etc.,
 - ▶ alternative view: **example** (x, y) drawn from P(x, y).

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
 - usually a feature vector, $\mathcal{X} \subseteq \mathbb{R}^d$.
- Outcome $y \in \mathcal{Y}$ drawn from a distribution $P(y \mid x)$.
 - ► target of our prediction: class label, real value, label vector, etc.,
 - ▶ alternative view: **example** (x, y) drawn from P(x, y).
- Prediction $\hat{y} = h(x)$ by means of prediction function $h: \mathcal{X} \to \mathcal{Y}$.
 - h returns prediction $\hat{y} = h(x)$ for every input x.

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
 - usually a feature vector, $\mathcal{X} \subseteq \mathbb{R}^d$.
- Outcome $y \in \mathcal{Y}$ drawn from a distribution $P(y \mid x)$.
 - ► target of our prediction: class label, real value, label vector, etc.,
 - ▶ alternative view: **example** (x, y) drawn from P(x, y).
- Prediction $\hat{y} = h(x)$ by means of prediction function $h: \mathcal{X} \to \mathcal{Y}$.
 - h returns prediction $\hat{y} = h(x)$ for every input x.
- Loss of our prediction: $\ell(y, \hat{y})$.
 - $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ is a problem-specific loss function.

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
 - usually a feature vector, $\mathcal{X} \subseteq \mathbb{R}^d$.
- Outcome $y \in \mathcal{Y}$ drawn from a distribution $P(y \mid x)$.
 - ► target of our prediction: class label, real value, label vector, etc.,
 - ▶ alternative view: **example** (x, y) drawn from P(x, y).
- Prediction $\hat{y} = h(x)$ by means of prediction function $h: \mathcal{X} \to \mathcal{Y}$.
 - h returns prediction $\hat{y} = h(x)$ for every input x.
- Loss of our prediction: $\ell(y, \hat{y})$.
 - $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ is a problem-specific loss function.
- Goal: find a prediction function with small loss.

Risk

• Goal: minimize the expected loss over all examples (risk):

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)\sim P} \left[\ell(y,h(\boldsymbol{x}))\right].$$

Risk

Goal: minimize the expected loss over all examples (risk):

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y) \sim P} \left[\ell(y, h(\boldsymbol{x})) \right].$$

• The **optimal** prediction function over all possible functions:

$$h^* = \operatorname*{arg\,min}_h L(h),$$

sometimes referred to as the Bayes prediction function.

Risk

Goal: minimize the expected loss over all examples (risk):

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)\sim P} \left[\ell(y,h(\boldsymbol{x}))\right].$$

• The **optimal** prediction function over all possible functions:

$$h^* = \operatorname*{arg\,min}_h L(h),$$

sometimes referred to as the Bayes prediction function.

The smallest achievable risk (Bayes risk):

$$L_{\ell}^* = L_{\ell}(h^*).$$

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)} [\ell(y,h(\boldsymbol{x}))]$$

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)} [\ell(y, h(\boldsymbol{x}))]$$
$$= \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(\boldsymbol{x}, y) d\boldsymbol{x} dy$$

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)} [\ell(y, h(\boldsymbol{x}))]$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(\boldsymbol{x}, y) d\boldsymbol{x} dy$$

$$= \int_{\mathcal{X}} \left(\int_{\mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(y \mid \boldsymbol{x}) dy \right) P(\boldsymbol{x}) d\boldsymbol{x}$$

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)} [\ell(y, h(\boldsymbol{x}))]$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(\boldsymbol{x}, y) d\boldsymbol{x} dy$$

$$= \int_{\mathcal{X}} \left(\int_{\mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(y \mid \boldsymbol{x}) dy \right) P(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \mathbb{E}_{\boldsymbol{x}} [L_{\ell}(h \mid \boldsymbol{x})].$$

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)} [\ell(y, h(\boldsymbol{x}))]$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(\boldsymbol{x}, y) d\boldsymbol{x} dy$$

$$= \int_{\mathcal{X}} \left(\int_{\mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(y \mid \boldsymbol{x}) dy \right) P(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \mathbb{E}_{\boldsymbol{x}} [L_{\ell}(h \mid \boldsymbol{x})].$$

• $L_{\ell}(h \mid x)$ is the **conditional risk** of $\hat{y} = h(x)$ at x.

$$L_{\ell}(h) = \mathbb{E}_{(\boldsymbol{x},y)} [\ell(y, h(\boldsymbol{x}))]$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(\boldsymbol{x}, y) d\boldsymbol{x} dy$$

$$= \int_{\mathcal{X}} \left(\int_{\mathcal{Y}} \ell(y, h(\boldsymbol{x})) P(y \mid \boldsymbol{x}) dy \right) P(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \mathbb{E}_{\boldsymbol{x}} [L_{\ell}(h \mid \boldsymbol{x})].$$

- $L_{\ell}(h \mid x)$ is the **conditional risk** of $\hat{y} = h(x)$ at x.
- ullet Bayes prediction **minimizes the conditional risk** for every x:

$$h^*(\boldsymbol{x}) = \arg\min_{h} L_{\ell}(h \mid \boldsymbol{x}).$$

Making optimal decisions

Example

• Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).

Making optimal decisions

Example

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Decision = bet (four choices).

Making optimal decisions

Example

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Decision = bet (four choices).
- If you win you get 100\$, if you loose you must give 50\$.

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Decision = bet (four choices).
- If you win you get 100\$, if you loose you must give 50\$.
- What is the loss and optimal decision?

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Decision = bet (four choices).
- If you win you get 100\$, if you loose you must give 50\$.
- What is the loss and optimal decision?
- Suppose we know the card is black. What is the optimal decision now?

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Decision = bet (four choices).
- If you win you get 100\$, if you loose you must give 50\$.
- What is the loss and optimal decision?
- Suppose we know the card is black. What is the optimal decision now?
- What are the input variables?

Example

• Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Bet the color:

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Bet the color:
 - ▶ if the true color is red and you are correct you win 50, otherwise you loose 100,

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Bet the color:
 - ▶ if the true color is red and you are correct you win 50, otherwise you loose 100,
 - if the true color is black and you are correct you win 200, otherwise you loose 100.

- Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3 clubs (black).
- Bet the color:
 - if the true color is red and you are correct you win 50, otherwise you loose 100,
 - if the true color is black and you are correct you win 200, otherwise you loose 100.
- What is the loss and optimal decision now?

- Prediction of a **real-valued** outcome $y \in \mathbb{R}$.
- Find a prediction function h(x) that accurately predicts value of y.
- The most common loss function used is **squared error loss**:

$$\ell_{se}(y,\hat{y}) = (y - \hat{y})^2,$$

where $\hat{y} = h(\boldsymbol{x})$.

$$L_{se}(h \mid \boldsymbol{x}) = \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \hat{y})^2 \right]$$

$$L_{se}(h \mid \boldsymbol{x}) = \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \hat{y})^2 \right]$$

$$= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \mu(\boldsymbol{x})^2 + \mu(\boldsymbol{x}) - \hat{y})^2 \right]$$

$$\begin{split} L_{se}(h \,|\, \boldsymbol{x}) &= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \hat{y})^2 \right] \\ &= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \mu(\boldsymbol{x})^2 + \mu(\boldsymbol{x}) - \hat{y})^2 \right] \\ &= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \mu(\boldsymbol{x}))^2 + 2 \underbrace{(y - \mu(\boldsymbol{x}))}_{\text{ender expectation}} (\mu(\boldsymbol{x}) - \hat{y}) + (\mu(\boldsymbol{x}) - \hat{y})^2 \right] \end{split}$$

$$\begin{split} L_{se}(h \,|\, \boldsymbol{x}) &= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \hat{y})^2 \right] \\ &= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \mu(\boldsymbol{x})^2 + \mu(\boldsymbol{x}) - \hat{y})^2 \right] \\ &= \mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \mu(\boldsymbol{x}))^2 + 2 \underbrace{(y - \mu(\boldsymbol{x}))}_{=0 \text{ under expectation}} (\mu(\boldsymbol{x}) - \hat{y}) + (\mu(\boldsymbol{x}) - \hat{y})^2 \right] \\ &= \underbrace{\mathbb{E}_{y \mid \boldsymbol{x}} \left[(y - \mu(\boldsymbol{x}))^2 \right]}_{\text{independent of } \hat{y}} + (\mu(\boldsymbol{x}) - \hat{y})^2. \end{split}$$

• The conditional risk for squared error loss is :

$$\begin{split} L_{se}(h \,|\, \boldsymbol{x}) &= \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[(\boldsymbol{y} - \hat{\boldsymbol{y}})^2 \right] \\ &= \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{x})^2 + \boldsymbol{\mu}(\boldsymbol{x}) - \hat{\boldsymbol{y}})^2 \right] \\ &= \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{x}))^2 + 2 \underbrace{(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{x}))}_{=0 \text{ under expectation}} (\boldsymbol{\mu}(\boldsymbol{x}) - \hat{\boldsymbol{y}}) + (\boldsymbol{\mu}(\boldsymbol{x}) - \hat{\boldsymbol{y}})^2 \right] \\ &= \underbrace{\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{x}))^2 \right]}_{\text{independent of } \hat{\boldsymbol{y}}} + (\boldsymbol{\mu}(\boldsymbol{x}) - \hat{\boldsymbol{y}})^2. \end{split}$$

• Hence, $h^*(x) = \mu(x)$, the conditional expectation of y at x, and:

$$L_{se}(h^* \mid \boldsymbol{x}) = \mathbb{E}_{y|\boldsymbol{x}} \left[(y - \mu(\boldsymbol{x}))^2 \right] = \text{Var}(y|\boldsymbol{x}).$$

• Another loss commonly used in regression is the absolute error:

$$\ell_{ae}(y, \hat{y}) = |y - \hat{y}|.$$

• The Bayes classifier for the absolute-error loss is:

$$h^*(\boldsymbol{x}) = \arg\min_{h} L_{ae}(h \mid \boldsymbol{x}) =$$

Another loss commonly used in regression is the absolute error:

$$\ell_{ae}(y, \hat{y}) = |y - \hat{y}|.$$

• The Bayes classifier for the absolute-error loss is:

$$h^*(\boldsymbol{x}) = \arg\min_{h} L_{ae}(h \mid \boldsymbol{x}) = \operatorname{median}(y \mid \boldsymbol{x}),$$

i.e., **median** of the conditional distribution of y given x.

Figure: Loss functions for regression task

- Prediction of a binary outcome $y \in \{-1, 1\}$ (alternatively $y \in \{0, 1\}$).
- Find a prediction function h(x) that accurately predicts value of y.
- The most common loss function used is **0/1 loss**:

$$\ell_{0/1}(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y}, \\ 1, & \text{otherwise}. \end{cases}$$

• Define $\eta(\boldsymbol{x}) = P(y = 1|\boldsymbol{x})$.

- Define $\eta(\boldsymbol{x}) = P(y = 1|\boldsymbol{x})$.
- ullet The conditional 0/1 risk at $oldsymbol{x}$ is:

- Define $\eta(\boldsymbol{x}) = P(y = 1|\boldsymbol{x})$.
- The conditional 0/1 risk at x is:

$$L_{0/1}(h|{\bm x}) = \eta({\bm x})[\![h({\bm x}) = -1]\!] + (1 - \eta({\bm x}))[\![h({\bm x}) = 1]\!].$$

- Define $\eta(\boldsymbol{x}) = P(y = 1|\boldsymbol{x})$.
- The conditional 0/1 risk at x is:

$$L_{0/1}(h|{\bm x}) = \eta({\bm x})[\![h({\bm x}) = -1]\!] + (1 - \eta({\bm x}))[\![h({\bm x}) = 1]\!].$$

• The Bayes classifier:

- Define $\eta(\boldsymbol{x}) = P(y = 1|\boldsymbol{x})$.
- The conditional 0/1 risk at x is:

$$L_{0/1}(h|\boldsymbol{x}) = \eta(\boldsymbol{x})[\![h(\boldsymbol{x}) = -1]\!] + (1 - \eta(\boldsymbol{x}))[\![h(\boldsymbol{x}) = 1]\!].$$

• The Bayes classifier:

$$h^*(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \eta(\boldsymbol{x}) > 1 - \eta(\boldsymbol{x}) \\ -1 & \text{if } \eta(\boldsymbol{x}) < 1 - \eta(\boldsymbol{x}) \end{cases} = \operatorname{sgn}(\eta(\boldsymbol{x}) - 1/2),$$

and the Bayes conditional risk:

- Define $\eta(\boldsymbol{x}) = P(y = 1|\boldsymbol{x})$.
- The conditional 0/1 risk at x is:

$$L_{0/1}(h|\boldsymbol{x}) = \eta(\boldsymbol{x})[\![h(\boldsymbol{x}) = -1]\!] + (1 - \eta(\boldsymbol{x}))[\![h(\boldsymbol{x}) = 1]\!].$$

• The Bayes classifier:

$$h^*(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \eta(\boldsymbol{x}) > 1 - \eta(\boldsymbol{x}) \\ -1 & \text{if } \eta(\boldsymbol{x}) < 1 - \eta(\boldsymbol{x}) \end{cases} = \operatorname{sgn}(\eta(\boldsymbol{x}) - 1/2),$$

and the Bayes conditional risk:

$$L_{\ell}(h^* \mid \boldsymbol{x}) = \min\{\eta(\boldsymbol{x}), 1 - \eta(\boldsymbol{x})\}.$$

- **Domain** of outcome variable y is a set of labels $\mathcal{Y} = \{1, \dots, K\}$.
- Goal: find a prediction function h(x) that for any object x predicts accurately the actual value of y.
- Loss function: the most common is 0/1 loss:

$$\ell_{0/1}(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y}, \\ 1, & \text{otherwise}. \end{cases}$$

• The conditional risk of the 0/1 loss is:

$$L_{0/1}(h \mid \boldsymbol{x}) = \mathbb{E}_{y \mid \boldsymbol{x}} \ell_{0/1}(y, h(\boldsymbol{x}))$$

• The conditional risk of the 0/1 loss is:

$$\begin{array}{lcl} L_{0/1}(h \,|\, \boldsymbol{x}) & = & \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \ell_{0/1}(\boldsymbol{y}, h(\boldsymbol{x})) \\ & = & \sum_{\boldsymbol{k} \in \mathcal{V}} P(\boldsymbol{y} = \boldsymbol{k} | \boldsymbol{x}) \ell_{0/1}(\boldsymbol{k}, h(\boldsymbol{x})) \end{array}$$

• The conditional risk of the 0/1 loss is:

$$L_{0/1}(h \mid \boldsymbol{x}) = \mathbb{E}_{y \mid \boldsymbol{x}} \ell_{0/1}(y, h(\boldsymbol{x}))$$
$$= \sum_{k \in \mathcal{Y}} P(y = k \mid \boldsymbol{x}) \ell_{0/1}(k, h(\boldsymbol{x}))$$

• Therefore, the Bayes classifier is given by:

$$h^*(\boldsymbol{x}) = \underset{h}{\operatorname{arg\,min}} L_{0/1}(h \mid \boldsymbol{x})$$

• The conditional risk of the 0/1 loss is:

$$\begin{array}{lcl} L_{0/1}(h \,|\, \boldsymbol{x}) & = & \mathbb{E}_{y|\boldsymbol{x}} \ell_{0/1}(y, h(\boldsymbol{x})) \\ & = & \sum_{k \in \mathcal{Y}} P(y = k|\boldsymbol{x}) \ell_{0/1}(k, h(\boldsymbol{x})) \end{array}$$

• Therefore, the Bayes classifier is given by:

$$h^*(\boldsymbol{x}) = \underset{h}{\operatorname{arg \, min}} L_{0/1}(h \,|\, \boldsymbol{x})$$

= $\underset{k}{\operatorname{arg \, max}} P(y = k | \boldsymbol{x}),$

the class with the largest conditional probability P(y|x).

• The conditional risk of the 0/1 loss is:

$$\begin{array}{lcl} L_{0/1}(h \,|\, \boldsymbol{x}) & = & \mathbb{E}_{y|\boldsymbol{x}} \ell_{0/1}(y, h(\boldsymbol{x})) \\ & = & \sum_{k \in \mathcal{Y}} P(y = k|\boldsymbol{x}) \ell_{0/1}(k, h(\boldsymbol{x})) \end{array}$$

• Therefore, the Bayes classifier is given by:

$$h^*(\boldsymbol{x}) = \underset{h}{\operatorname{arg \, min}} L_{0/1}(h \,|\, \boldsymbol{x})$$

= $\underset{k}{\operatorname{arg \, max}} P(y = k | \boldsymbol{x}),$

the class with the largest conditional probability P(y|x).

The Bayes conditional risk:

• The conditional risk of the 0/1 loss is:

$$\begin{array}{lcl} L_{0/1}(h \,|\, \boldsymbol{x}) & = & \mathbb{E}_{y|\boldsymbol{x}} \ell_{0/1}(y, h(\boldsymbol{x})) \\ & = & \sum_{k \in \mathcal{Y}} P(y = k|\boldsymbol{x}) \ell_{0/1}(k, h(\boldsymbol{x})) \end{array}$$

• Therefore, the Bayes classifier is given by:

$$h^*(\boldsymbol{x}) = \underset{h}{\operatorname{arg \, min}} L_{0/1}(h \,|\, \boldsymbol{x})$$

= $\underset{k}{\operatorname{arg \, max}} P(y = k | \boldsymbol{x}),$

the class with the largest conditional probability P(y|x).

• The Bayes conditional risk:

$$L_{\ell}(h^* | \mathbf{x}) = \min\{1 - P(y = k | \mathbf{x}) : k \in \mathcal{Y}\}.$$

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
- Outcome $y \in \mathcal{Y}$.
- Unknown target function $h^*: \mathcal{X} \to \mathcal{Y}$, such that $y = h^*(x)$.
- Goal: discover h^* by observing examples of (x, y).

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
- Outcome $y \in \mathcal{Y}$.
- Unknown target function $h^*: \mathcal{X} \to \mathcal{Y}$, such that $y = h^*(x)$.
- Goal: discover h^* by observing examples of (x, y).
- This is a **special case** of the statistical framework:
 - ▶ What is P(y|x)?
 - ► Bayes prediction function?
 - ▶ Risk of h^* ? (assuming $\ell(y, \hat{y}) = 0$ whenever $y = \hat{y}$)

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
- Outcome $y \in \mathcal{Y}$.
- Unknown target function $h^* : \mathcal{X} \to \mathcal{Y}$, such that $y = h^*(x)$.
- Goal: discover h^* by observing examples of (x, y).
- This is a **special case** of the statistical framework:
 - ▶ What is P(y|x)?
 - P(y|x) is a **degenerate** distribution for every x.
 - Bayes prediction function?
 - ▶ Risk of h^* ? (assuming $\ell(y, \hat{y}) = 0$ whenever $y = \hat{y}$)

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
- Outcome $y \in \mathcal{Y}$.
- Unknown target function $h^* : \mathcal{X} \to \mathcal{Y}$, such that $y = h^*(x)$.
- Goal: discover h^* by observing examples of (x, y).
- This is a **special case** of the statistical framework:
 - ▶ What is P(y|x)?
 - P(y|x) is a **degenerate** distribution for every x.
 - ► Bayes prediction function?
 - h*
 - ▶ Risk of h^* ? (assuming $\ell(y, \hat{y}) = 0$ whenever $y = \hat{y}$)

Deterministic learning framework

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
- Outcome $y \in \mathcal{Y}$.
- Unknown target function $h^* : \mathcal{X} \to \mathcal{Y}$, such that $y = h^*(x)$.
- Goal: discover h^* by observing examples of (x, y).
- This is a special case of the statistical framework:
 - ▶ What is P(y|x)?
 - P(y|x) is a **degenerate** distribution for every x.
 - ► Bayes prediction function?
 - h*
 - ► Risk of h^* ? (assuming $\ell(y, \hat{y}) = 0$ whenever $y = \hat{y}$)
 - h* has zero risk.

Deterministic learning framework

- Input $x \in \mathcal{X}$ drawn from a distribution P(x).
- Outcome $y \in \mathcal{Y}$.
- Unknown target function $h^*: \mathcal{X} \to \mathcal{Y}$, such that $y = h^*(x)$.
- Goal: discover h^* by observing examples of (x, y).
- This is a special case of the statistical framework:
 - ▶ What is P(y|x)?
 - P(y|x) is a **degenerate** distribution for every x.
 - ► Bayes prediction function?
 - h*
 - ▶ Risk of h^* ? (assuming $\ell(y, \hat{y}) = 0$ whenever $y = \hat{y}$)
 - h* has zero risk.
 - Unrealistic scenario in real life.

Outline

- 1 Statistical decision theory for supervised learning
- 2 Learning paradigms and principles
- 3 Examples of learning algorithms
- 4 Summary

Learning

- Distribution P(x, y) is unknown **unknown**.
- Therefore, Bayes classifier h^* is also **unknown**.
- Instead, we have access to *n* independent and identically distributed (i.i.d) **training examples** (sample):

$$\{(\boldsymbol{x}_1,y_1),(\boldsymbol{x}_2,y_2),\ldots,(\boldsymbol{x}_n,y_n)\}.$$

• Learning: use training data to find a good approximation of h^* .

Spam filtering

- Problem: Predict whether a given email is spam or not.
- An object to be classified: an email.
- There are two possible responses (classes): spam, not spam.

I AM LOOKING FOR GOLD DUST BUYER,

Dearest Buyer,

MY NAME IS MR JOVE MARKSON

I am contacting you for a contract on GOLDDUST, And GOLD BARS, There are bulk of gold dust for sell to interested buyers, each kilo is 3 all the 9 local mining communities, to sale there gold dust and bars.

If you are interested, you can visit our company and mines; you can seethequantity available and go to refinery to inspect the quality be gold dust to your destination.

- 1. Gold Dus
- 2. 22 Carat plus and Purity 92%
- 3. 30,500 USD for one Kg. Bush price
- 4, 2500 kilos available.
- 5. 650 kgs Reserve for shipment now
- Origin: Cote D'Ivoire.
- Commodity: Aurum Utallum
- 1. Form: Gold Bar.
- 2. Purity: 96.4 % like minimum value 96.6% like maximum value.
- 3. Price:31,500 USD for one kg.

Spam filtering

Example

• Representation of an email through (meaningful) features:

Spam filtering

Example

- Representation of an email through (meaningful) features:
 - ► length of subject
 - ► length of email body,
 - ▶ use of colors,
 - ► domain,
 - ▶ words in subject,
 - words in body.

length of subject	_	f use of colors		gold	price	USD	 machine	learning	spam?
7	240	1	live.fr	1	1	1	 0	0	1
2	150	0	poznan.pl	0	0	0	 1	1	0
2	250	0	tibco.com	0	1	1	 1	1	0
4	120	1	r-project.org	0	1	0	 0	0	?

Learning

- Four types of datasets:
 - ► training data: historical emails,
 - validation data: a subset of historical emails used for tuning learning algorithms
 - ▶ test data: a subset of historical emails used for estimating the risk,
 - ▶ new incoming data to be classified: new incoming emails.

• Generative learning

Generative learning

- ► Follow a data generating process
- ▶ Learn a model of the joint distribution P(x, y) and then use the Bayes theorem to obtain P(y | x).
- ▶ Make the final prediction by computing the optimal decision based on $P(y \mid x)$ with respect to a given $\ell(y, \hat{y})$.

Generative learning

- ► Follow a data generating process
- ▶ Learn a model of the joint distribution P(x, y) and then use the Bayes theorem to obtain P(y | x).
- ▶ Make the final prediction by computing the optimal decision based on $P(y \mid x)$ with respect to a given $\ell(y, \hat{y})$.
- Discriminative learning

• Generative learning

- ► Follow a data generating process
- ▶ Learn a model of the joint distribution P(x, y) and then use the Bayes theorem to obtain P(y | x).
- ▶ Make the final prediction by computing the optimal decision based on $P(y \mid x)$ with respect to a given $\ell(y, \hat{y})$.

• Discriminative learning

- ▶ Approximate $h^*(x)$ which is a direct map from x to y or
- lacktriangle Model the conditional probability $P(y \mid x)$ directly, and
- ▶ Make the final prediction by computing the optimal decision based on $P(y \mid x)$ with respect to a given $\ell(y, \hat{y})$.

Generative learning

- ► Follow a data generating process
- ▶ Learn a model of the joint distribution P(x, y) and then use the Bayes theorem to obtain P(y | x).
- ▶ Make the final prediction by computing the optimal decision based on $P(y \mid x)$ with respect to a given $\ell(y, \hat{y})$.

• Discriminative learning

- ▶ Approximate $h^*(x)$ which is a direct map from x to y or
- lacktriangle Model the conditional probability $P(y \mid x)$ directly, and
- ▶ Make the final prediction by computing the optimal decision based on P(y | x) with respect to a given $\ell(y, \hat{y})$.
- Two phases of the learning models: learning and prediction (inference).

- Various principles on how to learn:
 - ► Empirical risk minimization,
 - ► Maximum likelihood principle,
 - ▶ Bayes approach,
 - ► Minimum description length,
 - ▶ ...

Empirical Risk Minimization (ERM)

• Choose a prediction function \widehat{h} which minimizes the loss on the training data within some **restricted** class of functions \mathcal{H} .

$$\widehat{h} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(\boldsymbol{x}_i)).$$

ullet The average loss on the training data is called **empirical risk** $\widehat{L}_\ell(h)$.

1

Empirical Risk Minimization (ERM)

• Choose a prediction function \widehat{h} which minimizes the loss on the training data within some **restricted** class of functions \mathcal{H} .

$$\widehat{h} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(\boldsymbol{x}_i)).$$

- The average loss on the training data is called **empirical risk** $\widehat{L}_{\ell}(h)$.
- ullet can be: linear functions, polynomials, trees of a given depth, rules, linear combinations of trees, etc. 1

¹ T. Hastie, R. Tibshirani, and J.H. Friedman. Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, second edition, 2009

Outline

- 1 Statistical decision theory for supervised learning
- 2 Learning paradigms and principles
- 3 Examples of learning algorithms
- 4 Summary

Selected learning methods

- Almost no-learning methods: histogram-based classifier, nearest neighbors
- Generative methods: naive Bayes
- Linear methods and their generalizations: linear regression, logistic regression, perceptron, support vector machines, AdaBoost, neural networks.

Almost no-learning methods

• Based on empirical distribution and direct application of the Bayes rule to a local estimate of $P(y \mid x)$.

Almost no-learning methods

- Based on empirical distribution and direct application of the Bayes rule to a local estimate of P(y | x).
- The simplest approach estimates conditional probabilities $P(y|\boldsymbol{x})$ for any \boldsymbol{x} from training data:
 - ▶ Based on *group-bys* and simple counting.
 - ▶ Needs a lot of data to get reasonable estimates!!!
 - Data should be discrete/nominal or we need to discretize numerical data before.

Learning

Example

gold	price	spam?		
1	1	1		
1	1	1		
1	1	1		
1	1	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	1		
0	0	1		
0	1	0		
0	1	1		

$$P(y = 1|\text{gold} = 1 \land \text{price} = 1) = 0.75$$

$$P(y = 0|\text{gold} = 1 \land \text{price} = 1) = 0.25$$

$$P(y = 1|\text{gold} = 0 \land \text{price} = 0) = 0.33$$

$$P(y = 0|\text{gold} = 0 \land \text{price} = 0) = 0.66$$

$$P(y = 1|\text{gold} = 0 \land \text{price} = 1) = 0.5$$

$$P(y = 0|\text{gold} = 0 \land \text{price} = 1) = 0.5$$

$$P(y = 1|\text{gold} = 1 \land \text{price} = 0) = ?$$

$$P(y = 0|\text{gold} = 1 \land \text{price} = 0) = ?$$

- Build a multidimensional grid and estimate the conditional probability in each element of the grid,
- Plug the estimates to the Bayes classifier for a given $\ell(y,\hat{y})$ to obtain prediction.

• The predictive performance depends on the grid resolution, dimensionality of data and the size of training data.

- The predictive performance depends on the grid resolution, dimensionality of data and the size of training data.
- With some tricks can be efficiently implemented.

- The predictive performance depends on the grid resolution, dimensionality of data and the size of training data.
- With some tricks can be efficiently implemented.
- Piecewise-constant prediction for a given region.

- The predictive performance depends on the grid resolution, dimensionality of data and the size of training data.
- With some tricks can be efficiently implemented.
- Piecewise-constant prediction for a given region.
- Computation of the estimates in the region: well-know statistical problem, maximum likelihood estimates, regularization.

- The predictive performance depends on the grid resolution, dimensionality of data and the size of training data.
- With some tricks can be efficiently implemented.
- Piecewise-constant prediction for a given region.
- Computation of the estimates in the region: well-know statistical problem, maximum likelihood estimates, regularization.
- The grid can be given as a domain knowledge, simple discretization, or random splits.

- The predictive performance depends on the grid resolution, dimensionality of data and the size of training data.
- With some tricks can be efficiently implemented.
- Piecewise-constant prediction for a given region.
- Computation of the estimates in the region: well-know statistical problem, maximum likelihood estimates, regularization.
- The grid can be given as a domain knowledge, simple discretization, or random splits.
- One can use more intelligent methods to obtain a grid, for example, supervised discretization or supervised recursive splitting like in decision trees.

- Recursively make a partition of the feature space (in a smart way),
- Compute the optimal decision in each region.

- Recursively make a partition of the feature space (in a smart way),
- Compute the optimal decision in each region.

- Recursively make a partition of the feature space (in a smart way),
- Compute the optimal decision in each region.

- Recursively make a partition of the feature space (in a smart way),
- Compute the optimal decision in each region.

- Recursively make a partition of the feature space (in a smart way),
- Compute the optimal decision in each region.

 \dot{R}_3

• The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

 The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

Question

 The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

Question

How to design the splitting criterion for the squared-error loss and 0/1 loss?

• Greedy methods used for constructing a tree.

 The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

Question

- Greedy methods used for constructing a tree.
- The resulting model can be easily interpreted.

 The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

Question

- Greedy methods used for constructing a tree.
- The resulting model can be easily interpreted.
- The most influential splits are close to the root (like in the 20-question game).

 The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

Question

- Greedy methods used for constructing a tree.
- The resulting model can be easily interpreted.
- The most influential splits are close to the root (like in the 20-question game).
- Learning and prediction is very efficient.

 The learning method seeks an optimal tree shape (e.g. feature space partition) by minimizing the empirical risk (usually expressed in terms of a surrogate loss).

Question

- Greedy methods used for constructing a tree.
- The resulting model can be easily interpreted.
- The most influential splits are close to the root (like in the 20-question game).
- Learning and prediction is very efficient.
- Estimation of the decision in each leaf the same problem like in histogram-based methods.

- Find k-nearest neighbors of the test example according to a given metric,
- Estimate the Bayes classifier based on the neighborhood.

- Find k-nearest neighbors of the test example according to a given metric,
- Estimate the Bayes classifier based on the neighborhood.

- Find k-nearest neighbors of the test example according to a given metric,
- Estimate the Bayes classifier based on the neighborhood.

• Prediction for a test example is computed based on nearest training examples – there is no learning.

- Prediction for a test example is computed based on nearest training examples – there is no learning.
- The same principles for computing the prediction as in histogram-based and tree classifiers.

- Prediction for a test example is computed based on nearest training examples – there is no learning.
- The same principles for computing the prediction as in histogram-based and tree classifiers.
- Training set can be used for tunning k and finding a metric.

- Prediction for a test example is computed based on nearest training examples – there is no learning.
- The same principles for computing the prediction as in histogram-based and tree classifiers.
- Training set can be used for tunning k and finding a metric.
- Specialized data structures for efficient search of nearest neighbors.

- Prediction for a test example is computed based on nearest training examples – there is no learning.
- The same principles for computing the prediction as in histogram-based and tree classifiers.
- Training set can be used for tunning k and finding a metric.
- Specialized data structures for efficient search of nearest neighbors.
- Reduction of training data: prototypes, feature selection, dimensionality reduction by PCA or similar methods.

- Prediction for a test example is computed based on nearest training examples – there is no learning.
- The same principles for computing the prediction as in histogram-based and tree classifiers.
- Training set can be used for tunning k and finding a metric.
- Specialized data structures for efficient search of nearest neighbors.
- Reduction of training data: prototypes, feature selection, dimensionality reduction by PCA or similar methods.
- Approximate nearest neighbors.

• Generative methods rely on the Bayes theorem:

$$P(y = k | \boldsymbol{x}) = \frac{P(\boldsymbol{x} | y = k)P(y = k)}{P(\boldsymbol{x})}$$

where P(x|y=k) is the density function $f_k(x)$ (for example, multivariate Gaussian distribution), and P(x) is given by:

• Generative methods rely on the Bayes theorem:

$$P(y = k | \boldsymbol{x}) = \frac{P(\boldsymbol{x} | y = k)P(y = k)}{P(\boldsymbol{x})}$$

where P(x|y=k) is the density function $f_k(x)$ (for example, multivariate Gaussian distribution), and P(x) is given by:

$$P(\boldsymbol{x}) = \sum_{j} P(\boldsymbol{x}|y=j)P(y=j)$$

from the law of total probability.

Learning

- The main algorithms:
 - ► Linear and quadratic discriminant analysis that use Gaussian densities,
 - ► General nonparametric density estimates for each class density,
 - ► Naive Bayes model that assumes that each of the class densities are products of marginal densities, i.e., the features are conditionally independent in each class.

• The naive Bayes model assumes that given a class y=k, the features ${\boldsymbol x}=(x_1,x_2,\ldots,x_m)$ are independent:

$$P(\boldsymbol{x}|y) =$$

• The naive Bayes model assumes that given a class y=k, the features ${m x}=(x_1,x_2,\ldots,x_m)$ are independent:

$$P(\boldsymbol{x}|y) = \prod_{j=1}^{m} P(x_j|y).$$

• The naive Bayes model assumes that given a class y=k, the features ${\boldsymbol x}=(x_1,x_2,\ldots,x_m)$ are independent:

$$P(\boldsymbol{x}|y) = \prod_{j=1}^{m} P(x_j|y).$$

• The model takes the following form:

$$P(y = k | \boldsymbol{x}) =$$

• The naive Bayes model assumes that given a class y=k, the features ${\boldsymbol x}=(x_1,x_2,\ldots,x_m)$ are independent:

$$P(\boldsymbol{x}|y) = \prod_{j=1}^{m} P(x_j|y).$$

• The model takes the following form:

$$P(y = k | \mathbf{x}) = \frac{P(y = k) \prod_{j=1}^{m} P(x_j | y = k)}{\sum_{k'} P(y = k') \prod_{j=1}^{m} P(x_j | y = k')}$$

• The naive Bayes model assumes that given a class y=k, the features $\boldsymbol{x}=(x_1,x_2,\ldots,x_m)$ are independent:

$$P(\boldsymbol{x}|y) = \prod_{j=1}^{m} P(x_j|y).$$

• The model takes the following form:

$$P(y = k | \mathbf{x}) = \frac{P(y = k) \prod_{j=1}^{m} P(x_j | y = k)}{\sum_{k'} P(y = k') \prod_{j=1}^{m} P(x_j | y = k')}$$

• The individual class-conditional marginal densities f_{jk} can each be estimated separately using univariate Gaussian distributions:

$$N(\mathbb{E}(x_j|y=k), \operatorname{Var}(x_j|y=k))$$

• If a component x_j of x is discrete, then an appropriate histogram estimate can be used.

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) =$$

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y=1) = 0.5$$
$$P(y=0) =$$

gold price		spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

 $P(y = 0) = 0.5$
 $P(\text{gold} = 1|Y = 1) =$

gold price		spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

 $P(y = 0) = 0.5$
 $P(\text{gold} = 1|Y = 1) = 0.5$
 $P(\text{gold} = 0|Y = 1) =$

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

 $P(y = 0) = 0.5$
 $P(\text{gold} = 1|Y = 1) = 0.5$
 $P(\text{gold} = 0|Y = 1) = 0.5$
 $P(\text{gold} = 1|Y = 0) =$

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.17$$

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.83$$

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.66$$

$$P(\text{price} = 0|Y = 1) = 0.66$$

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.66$$

$$P(\text{price} = 0|Y = 1) = 0.33$$

$$P(\text{price} = 1|Y = 0) = 0.33$$

Example

gold price		spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.66$$

$$P(\text{price} = 0|Y = 1) = 0.33$$

$$P(\text{price} = 1|Y = 0) = 0.33$$

$$P(\text{price} = 0|Y = 0) = 0.33$$

Example

gold price		spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.66$$

$$P(\text{price} = 0|Y = 1) = 0.33$$

$$P(\text{price} = 1|Y = 0) = 0.33$$

$$P(\text{price} = 0|Y = 0) = 0.66$$

We can, for example, compute:

$$P(y = 1|\text{gold} = 1 \land \text{price} = 0) =$$

Example

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.66$$

$$P(\text{price} = 0|Y = 1) = 0.33$$

$$P(\text{price} = 1|Y = 0) = 0.33$$

$$P(\text{price} = 0|Y = 0) = 0.66$$

We can, for example, compute:

$$P(y = 1|\text{gold} = 1 \land \text{price} = 0) = \frac{0.5 \times 0.33 \times 0.5}{0.1386} = \frac{0.825}{0.1386} = 0.595$$

 $P(y = 0|\text{gold} = 1 \land \text{price} = 0) =$

Example

gold	price	spam?
1	1	1
1	1	1
1	1	1
1	1	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	1	0
0	1	1

$$P(y = 1) = 0.5$$

$$P(y = 0) = 0.5$$

$$P(\text{gold} = 1|Y = 1) = 0.5$$

$$P(\text{gold} = 0|Y = 1) = 0.5$$

$$P(\text{gold} = 1|Y = 0) = 0.17$$

$$P(\text{gold} = 0|Y = 0) = 0.83$$

$$P(\text{price} = 1|Y = 1) = 0.66$$

$$P(\text{price} = 0|Y = 1) = 0.33$$

$$P(\text{price} = 1|Y = 0) = 0.33$$

$$P(\text{price} = 0|Y = 0) = 0.66$$

We can, for example, compute:

$$P(y = 1|\text{gold} = 1 \land \text{price} = 0) = \frac{0.5 \times 0.33 \times 0.5}{0.1386} = \frac{0.825}{0.1386} = 0.595$$

$$P(y = 0|\text{gold} = 1 \land \text{price} = 0) = 1 - 0.595 = 0.405$$

• If the independence assumption is not valid, then the model can provide very bad predictions.

- If the independence assumption is not valid, then the model can provide very bad predictions.
- In many applications, however, this assumption seems to be at least partially satisfied, for example, in text classification.

- If the independence assumption is not valid, then the model can provide very bad predictions.
- In many applications, however, this assumption seems to be at least partially satisfied, for example, in text classification.
- Training is very efficient: one pass over training data to collect all necessary statistics.

- If the independence assumption is not valid, then the model can provide very bad predictions.
- In many applications, however, this assumption seems to be at least partially satisfied, for example, in text classification.
- Training is very efficient: one pass over training data to collect all necessary statistics.
- Prediction is linear in number of features.

- If the independence assumption is not valid, then the model can provide very bad predictions.
- In many applications, however, this assumption seems to be at least partially satisfied, for example, in text classification.
- Training is very efficient: one pass over training data to collect all necessary statistics.
- Prediction is linear in number of features.
- Some tricks to improve quality of computed statistics: Laplace correction and similar.

- If the independence assumption is not valid, then the model can provide very bad predictions.
- In many applications, however, this assumption seems to be at least partially satisfied, for example, in text classification.
- Training is very efficient: one pass over training data to collect all necessary statistics.
- Prediction is linear in number of features.
- Some tricks to improve quality of computed statistics: Laplace correction and similar.

Question

Is Naive Bayes a linear classifier? Prove under which conditions it is true.

• Consider a linear model of the form:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=1}^m w_j x_j \,,$$

where $w = (w_0, w_1, \dots, w_m)$ are the parameters of the model and $x = (x_1, x_2, \dots, x_n)$ is a feature vector describing an example.

• Consider a linear model of the form:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=1}^m w_j x_j \,,$$

where $w = (w_0, w_1, \dots, w_m)$ are the parameters of the model and $x = (x_1, x_2, \dots, x_n)$ is a feature vector describing an example.

• It is often convenient to use vector notation:

$$f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x} \,,$$

where $x = (1, x_1, x_2, \dots, x_n)$ has an additional 1 at the first position.

- Linear models constitute a very general class of models:
 - ▶ Basic transformations and expansion of original features,
 - Kernel trick (SVM),
 - ► Linear combination of weak classifiers (AdaBoost),
 - ▶ The fundamental component of the neural networks.

• Ideal case of perfect linear separation.

• What if the data is not even close to linear? Give up on linear classifier...?

- What if the data is not even close to linear?
 Give up on linear classifier...?
- Or better, simply invent new features.

Embed instances into a feature space:

$$\phi \colon \mathbb{R}^m \to \mathbb{R}^N$$

feature space

Embed instances into a feature space:

$$\phi \colon \mathbb{R}^m o \mathbb{R}^N$$

feature space

• $\phi(x_1, x_2) = \left(\sqrt{x_1^2 + x_2^2}, \arctan \frac{x_2}{x_1}\right)$.

Linear models – feature expansions

Linear models - feature expansions

prediction: $f(x) = w \cdot x$ prediction: $f(x) = w \cdot x$

Linear models - feature expansions

prediction:
$$f(x) = w \cdot x$$

features: $x = (1, x)$

$$\begin{array}{ll} \text{prediction: } f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x} & \text{prediction: } f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x} \\ \text{features: } \boldsymbol{x} = (1, x) & \text{features: } \boldsymbol{x} = (1, x, x^2, x^3, x^4) \end{array}$$

Linear models - feature expansions

prediction:
$$f(x) = w \cdot x$$

features: $x = (1, x)$
 $f(x) = w_0 + w_1 x$

ediction:
$$f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x}$$
 prediction: $f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x}$ features: $\boldsymbol{x} = (1, x)$ features: $\boldsymbol{x} = (1, x, x^2, x^3, x^4)$
$$f(x) = w_0 + w_1 x$$

$$f(x) = w_0 + \sum_{i=1}^4 w_i x_i$$

Linear models – feature expansions

prediction:
$$f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x}$$
 features: $\boldsymbol{x} = (1, x)$
$$f(x) = w_0 + w_1 x$$

rediction:
$$f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x}$$
 prediction: $f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x}$ features: $\boldsymbol{x} = (1, x)$ features: $\boldsymbol{x} = (1, x, x^2, x^3, x^4)$ $f(x) = w_0 + \sum_{i=1}^4 w_i x_i$

- $\phi(x) = (1, x, x^2, x^3, x^4)$.
- Both models are linear in features space!

Linear models – the kernel trick²

ullet If w is a linear combination of the training instances:

$$\boldsymbol{w} = \sum_{i=1}^{n} c_i \boldsymbol{x}_i,$$

then:

$$\boldsymbol{w} \cdot \boldsymbol{x} = \left(\underbrace{\sum_{i=1}^{n} c_i \ \boldsymbol{x}_i}_{i=1}\right) \cdot \ \boldsymbol{x} = \sum_{i=1}^{n} c_i \ (\boldsymbol{x}_i \cdot \boldsymbol{x}).$$

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin classifiers. In Conference on Learning Theory (COLT), pages 144–152, 1992

Linear models – the kernel trick²

ullet If w is a linear combination of the training instances:

$$\boldsymbol{w} = \sum_{i=1}^{n} c_i \boldsymbol{x}_i,$$

then:

$$\boldsymbol{w} \cdot \boldsymbol{x} = \left(\underbrace{\sum_{i=1}^{n} c_i \ \boldsymbol{x}_i}_{i=1}\right) \cdot \ \boldsymbol{x} = \sum_{i=1}^{n} c_i \ (\boldsymbol{x}_i \cdot \boldsymbol{x}).$$

• After embedding $x \mapsto \phi(x)$:

$$m{w} \cdot m{\phi}(m{x}) = \left(\underbrace{\sum_{i=1}^n c_i \ m{\phi}(m{x}_i)}_{m{w}}\right) \cdot \ m{\phi}(m{x}) = \sum_{i=1}^n c_i \ \left(\underbrace{m{\phi}(m{x}_i) \cdot m{\phi}(m{x})}_{K(m{x}_i, m{x})}\right)$$

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin classifiers. In Conference on Learning Theory (COLT), pages 144–152, 1992

Linear models – the kernel trick²

ullet If w is a linear combination of the training instances:

then:
$$w=\sum_{i=1}^n c_ix_i, \qquad \text{dot product}$$

$$w\cdot x=\left(\sum_{i=1}^n c_i\ x_i\right)\cdot\ x=\sum_{i=1}^n c_i\ (x_i\cdot x).$$
 kernel function

ullet After embedding $oldsymbol{x}\mapsto oldsymbol{\phi}(oldsymbol{x})$:

$$\boldsymbol{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}) = \left(\underbrace{\sum_{i=1}^{n} c_{i} \, \boldsymbol{\phi}(\boldsymbol{x}_{i})}_{\boldsymbol{w}}\right) \cdot \, \boldsymbol{\phi}(\boldsymbol{x}) = \underbrace{\sum_{i=1}^{n} c_{i} \, \left(\underbrace{\boldsymbol{\phi}(\boldsymbol{x}_{i}) \cdot \boldsymbol{\phi}(\boldsymbol{x})}_{K(\boldsymbol{x}_{i}, \boldsymbol{x})}\right)}_{\boldsymbol{w}}$$

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin classifiers. In Conference on Learning Theory (COLT), pages 144–152, 1992

Linear models – the kernel trick³

primal form

$$f(\boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{\phi}(\boldsymbol{x})$$

N parameters (feature space dim.)

kernelized form

$$f(\boldsymbol{x}) = \sum_{i=1}^{n} c_i K(\boldsymbol{x}_i, \boldsymbol{x})$$

n parameters (num. of instances)

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin classifiers. In Conference on Learning Theory (COLT), pages 144–152, 1992

Fitting linear models

Fitting linear models

ullet We fit parameters w of a linear model using training data

$$\{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_n, y_n)\}$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{im})$ is a feature vector of the *i*-th training example.

Fitting linear models

ullet We fit parameters w of a linear model using training data

$$\{(\boldsymbol{x}_1,y_1),(\boldsymbol{x}_2,y_2),\ldots,(\boldsymbol{x}_n,y_n)\}$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{im})$ is a feature vector of the *i*-th training example.

• We use loss function $\ell(y, f(x))$ to guide the learning process.

• Let f(x) be a linear function of the input variables:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=1}^m w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}.$$

• Let f(x) be a linear function of the input variables:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=1}^m w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}.$$

• We minimize the squared error loss:

$$\ell_{\mathrm{sq}}(y, f(\boldsymbol{x})) = (y - f(\boldsymbol{x}))^2$$
.

• Let f(x) be a linear function of the input variables:

$$f(\boldsymbol{x}) = w_0 + \sum_{j=1}^m w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}.$$

• We minimize the squared error loss:

$$\ell_{\mathrm{sq}}(y, f(\boldsymbol{x})) = (y - f(\boldsymbol{x}))^2$$
.

• Minimizing squared error loss is equivalent to estimating:

$$\mathbb{E}(y|\boldsymbol{x}) = w_0 + \sum_{j=1}^n w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x},$$

the conditional mean value.

• The task of a learning algorithm is to estimate

$$\boldsymbol{w} = (w_0, w_1, \dots, w_m)$$

by solving the following optimization problem:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{arg min}} \sum_{i=1}^{n} \ell_{\operatorname{sq}}(y_i, w_0 + \sum_{j=1}^{m} w_j x_{ij})$$

$$= \underset{\boldsymbol{w}}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - w_0 - \sum_{j=1}^{m} w_j x_{ij})^2$$

$$= \underset{\boldsymbol{w}}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2.$$

• The task of a learning algorithm is to estimate

$$\boldsymbol{w} = (w_0, w_1, \dots, w_m)$$

by solving the following optimization problem:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{arg min}} \sum_{i=1}^{n} \ell_{\operatorname{sq}}(y_i, w_0 + \sum_{j=1}^{m} w_j x_{ij})$$

$$= \underset{\boldsymbol{w}}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - w_0 - \sum_{j=1}^{m} w_j x_{ij})^2$$

$$= \underset{\boldsymbol{w}}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2.$$

ullet Let us solve this problem in a simple one-dimension case (m=1) ...

• Define:

$$\widehat{L}(w_0, w_1) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2.$$

Define:

$$\widehat{L}(w_0, w_1) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2.$$

• We take derivative of \widehat{L} with respect to w_0 and equate it to zero:

$$\frac{\partial \widehat{L}}{\partial w_0} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) = 0$$

Define:

$$\widehat{L}(w_0, w_1) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2.$$

• We take derivative of \widehat{L} with respect to w_0 and equate it to zero:

$$\frac{\partial \widehat{L}}{\partial w_0} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) = 0$$

$$nw_0 = \sum_{i=1}^n y_i - w_1 \sum_{i=1}^n x_i$$

Define:

$$\widehat{L}(w_0, w_1) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2.$$

• We take derivative of \widehat{L} with respect to w_0 and equate it to zero:

$$\frac{\partial \widehat{L}}{\partial w_0} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) = 0$$

$$nw_0 = \sum_{i=1}^n y_i - w_1 \sum_{i=1}^n x_i$$

$$w_0 = \overline{y} - w_1 \overline{x},$$

where:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• In the next step we take derivative of \widehat{L} with respect to w_1 and equate it to zero:

$$\frac{\partial \widehat{L}}{\partial w_1} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) x_i = 0$$

• In the next step we take derivative of \widehat{L} with respect to w_1 and equate it to zero:

$$\frac{\partial \hat{L}}{\partial w_1} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) x_i = 0$$
$$\sum_{i=1}^n y_i x_i - w_0 \sum_{i=1}^n x_i - w_1 \sum_{i=1}^n x_i^2 = 0$$

• In the next step we take derivative of \widehat{L} with respect to w_1 and equate it to zero:

$$\frac{\partial \widehat{L}}{\partial w_1} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) x_i = 0$$

$$\sum_{i=1}^n y_i x_i - w_0 \sum_{i=1}^n x_i - w_1 \sum_{i=1}^n x_i^2 = 0$$

$$(w_0 = \bar{y} - w_1 \bar{x}) \qquad \sum_{i=1}^n (y_i - \bar{y}) (x_i - \bar{x}) - w_1 \sum_{i=1}^n (x_i - \bar{x})^2 = 0$$

• In the next step we take derivative of \widehat{L} with respect to w_1 and equate it to zero:

$$\frac{\partial \widehat{L}}{\partial w_1} = 0 \iff -2\sum_{i=1}^n (y_i - w_0 - w_1 x_i) x_i = 0$$

$$\sum_{i=1}^n y_i x_i - w_0 \sum_{i=1}^n x_i - w_1 \sum_{i=1}^n x_i^2 = 0$$

$$(w_0 = \bar{y} - w_1 \bar{x}) \qquad \sum_{i=1}^n (y_i - \bar{y}) (x_i - \bar{x}) - w_1 \sum_{i=1}^n (x_i - \bar{x})^2 = 0$$

so that we get:

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• The solution for one-dimensional problem is:

$$\widehat{w}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$$

$$\widehat{w}_{0} = \bar{y}_{1} - \widehat{w}_{1}\bar{x}.$$

• The final model is given by:

$$f(\boldsymbol{x}) = \widehat{w}_0 + \widehat{w}_1 x$$

Linear regression - general case

• The criterion to be minimized:

$$\widehat{L}(\boldsymbol{w}) = \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2.$$

Linear regression - general case

• The criterion to be minimized:

$$\widehat{L}(\boldsymbol{w}) = \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2.$$

• Differentiating with respect to w and setting the gradient to 0:

$$\frac{\partial \widehat{L}}{\partial \boldsymbol{w}} = \boldsymbol{0} \iff 2 \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i) \boldsymbol{x}_i = \boldsymbol{0}$$

Linear regression - general case

• The criterion to be minimized:

$$\widehat{L}(\boldsymbol{w}) = \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2.$$

• Differentiating with respect to w and setting the gradient to 0:

$$\frac{\partial \widehat{L}}{\partial \boldsymbol{w}} = \boldsymbol{0} \iff 2 \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i) \boldsymbol{x}_i = \boldsymbol{0}$$
$$\sum_{i=1}^{n} y_i \boldsymbol{x}_i - \left(\sum_{i=1}^{n} \boldsymbol{x}_i \boldsymbol{x}_i^{\top}\right) \boldsymbol{w} = \boldsymbol{0}$$

Linear regression – general case

• The criterion to be minimized:

$$\widehat{L}(\boldsymbol{w}) = \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2.$$

• Differentiating with respect to w and setting the gradient to 0:

$$\frac{\partial \widehat{L}}{\partial \boldsymbol{w}} = \boldsymbol{0} \iff 2 \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i) \boldsymbol{x}_i = \boldsymbol{0}$$
$$\sum_{i=1}^{n} y_i \boldsymbol{x}_i - \left(\sum_{i=1}^{n} \boldsymbol{x}_i \boldsymbol{x}_i^{\top}\right) \boldsymbol{w} = \boldsymbol{0}$$

• Assuming $\sum_i x_i x_i^{\top}$ is nonsingular, the solution is:

$$\widehat{m{w}} = \left(\sum_{i=1}^n m{x}_i m{x}_i^ op
ight)^{-1} \left(\sum_{i=1}^n y_i m{x}_i
ight).$$

Linear regression - Example

• Very efficient method for a small or moderate number of features.

- Very efficient method for a small or moderate number of features.
- For large number of features different learning algorithms should be used.

- Very efficient method for a small or moderate number of features.
- For large number of features different learning algorithms should be used.
- Statistical properties of linear regression are very well-studied very mature statistical procedure.

- Very efficient method for a small or moderate number of features.
- For large number of features different learning algorithms should be used.
- Statistical properties of linear regression are very well-studied very mature statistical procedure.
- Can also be used for binary classification quite popular in large scale problems.

• Direct optimization of $\ell_{0/1}(y,f(x))$ is hard as this loss is neither convex nor differentiable.

- Direct optimization of $\ell_{0/1}(y, f(x))$ is hard as this loss is neither convex nor differentiable.
- We can solve binary classification by using the so-called surrogate loss functions ℓ_s :

$$\widehat{\boldsymbol{w}} = \operatorname*{arg\,min}_{\boldsymbol{w}} \sum_{i=1}^{n} \ell_{\mathrm{s}}(y_i, \boldsymbol{w} \cdot \boldsymbol{x}_i)$$

- Direct optimization of $\ell_{0/1}(y, f(x))$ is hard as this loss is neither convex nor differentiable.
- We can solve binary classification by using the so-called surrogate loss functions $\ell_s\colon$

$$\widehat{\boldsymbol{w}} = \operatorname*{arg\,min}_{\boldsymbol{w}} \sum_{i=1}^{n} \ell_{\mathrm{s}}(y_i, \boldsymbol{w} \cdot \boldsymbol{x}_i)$$

ullet The surrogate losses should be characterized by desired statistical and computational properties such as convergence to the optimal solution of the 0/1 loss, smoothness and convexity.

Outline

- 1 Statistical decision theory for supervised learning
- 2 Learning paradigms and principles
- 3 Examples of learning algorithms
- 4 Summary

Empirical risk minimization

• A wide spectrum of learning algorithms can be given in a general form of surrogate loss minimization:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell_s(y_i, f(\boldsymbol{x}))$$

Empirical risk minimization

• A wide spectrum of learning algorithms can be given in a general form of surrogate loss minimization:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell_s(y_i, f(\boldsymbol{x}))$$

• The differences between algorithms: form of the surrogate loss, model class, optimization procedure.

Empirical risk minimization

 A wide spectrum of learning algorithms can be given in a general form of surrogate loss minimization:

$$\widehat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell_s(y_i, f(\boldsymbol{x}))$$

- The differences between algorithms: form of the surrogate loss, model class, optimization procedure.
- This general form allows to compare and analyze learning algorithms.

• Surrogate losses and learning algorithms for linear models.

- Surrogate losses and learning algorithms for linear models.
- Is learning possible?

- Surrogate losses and learning algorithms for linear models.
- Is learning possible?
- Can learning converge to an optimal classifier?

- Surrogate losses and learning algorithms for linear models.
- Is learning possible?
- Can learning converge to an optimal classifier?
- How to solve complex problems such as ranking or multi-label classification?

• Statistical decision theory for supervised learning.

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.
- A wide spectrum of learning methods:

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.
- A wide spectrum of learning methods:
 - Histogram-based classifiers,

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.
- A wide spectrum of learning methods:
 - Histogram-based classifiers,
 - ► Decision trees,

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.
- A wide spectrum of learning methods:
 - ► Histogram-based classifiers,
 - ► Decision trees,
 - Nearest neighbors,

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.
- A wide spectrum of learning methods:
 - ► Histogram-based classifiers,
 - ► Decision trees,
 - ► Nearest neighbors,
 - Naive Bayes,

- Statistical decision theory for supervised learning.
- Two phases: learning and prediction.
- A wide spectrum of learning methods:
 - ► Histogram-based classifiers,
 - ► Decision trees,
 - ► Nearest neighbors,
 - ► Naive Bayes,
 - ► Linear models.