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Statistical learning framework

Input € X’ drawn from a distribution P(x).
» usually a feature vector, X C R%.
Outcome y € Y drawn from a distribution P(y|x).

» target of our prediction: class label, real value, label vector, etc.,
» alternative view: example (x,y) drawn from P(x,y).

Prediction § = h(x) by means of prediction function h: X — ).

» h returns prediction § = h(x) for every input x.
Loss of our prediction: ¢(y, 7).
» (.Y x)Y — Ry is a problem-specific loss function.

Goal: find a prediction function with small loss.
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Risk

¢ Goal: minimize the expected loss over all examples (risk):

Le(h) = E(z,y)wP [€(y7 h(CC))] .

e The optimal prediction function over all possible functions:

h* = argmin L(h),
h

sometimes referred to as the Bayes prediction function.

e The smallest achievable risk (Bayes risk):

L; = Lo(h*).
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Decomposition of risk

= By [y, h(z))]

/ Uy, h(@))P(e, y)dedy
XxY

/</€yh dy> P(z)dz

= Eg[L(h|x)].
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Decomposition of risk

Lih) = By £y, hi)
-/ Xyﬂ(y,mw))P(x,y)dwdy
:/</€yh dy)()dm
= E.[Llh|o).

e Ly(h|x) is the conditional risk of § = h(x) at x.
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Decomposition of risk

Lih) = Euy) [0y, h(@))
= [t h@)Pa iy
= [ (] tontanpia) s
— E.[L(hla)].

e Ly(h|x) is the conditional risk of § = h(x) at x.

e Bayes prediction minimizes the conditional risk for every x:

h*(x) = argmin Ly(h | x).
h
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Making optimal decisions

Example

e Pack of cards: 7 diamonds (red), 5 hearts (red), 5 spades (black), 3
clubs (black).
e Bet the color:

» if the true color is red and you are correct you win 50, otherwise you

loose 100,
» if the true color is black and you are correct you win 200, otherwise you

loose 100.
e What is the loss and optimal decision now?
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Regression

o Prediction of a real-valued outcome y € R.
e Find a prediction function h(x) that accurately predicts value of y.

e The most common loss function used is squared error loss:
ese(y7 :&) = (y - Z))27

where § = h(x).

10 /64



Regression

e The conditional risk for squared error loss is :

11 /64



Regression

e The conditional risk for squared error loss is :

Lse(h|x) = Eyja [(y - 3))2]

11 /64



Regression

e The conditional risk for squared error loss is :

((IZ) = ]Ey T
Le(h|@) = By [(y — )] /\ & =[]
.2

=Eyjz [(y — @)+ p(z) — §)°]
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Regression

e The conditional risk for squared error loss is :

(IIZ)=]Ey x
@JMm)Z&me—@ﬂ//////_\u =18
12

=By [(y — p(®)+ p(z) — §)%

=By |(y — pl@))? +2(y = p(@)) (@) - §) + (u(@) ~ 5)*

=0 under expectation

=By [(y — u(=))?] +(u(z) — §)*.

independent of g

e Hence, h*(x) = pu(x), the conditional expectation of y at x, and:

Lse(h* ’:L') = Ey\m [(y - M(w))z] = Var(y|az).
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Regression

o Another loss commonly used in regression is the absolute error:
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Regression

o Another loss commonly used in regression is the absolute error:
lae(y,9) = |y — 9l
e The Bayes classifier for the absolute-error loss is:

h*(x) = arg mhin Loe(h|x) = median(y|x) ,

i.e., median of the conditional distribution of y given x.
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Binary Classification

e Prediction of a binary outcome y € {—1, 1} (alternatively y € {0,1}).
e Find a prediction function h(x) that accurately predicts value of y.

e The most common loss function used is 0/1 loss:

AN 07 if Y= @’
loy1(y,9) = { 1, otherwise.
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Binary Classification

e Define n(xz) = Py = 1|x).
e The conditional 0/1 risk at x is:

Lop (hle) = n(@)[h(z) = —1] + (1 — n(z))[A(2) = 1].

e The Bayes classifier:

vy d Lo ifm@)>1-n(@) _ oo
v ={ L I sl - 1/2),

and the Bayes conditional risk:

Le(h" | ) = min{n(z), 1 —n(z)}.
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Multi-class classification

e Domain of outcome variable y is a set of labels Y = {1,..., K}.
e Goal: find a prediction function h(x) that for any object x predicts
accurately the actual value of y.
e Loss function: the most common is 0/1 loss:
AN 0, if y= @7
loyr(y.9) = { 1, otherwise.
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Multi-class classification

e The conditional risk of the 0/1 loss is:

Loji(hlx) = Eylon(y, h(z))
= ZP(y = klz)ly/1(k, h(z))

key

o Therefore, the Bayes classifier is given by:
h*(x) = arg}fnin Losi(h|z)
= arglinaxP(y = k|x),
the class with the largest conditional probability P(y|x).
e The Bayes conditional risk:
Ly(h*|x) =min{l — P(y = k|z) : k € V}.
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Deterministic learning framework

Input € X’ drawn from a distribution P(x).
Outcome y € V.

Unknown target function h*: X — ), such that y = h*(x).

Goal: discover h* by observing examples of (x,y).

This is a special case of the statistical framework:
» What is P(y|x)?
e P(y|z) is a degenerate distribution for every x.
» Bayes prediction function?
o h*
» Risk of h*? (assuming £(y, ) = 0 whenever y = §)
® h* has zero risk.

» Unrealistic scenario in real life.
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2 Learning paradigms and principles
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Learning

Distribution P(x,y) is unknown unknown.
Therefore, Bayes classifier h* is also unknown.

Instead, we have access to n independent and identically distributed
(i.i.d) training examples (sample):

{(wla yl)a <w27y2)7 SOR) (wmyn)}'

Learning: use training data to find a good approximation of h*.
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Spam filtering

e Problem: Predict whether a given email is spam or not.
e An object to be classified: an email.
e There are two possible responses (classes): spam, not spam.

From mi jove markson <mijove. marks03@ live fr>
+ [1 SPAM] ***SPAM™* I AM LOOKING FOR GOLD DUST BUYER.

fleply to mijove_markson3@hotmail fr

To undisclosed recipients:;

I AM LOOKING FOR GOLD DUST BUYER,
Dearest Buyer,

MY NAME IS MR JOVE MARKSON
I am contacting you for a contract on GOLDDUST.And GOLD BARS, There are bulk of gold dust for sell to interested buyers,each kilo is 3
allthe 9 localmining communities, to sale there gold dust and bars.

If you are interested, you can visit our company and mines; you can seethequantity available and go to refinery to inspect the quality k
gold dust to your destination.

1. Form: Gold Bar,
2. Purity: 96.4 % like minii value 96.6% like i value.
3. Pri 1,500 USD for one kg.

21 /64



Spam filtering

Example

o Representation of an email through (meaningful) features:
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Spam filtering

Example

o Representation of an email through (meaningful) features:
> length of subject

length of email body,

use of colors,

domain,

words in subject,

words in body.

vV vy VY VY

length of length of use of

subject body colors domain gold price USD ... machine learning | spam?
7 240 1 live.fr 1 1 1 0 0 1
2 150 0 poznan.pl 0 0 0 1 1 0
2 250 0 tibco.com 0 1 1 1 1 0
4 120 1 r-projectorg 0 1 0 0 0 | ?
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Learning

e Four types of datasets:
» training data: historical emails,

» validation data: a subset of historical emails used for tuning learning
algorithms

» test data: a subset of historical emails used for estimating the risk,
» new incoming data to be classified: new incoming emails.

23 /64
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Different learning paradigms

¢ Generative learning
» Follow a data generating process
» Learn a model of the joint distribution P(x,y) and then use the Bayes
theorem to obtain P(y|x).
» Make the final prediction by computing the optimal decision based on
P(y|x) with respect to a given £(y,9).
¢ Discriminative learning
» Approximate h*(x) which is a direct map from x to y or
» Model the conditional probability P(y|x) directly, and
» Make the final prediction by computing the optimal decision based on
P(y|x) with respect to a given £(y, §).

e Two phases of the learning models: learning and prediction
(inference).
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Different learning paradigms

e Various principles on how to learn:
Empirical risk minimization,
Maximum likelihood principle,
Bayes approach,

Minimum description length,

v
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Empirical Risk Minimization (ERM)

e Choose a prediction function T which minimizes the loss on the
training data within some restricted class of functions H.

h= —» U
ar}%egm - Z Yi, h(x;)).

e The average loss on the training data is called empirical risk Eg(h).
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Empirical Risk Minimization (ERM)

e Choose a prediction function T which minimizes the loss on the
training data within some restricted class of functions H.

h = arg min — (yi, h(x
i%e?—t nz i (1))

e The average loss on the training data is called empirical risk Eg(h).

e 7H can be: linear functions, polynomials, trees of a given depth, rules,
linear combinations of trees, etc.!

LT, Hastie, R. Tibshirani, and J.H. Friedman. Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer, second edition, 2009
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Outline

3 Examples of learning algorithms
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Selected learning methods

o Almost no-learning methods: histogram-based classifier, nearest
neighbors

o Generative methods: naive Bayes

e Linear methods and their generalizations: linear regression, logistic

regression, perceptron, support vector machines, AdaBoost, neural
networks.

28 / 64



Almost no-learning methods

o Based on empirical distribution and direct application of the Bayes
rule to a local estimate of P(y|x).
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Almost no-learning methods

o Based on empirical distribution and direct application of the Bayes
rule to a local estimate of P(y|x).
e The simplest approach estimates conditional probabilities P(y|x) for
any @ from training data:
» Based on group-bys and simple counting.
» Needs a lot of data to get reasonable estimates!!!

» Data should be discrete/nominal or we need to discretize numerical
data before.

29 /64



Example

gold price | spam?

[y

OO OO O0OO0ODO0OOHHF

[y

HHEFOOOOOOKMKEIKE

[y

HOHFRFPFOOOOOHRHRH

Learning

P(y = 1|gold = 1 A price = 1)
P(y = 0|gold = 1 A price = 1)
P(y = 1|gold = 0 A price = 0)
P(y = 0|gold = 0 A price = 0)
P(y = 1|gold = 0 A price = 1)
P(y = 0|gold = 0 A price = 1)
P(y = 1|gold = 1 A price = 0)
P(y = 0|gold = 1 A price = 0)

0.75
0.25
0.33
0.66
0.5
0.5
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Histogram-based methods

e Build a multidimensional grid and estimate the conditional probability

in each element of the grid,

e Plug the estimates to the Bayes classifier for a given ¢(y, ) to obtain

prediction.
I T T
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Histogram-based methods

e The predictive performance depends on the grid resolution,
dimensionality of data and the size of training data.
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Histogram-based methods

The predictive performance depends on the grid resolution,
dimensionality of data and the size of training data.

With some tricks can be efficiently implemented.
Piecewise-constant prediction for a given region.

Computation of the estimates in the region: well-know statistical
problem, maximum likelihood estimates, regularization.

The grid can be given as a domain knowledge, simple discretization,
or random splits.

One can use more intelligent methods to obtain a grid, for example,
supervised discretization or supervised recursive splitting like in
decision trees.
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Decision trees

e Recursively make a partition of the feature space (in a smart way),

o Compute the optimal decision in each region.
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Decision trees

e The learning method seeks an optimal tree shape (e.g. feature space
partition) by minimizing the empirical risk (usually expressed in terms
of a surrogate loss).
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Decision trees

e The learning method seeks an optimal tree shape (e.g. feature space
partition) by minimizing the empirical risk (usually expressed in terms
of a surrogate loss).

Question

How to design the splitting criterion for the squared-error loss and 0/1
loss?

o Greedy methods used for constructing a tree.

The resulting model can be easily interpreted.

The most influential splits are close to the root (like in the
20-question game).

e Learning and prediction is very efficient.

Estimation of the decision in each leaf — the same problem like in
histogram-based methods.
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Nearest neighbor methods

e Find k-nearest neighbors of the test example according to a given
metric,

o Estimate the Bayes classifier based on the neighborhood.
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Nearest neighbor methods

e Prediction for a test example is computed based on nearest training
examples — there is no learning.
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Nearest neighbor methods

Prediction for a test example is computed based on nearest training
examples — there is no learning.

The same principles for computing the prediction as in
histogram-based and tree classifiers.

Training set can be used for tunning k£ and finding a metric.
Specialized data structures for efficient search of nearest neighbors.

Reduction of training data: prototypes, feature selection,
dimensionality reduction by PCA or similar methods.

Approximate nearest neighbors.
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Naive Bayes

o Generative methods rely on the Bayes theorem:

P(zly =k)P(y =k)
P(x

P(y = klz) =

)
where P(xz|y = k) is the density function fi(x) (for example,
multivariate Gaussian distribution), and P(x) is given by:
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Generative methods rely on the Bayes theorem:

P(zly =k)P(y =k)
P(x

P(y = klz) =

)
where P(xz|y = k) is the density function fi(x) (for example,

multivariate Gaussian distribution), and P(x) is given by:

P(z) = ZP($I3/ =j)P(y =j)

from the law of total probability.
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Learning

e The main algorithms:
» Linear and quadratic discriminant analysis that use Gaussian densities,
» General nonparametric density estimates for each class density,
» Naive Bayes model that assumes that each of the class densities are
products of marginal densities, i.e., the features are conditionally
independent in each class.

39 /64



Naive Bayes

e The naive Bayes model assumes that given a class y = k, the features
x = (x1,22,...,%y) are independent:

P(zly) =

40 / 64



Naive Bayes

e The naive Bayes model assumes that given a class y = k, the features
x = (x1,22,...,%y) are independent:

P(xly) = HP (z5]y).

40 / 64



Naive Bayes

e The naive Bayes model assumes that given a class y = k, the features
x = (x1,22,...,%y) are independent:

P(xly) = HP (z5]y).

e The model takes the following form:

Ply = ko) =

40 / 64



Naive Bayes

e The naive Bayes model assumes that given a class y = k, the features
x = (x1,22,...,%y) are independent:

P(zly) = HP (zjly)-

e The model takes the following form:

Py = k) [[72, Plejly = k)

P =ke) = = = k) [T, Plasly = F)

40 / 64



Naive Bayes

The naive Bayes model assumes that given a class y = k, the features

x = (x1,22,...,%y) are independent:

P(zly) = HP (zjly)-

The model takes the following form:

Py = k) [[72, Plejly = k)
Y Ply = K) T2, Plzjly = K)

Ply = ko) =

The individual class-conditional marginal densities f;; can each be
estimated separately using univariate Gaussian distributions:

N(E(z;ly = k), Var(z;ly = k))

If a component x; of x is discrete, then an appropriate histogram
estimate can be used.
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Naive Bayes

Example

gold price ‘ spam?
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Example
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1 1 P ) 0.5
P(gold = 1]Y =1) = 0.5
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gold = 0]Y = 0) = 0.83
price = 1Y = 1) = 0.66
P(price =0]Y =1) =0.33
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(gold = 1]Y = 0) = 0.17
(
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We can, for example, compute:

0.5 x 0.33 x 0.5 0.825
P(y = 1|gold = 1 A price = 0) = = =0.595
0.1386 0.1386

P(y = 0|gold = 1 A price = 0) = 1 — 0.595 = 0.405
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Naive Bayes

o If the independence assumption is not valid, then the model can
provide very bad predictions.
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Naive Bayes

o If the independence assumption is not valid, then the model can
provide very bad predictions.

¢ In many applications, however, this assumption seems to be at least
partially satisfied, for example, in text classification.

e Training is very efficient: one pass over training data to collect all
necessary statistics.

e Prediction is linear in number of features.

e Some tricks to improve quality of computed statistics: Laplace
correction and similar.

Question

Is Naive Bayes a linear classifier? Prove under which conditions it is true.
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Linear models

e Consider a linear model of the form:
m
f@) =wo+ > wjaj,
j=1

where w = (wg, w1, ..., wy,) are the parameters of the model and
x = (r1,22,...,Ty) is a feature vector describing an example.
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Linear models

e Consider a linear model of the form:
m
f@) =wo+ > wjaj,
j=1

where w = (wg, w1, ..., wy,) are the parameters of the model and

..,Zp) is a feature vector describing an example.
e |t is often convenient to use vector notation:

Tr = (:El,xg, .

f(m):wmv

where @ = (1,1, 9, ...,x,) has an additional 1 at the first position.
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Linear models

e Linear models constitute a very general class of models:
» Basic transformations and expansion of original features,
» Kernel trick (SVM),
» Linear combination of weak classifiers (AdaBoost),
» The fundamental component of the neural networks.
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Linear models — transformations of features

o |deal case of perfect linear separation.
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Linear models — transformations of features

T2
[ ] [ ]
° ¢ °
.7.>_\
° _ <0 o~
.- 0 B o~
. O
.
[~ A 0O 0 o
[ ] // O fe)
./O o) (@] o
/
rOO (e}
1 o (@5}
| oo O ©) fe)
\ O
\
o o
\
%O Oo(po
\
° ;\ o ¢
° N P
@ ~-- " a®
[ ® [ ]
. %
[ Y [ ]

e What if the data is not even close to linear?

Give up on linear classifier...?
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Linear models — transformations of features
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e What if the data is not even close to linear?
Give up on linear classifier...?
o Or better, simply invent new features.
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Linear models — transformations of features

Embed instances into a feature space:
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Linear models — feature expansions

prediction: f(x) =w - x prediction: f(x) =w - x
features: = = (1,7) features: = = (1, z, 22, 23, z%)
f(@) = wo + wiz @) = wo + Ly wiz;

o ¢(x) = (1,x,x2,x3,x4).
e Both models are linear in features space!
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Linear models — the kernel trick?

e If w is a linear combination of the training instances:

n
w = E Ciy,
i=1

then:
n n
w-xr = <Zczwz> w:Zci (z; - x).
i=1 i=1
~—_——
w

2 Bernhard E. Boser, lsabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal
margin classifiers. In Conference on Learning Theory (COLT), pages 144-152, 1992
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e If w is a linear combination of the training instances:

n
w = E Ciy,
i=1

then: . .
w-xr = <Zczwz> . w:Zci (z; - x).
i=1 i=1
o After embedding x — ¢(x):
w- () = (Z ¢<mi>) 6@) =Y e (@) 9l@))
i=1 i=1 K )

w

2 Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal
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Linear models — the kernel trick?
e If w is a linear combination of the training instances:
n
w = Z G, dot product
i=1

then:

2 Bernhard E. Boser, lsabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal
margin classifiers. In Conference on Learning Theory (COLT), pages 144-152, 1992
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Linear models — the kernel trick>

primal form kernelized form
f(x) =w- ¢(x) flx) =371 ciK (i, )
N parameters n parameters
(feature space dim.) (num. of instances)

3 Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal
margin classifiers. In Conference on Learning Theory (COLT), pages 144-152, 1992
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Fitting linear models

o We fit parameters w of a linear model using training data

{(:1:1,y1), (2132, y2)7 SRR (mna yn)}

where @; = (21, 2, ..., %iy) is a feature vector of the i-th training
example.
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Fitting linear models

o We fit parameters w of a linear model using training data

{(:1:1,y1), (2132, y2)7 SRR (mna yn)}

where @; = (21, 2, ..., %iy) is a feature vector of the i-th training
example.

e We use loss function ¢(y, f(x)) to guide the learning process.
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Linear regression

e Let f(x) be a linear function of the input variables:

f(x) :w0+2wj:nj = w-x.
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Linear regression

e Let f(x) be a linear function of the input variables:
f(x) = wo +ij:17j = w-x.

¢ We minimize the squared error loss:

lsaly, f(®)) = (y — f(=))*.

e Minimizing squared error loss is equivalent to estimating:

n
E(y|lx) = wo + ijmj = w-x,
j=1

the conditional mean value.
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Linear regression

e The task of a learning algorithm is to estimate
w = (Wo, W1, ..., Wn)

by solving the following optimization problem:

n m
w = argminé Esq(yi,w0+£ wj:nij)
w : X

i=1 j=1

n m
= argmin Z(yz —wp — Z wizij)?
w i—1 =

= argmmg —w - 331
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Linear regression

e The task of a learning algorithm is to estimate
w = (Wo, W1, ..., Wn)

by solving the following optimization problem:

n m
w = argminé Esq(yi,wo+£ wjazij)
w : X

i=1 j=1

n m
= argmin Z(yz —wp — Z wizij)?
w i—1 =

= argmm E —w - 331 2.

e Let us solve this problem in a simple one-dimension case (m =1) ...
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Linear regression

e Define: .

L(wo, wi) = Y (i — wo — wiz;)*.
=1

e We take derivative of L with respect to wg and equate it to zero:
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Linear regression

e Define: .

L(wo, wi) = Y (i — wo — wiz;)*.
=1

e We take derivative of L with respect to wg and equate it to zero:

— =0 <= —QZ(yi—wo—wlxi) = 0

n n
nwy = E yi_wlg Xy
i=1 i=1
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e Define:

Linear regression

n

L(wo, wi) = Y (i — wo — wiz;)*.

i=1

e We take derivative of L with respect to wg and equate it to zero:

where:

0 <— —QZ(yi—wg—wlxi) = 0

i=1
n n
nwo = E yi_wlg T
i=1 i=1
wy = Y—wix,
n n
_ 1 _ 1
y:*§ Yi T = — Zg
n “ n
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Linear regression

o In the next step we take derivative of L with respect to w; and
equate it to zero:

T =0 — —QZ —wo —wiz)z; = 0
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o In the next step we take derivative of L with respect to w; and
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D =0 <— —2;(%—100—101%)1’1 = 0
n n n
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Linear regression

o In the next step we take derivative of L with respect to w; and
equate it to zero:

oL &
87101:0 — —QZZ;(yl—wo—wlmz):ﬁZ = 0
n n n
D yiwi—wo ) wi—wi) xf = 0
=1 =1 =1
n n
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Linear regression

o In the next step we take derivative of L with respect to w; and
equate it to zero:

oL 0 < Qi( ) 0
— = — — Wy — W1T;)T; =
Eo £ Yi 0 124 )T
n n n
D ywi—wo} mi—wi ) o = 0
=1 =1 =1
n n
(wo=g—wiz) > Wi-N@Ei—-7)—w Y (2;—2)° = 0
=1 =1

so that we get:

> i1 (i — ) (yi — 9)

wp = n

> (@ — )2
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Linear regression

e The solution for one-dimensional problem is:

~ > (@i —2)(yi — 9)

wy = —
Z?:l(xi —I)? ’

wyg = Y — wWi1Zx.

e The final model is given by:

f(a:) = Wy + W1
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Linear regression — general case

e The criterion to be minimized:
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Linear regression — general case

e The criterion to be minimized:
n
Liw) = (4 —w-z:)*.

i=1

o Differentiating with respect to w and setting the gradient to O:

~

= E i — W - XL;)x; =
p) pat Yi 1)L
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Linear regression — general case

e The criterion to be minimized:

n

Lw) = (yi—w - x;)*.

i=1

o Differentiating with respect to w and setting the gradient to O:

~

= E i — W - XL;)x; =
p) pat Yi 1)L

n n
Zyi:ci — (Zmﬂ:]) w = 0
i=1 i=1
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Linear regression — general case

e The criterion to be minimized:

n

Lw) = (yi—w - x;)*.

i=1

o Differentiating with respect to w and setting the gradient to O:

~

= E i — W - XL;)x; =
p) pat Yi 1)L

n n
Zyi:ci — (Zmﬂ:]) w = 0
i=1 i=1

e Assuming ZZ aclacZT is nonsingular, the solution is:

n -1 n
=1 =1
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Linear regression — Example

o o
3+ 3+
53 S
o =)
g8 g &
I o
£ <
=] 5
2 2
8 3
=) =)
S+ S+
< <
=} =)
S+ 3+
& &
T T T T T T
500 1000 1500 500 1000 1500
program size program size
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Linear regression

o Very efficient method for a small or moderate number of features.
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Linear regression

Very efficient method for a small or moderate number of features.

For large number of features different learning algorithms should be
used.

Statistical properties of linear regression are very well-studied — very
mature statistical procedure.

Can also be used for binary classification — quite popular in large scale
problems.
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Linear models for binary classification

e Direct optimization of £y/1(y, f(z)) is hard as this loss is neither
convex nor differentiable.
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Linear models for binary classification

e Direct optimization of £y/1(y, f(z)) is hard as this loss is neither
convex nor differentiable.
o We can solve binary classification by using the so-called surrogate loss

functions £g:

n
w = arg minZﬁs(yi,w - x;)
wo=

60 / 64



Linear models for binary classification

e Direct optimization of £y/1(y, f(z)) is hard as this loss is neither
convex nor differentiable.
o We can solve binary classification by using the so-called surrogate loss
functions £g:
n
w = arg minZﬁs(yi, w - x;)
Y=
e The surrogate losses should be characterized by desired statistical and
computational properties such as convergence to the optimal solution
of the 0/1 loss, smoothness and convexity.
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Outline

4 Summary
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Empirical risk minimization

e A wide spectrum of learning algorithms can be given in a general form
of surrogate loss minimization:

f: arg minzes(yia f(w))

fer 4
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Empirical risk minimization

e A wide spectrum of learning algorithms can be given in a general form
of surrogate loss minimization:

f=arg minZﬁs(yi, f(x))

fer =

e The differences between algorithms: form of the surrogate loss, model
class, optimization procedure.

62 /64



Empirical risk minimization

e A wide spectrum of learning algorithms can be given in a general form
of surrogate loss minimization:

f=arg minZﬁs(yi, f(x))

fer =

e The differences between algorithms: form of the surrogate loss, model
class, optimization procedure.

e This general form allows to compare and analyze learning algorithms.
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Problems to be discussed

e Surrogate losses and learning algorithms for linear models.
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Problems to be discussed

Surrogate losses and learning algorithms for linear models.
Is learning possible?
Can learning converge to an optimal classifier?

How to solve complex problems such as ranking or multi-label
classification?

63 /64



Summary

o Statistical decision theory for supervised learning.
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Summary

o Statistical decision theory for supervised learning.
e Two phases: learning and prediction.

e A wide spectrum of learning methods:

» Histogram-based classifiers,
» Decision trees,

» Nearest neighbors,

» Naive Bayes,

» Linear models.
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