
Decision-theoretic Machine Learning

Krzysztof Dembczyński and Wojciech Kot lowski

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Poznań University of Technology, Summer 2019

Agenda

1 Introduction to Machine Learning

2 Binary Classification

3 Bipartite Ranking

4 Multi-Label Classification

1 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

2 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

3 / 68

Ranking problem

Order a set of objects {x1,x2, . . . ,xn}

according to the preferences of a subject.

4 / 68

Example – book recommendations

5 / 68

Example – information retrieval

6 / 68

Example – rank aggregation problem

7 / 68

Example – computational advertising

8 / 68

Example – protein structure prediction

9 / 68

Bipartite ranking

• Feedback information: binary labels.

x1 −1
x2 +1
x3 +1
x4 +1
x5 −1

x2 � x1, x3 � x1,
x4 � x1, x2 � x5,
x3 � x5, x4 � x5.

Labels express preference, relevance, interest, etc.

Arguably the simplest problem of learning to rank.

• The feedback easy to acquire, sometimes implicitly.

• Good testbed for ranking algorithms and theoretical analysis.

Example

• Implicit feedback from search engine results.

10 / 68

Bipartite ranking

• Feedback information: binary labels.

x1 −1
x2 +1
x3 +1
x4 +1
x5 −1

x2 � x1, x3 � x1,
x4 � x1, x2 � x5,
x3 � x5, x4 � x5.

Labels express preference, relevance, interest, etc.

Arguably the simplest problem of learning to rank.

• The feedback easy to acquire, sometimes implicitly.

• Good testbed for ranking algorithms and theoretical analysis.

Example

• Implicit feedback from search engine results.

10 / 68

Bipartite ranking

• Feedback information: binary labels.

x1 −1
x2 +1
x3 +1
x4 +1
x5 −1

x2 � x1, x3 � x1,
x4 � x1, x2 � x5,
x3 � x5, x4 � x5.

Labels express preference, relevance, interest, etc.

Arguably the simplest problem of learning to rank.

• The feedback easy to acquire, sometimes implicitly.

• Good testbed for ranking algorithms and theoretical analysis.

Example

• Implicit feedback from search engine results.
10 / 68

Bipartite ranking

• Training data: {(x1, y1), (x2, y2), . . . , (xn, yn)} yi ∈ {−1,+1}.

X1 X2 X3 Y

x1 0.5 5 1 +1
x2 2.1 7 0 +1
x3 0.7 2 1 −1
x4 1.8 5 0 −1
x5 5.4 0 1 −1
.

• Sort objects, so that objects with yi = +1 are ranked higher than
objects with yi = −1.

11 / 68

Bipartite ranking

• Training data: {(x1, y1), (x2, y2), . . . , (xn, yn)} yi ∈ {−1,+1}.

X1 X2 X3 Y

x1 0.5 5 1 +1
x2 2.1 7 0 +1
x3 0.7 2 1 −1
x4 1.8 5 0 −1
x5 5.4 0 1 −1
.

• Sort objects, so that objects with yi = +1 are ranked higher than
objects with yi = −1.

11 / 68

Pairwise disagreement

Evaluation metrics — pairwise disagreement

• Counts the number of reversed preferences over all pairs of objects.

object rank feedback

x1 1 +1
x2 2 −1
x3 3 +1
x4 4 +1
x5 5 −1
x6 6 +1
x7 7 −1
x8 8 −1

Number of reversed preferences: 4.

12 / 68

Pairwise disagreement

Evaluation metrics — pairwise disagreement

• Counts the number of reversed preferences over all pairs of objects.

object rank feedback

x1 1 +1
x2 2 −1
x3 3 +1
x4 4 +1
x5 5 −1
x6 6 +1
x7 7 −1
x8 8 −1

Number of reversed preferences: 4.

12 / 68

Ranking by scoring

• Learn a scoring function f : X → R, which sorts objects according
to the preferences.

• Error rate of f ∝ number of reversed pairwise preferences.

f(x)

sort according to f(x)

ranking error

13 / 68

Ranking by scoring

• Learn a scoring function
f : X → R, which sorts objects
according to the preferences.

• Error rate of f ∝ number of
reversed pairwise preferences. f(x)

sort according to f(x)

ranking error

• Empirical ranking risk:

L̂rnk(f) =
1

n+n−

∑
i : yi=+1

∑
j : yj=−1

(
Jf(xi) < f(xj)K +

1

2
Jf(xi) = f(xj)K

)
,

where n+ = |{i : yi = +1}|, n− = |{i : yi = −1}|.

• (Empirical) Area under ROC Curve: AUC(f) = 1− L̂rnk(f).

14 / 68

Ranking by scoring

• Learn a scoring function
f : X → R, which sorts objects
according to the preferences.

• Error rate of f ∝ number of
reversed pairwise preferences. f(x)

sort according to f(x)

ranking error

• Empirical ranking risk:

L̂rnk(f) =
1

n+n−

∑
i : yi=+1

∑
j : yj=−1

(
Jf(xi) < f(xj)K +

1

2
Jf(xi) = f(xj)K

)
,

where n+ = |{i : yi = +1}|, n− = |{i : yi = −1}|.
• (Empirical) Area under ROC Curve: AUC(f) = 1− L̂rnk(f).

14 / 68

Area under ROC curve (AUC)

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

n+ = 4, n− = 4, L̂rnk(f) =
4

4 · 4
= 0.25 AUC(f) = 0.75

15 / 68

Area under ROC curve (AUC) in binary classification

• Real-valued scoring function f : X → R.

• Objects with binary labels yi ∈ {−1,+1}.

• Label prediction by thresholding f at some point θ:

ŷ(x) =

{
+1 if f(x) > θ,
−1 if f(x) ≤ θ.

• Vary the threshold θ from −∞ to ∞ and count the number of true
positives and false positives:

TP =
∣∣{xi : ŷ(xi) = 1 ∧ yi = 1}

∣∣
FP =

∣∣{xi : ŷ(xi) = 1 ∧ yi = −1}
∣∣

16 / 68

Area under ROC curve (AUC) in binary classification

• Real-valued scoring function f : X → R.

• Objects with binary labels yi ∈ {−1,+1}.
• Label prediction by thresholding f at some point θ:

ŷ(x) =

{
+1 if f(x) > θ,
−1 if f(x) ≤ θ.

• Vary the threshold θ from −∞ to ∞ and count the number of true
positives and false positives:

TP =
∣∣{xi : ŷ(xi) = 1 ∧ yi = 1}

∣∣
FP =

∣∣{xi : ŷ(xi) = 1 ∧ yi = −1}
∣∣

16 / 68

Area under ROC curve (AUC) in binary classification

• Real-valued scoring function f : X → R.

• Objects with binary labels yi ∈ {−1,+1}.
• Label prediction by thresholding f at some point θ:

ŷ(x) =

{
+1 if f(x) > θ,
−1 if f(x) ≤ θ.

• Vary the threshold θ from −∞ to ∞ and count the number of true
positives and false positives:

TP =
∣∣{xi : ŷ(xi) = 1 ∧ yi = 1}

∣∣
FP =

∣∣{xi : ŷ(xi) = 1 ∧ yi = −1}
∣∣

16 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞)

0 0

[2, 3.5)

1 0

[1.2, 2.3)

1 1

[0.6, 1.2)

2 1

[0.1, 0.6)

3 1

[−0.5, 0.1)

3 2

[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5)

1 0

[1.2, 2.3)

1 1

[0.6, 1.2)

2 1

[0.1, 0.6)

3 1

[−0.5, 0.1)

3 2

[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3)

1 1

[0.6, 1.2)

2 1

[0.1, 0.6)

3 1

[−0.5, 0.1)

3 2

[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2)

2 1

[0.1, 0.6)

3 1

[−0.5, 0.1)

3 2

[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2) 2 1
[0.1, 0.6)

3 1

[−0.5, 0.1)

3 2

[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2) 2 1
[0.1, 0.6) 3 1
[−0.5, 0.1)

3 2

[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2) 2 1
[0.1, 0.6) 3 1
[−0.5, 0.1) 3 2
[−1.2,−0.5)

4 2

[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2) 2 1
[0.1, 0.6) 3 1
[−0.5, 0.1) 3 2
[−1.2,−0.5) 4 2
[−2.2,−1.2)

4 3

(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2) 2 1
[0.1, 0.6) 3 1
[−0.5, 0.1) 3 2
[−1.2,−0.5) 4 2
[−2.2,−1.2) 4 3
(−∞,−2.2)

4 4

17 / 68

Area under ROC curve (AUC) in binary classification

object score f(x) label

x1 3.5 +1
x2 2 −1
x3 1.2 +1
x4 0.6 +1
x5 0.1 −1
x6 −0.5 +1
x7 −1.2 −1
x8 −2.2 −1

threshold TP FP

[3.5,∞) 0 0
[2, 3.5) 1 0
[1.2, 2.3) 1 1
[0.6, 1.2) 2 1
[0.1, 0.6) 3 1
[−0.5, 0.1) 3 2
[−1.2,−0.5) 4 2
[−2.2,−1.2) 4 3
(−∞,−2.2) 4 4

17 / 68

Area under ROC curve (AUC) in binary classification

False Positive Rate

T
ru

e
P

os
it

iv
e

R
at

e

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

18 / 68

Area under ROC curve (AUC) in binary classification

False Positive Rate

T
ru

e
P

os
it

iv
e

R
at

e

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

AUC = 1/4 · 1/4
19 / 68

Area under ROC curve (AUC) in binary classification

False Positive Rate

T
ru

e
P

os
it

iv
e

R
at

e

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

AUC = 1/4 · 1/4 + 1/4 · 3/4
20 / 68

Area under ROC curve (AUC) in binary classification

False Positive Rate

T
ru

e
P

os
it

iv
e

R
at

e

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

AUC = 1/4 · 1/4 + 1/4 · 3/4 + 1/2 · 1 = 0.75

21 / 68

Area under ROC curve (AUC) in binary classification

22 / 68

Area under ROC curve (AUC) in binary classification

• ROC curve measures the performance of binary classifier as
threshold is varied.

• ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1− FP rate).

• Allows to make optimal decision for any misclassification costs.
• Area under the ROC curve will often be a better classifier’s

evaluation metric than accuracy (thresholding at 0), especially for:
I Imbalanced data.
I Unknown misclassification costs.

• Interest in optimizing AUC for binary classification without
reference to ranking.

23 / 68

Area under ROC curve (AUC) in binary classification

• ROC curve measures the performance of binary classifier as
threshold is varied.

• ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1− FP rate).

• Allows to make optimal decision for any misclassification costs.
• Area under the ROC curve will often be a better classifier’s

evaluation metric than accuracy (thresholding at 0), especially for:
I Imbalanced data.
I Unknown misclassification costs.

• Interest in optimizing AUC for binary classification without
reference to ranking.

23 / 68

Area under ROC curve (AUC) in binary classification

• ROC curve measures the performance of binary classifier as
threshold is varied.

• ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1− FP rate).

• Allows to make optimal decision for any misclassification costs.

• Area under the ROC curve will often be a better classifier’s
evaluation metric than accuracy (thresholding at 0), especially for:
I Imbalanced data.
I Unknown misclassification costs.

• Interest in optimizing AUC for binary classification without
reference to ranking.

23 / 68

Area under ROC curve (AUC) in binary classification

• ROC curve measures the performance of binary classifier as
threshold is varied.

• ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1− FP rate).

• Allows to make optimal decision for any misclassification costs.
• Area under the ROC curve will often be a better classifier’s

evaluation metric than accuracy (thresholding at 0), especially for:
I Imbalanced data.
I Unknown misclassification costs.

• Interest in optimizing AUC for binary classification without
reference to ranking.

23 / 68

Area under ROC curve (AUC) in binary classification

• ROC curve measures the performance of binary classifier as
threshold is varied.

• ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1− FP rate).

• Allows to make optimal decision for any misclassification costs.
• Area under the ROC curve will often be a better classifier’s

evaluation metric than accuracy (thresholding at 0), especially for:
I Imbalanced data.
I Unknown misclassification costs.

• Interest in optimizing AUC for binary classification without
reference to ranking.

23 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

24 / 68

Standard approach to learning to rank

Reduction from bipartite ranking to pairwise binary classification:

Given:

• Data set {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each
(xi, yi) ∈ X × Y.

• Class F of real-valued prediction functions f : X → R,

Define:

• A new dataset {x̃k, ỹk}Kk=1, K = n+n−,

• A new class F̃ of functions f : X × X → R.

25 / 68

Standard approach to learning to rank

Reduction from bipartite ranking to pairwise binary classification:

Given:

• Data set {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each
(xi, yi) ∈ X × Y.

• Class F of real-valued prediction functions f : X → R,

Define:

• A new dataset {x̃k, ỹk}Kk=1, K = n+n−,

• A new class F̃ of functions f : X × X → R.

25 / 68

Standard approach to learning to rank

Data transformation:

• Take each pair {(xi, yi), (xj , yj)} with yi = +1 and yj = −1, and
make a learning example (x̃k, ỹk), such that:

x̃k = (xi,xj), ỹk = +1.

Function transformation:

• For any f ∈ F , define f̃ ∈ F̃ by:

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

26 / 68

Standard approach to learning to rank

Data transformation:

• Take each pair {(xi, yi), (xj , yj)} with yi = +1 and yj = −1, and
make a learning example (x̃k, ỹk), such that:

x̃k = (xi,xj), ỹk = +1.

Function transformation:

• For any f ∈ F , define f̃ ∈ F̃ by:

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

26 / 68

Standard approach to learning to rank

x̃k = (xi,xj), ỹk = +1.

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

• Easy to see that for any f , the empirical ranking risk of f is equal
to the empirical 0/1-risk of f̃ :

`0/1

(
ỹ, f̃(x̃k)

)
= Jỹf̃(x̃k) < 0K +

1

2
Jỹf̃(x̃k) = 0K

= Jf(xi) < f(xj)K +
1

2
Jf(xi) = f(xj)K.

Summing over pairs of positive and negative examples gives ranking
risk.

• Take your favourite surrogate loss for binary classification `(y, f(x)),
and use it for ỹ and f̃(x̃). Problem solved.

27 / 68

Standard approach to learning to rank

x̃k = (xi,xj), ỹk = +1.

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

• Easy to see that for any f , the empirical ranking risk of f is equal
to the empirical 0/1-risk of f̃ :

`0/1

(
ỹ, f̃(x̃k)

)
= Jỹf̃(x̃k) < 0K +

1

2
Jỹf̃(x̃k) = 0K

= Jf(xi) < f(xj)K +
1

2
Jf(xi) = f(xj)K.

Summing over pairs of positive and negative examples gives ranking
risk.

• Take your favourite surrogate loss for binary classification `(y, f(x)),
and use it for ỹ and f̃(x̃). Problem solved.

27 / 68

Standard approach to learning to rank

x̃k = (xi,xj), ỹk = +1.

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

• Easy to see that for any f , the empirical ranking risk of f is equal
to the empirical 0/1-risk of f̃ :

`0/1

(
ỹ, f̃(x̃k)

)
= Jỹf̃(x̃k) < 0K +

1

2
Jỹf̃(x̃k) = 0K

= Jf(xi) < f(xj)K +
1

2
Jf(xi) = f(xj)K.

Summing over pairs of positive and negative examples gives ranking
risk.

• Take your favourite surrogate loss for binary classification `(y, f(x)),
and use it for ỹ and f̃(x̃). Problem solved.

27 / 68

Standard approach to learning to rank

x̃k = (xi,xj), ỹk = +1.

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

• Easy to see that for any f , the empirical ranking risk of f is equal
to the empirical 0/1-risk of f̃ :

`0/1

(
ỹ, f̃(x̃k)

)
= Jỹf̃(x̃k) < 0K +

1

2
Jỹf̃(x̃k) = 0K

= Jf(xi) < f(xj)K +
1

2
Jf(xi) = f(xj)K.

Summing over pairs of positive and negative examples gives ranking
risk.

• Take your favourite surrogate loss for binary classification `(y, f(x)),
and use it for ỹ and f̃(x̃). Problem solved.

27 / 68

Standard approach to learning to rank

x̃k = (xi,xj), ỹk = +1.

f̃(x̃k) = f(xi)− f(xj), for any x̃k = (xi,xj).

Questions

• Why not include as well negative examples in the reduction:

x̃k = (xi,xj), ỹk = sgn (yi − yj)

• Does f̃ need to have a structure: f̃(x̃k) = f(xi)− f(xj)?

28 / 68

Standard approach to learning to rank

Examples:

• SVM-OR1: hinge loss.

• RankBoost2: exponential loss.

• A vast number of other pairwise approaches.

1 R. Herbrich, T. Graepel, and K. Obermayer. Regression models for ordinal data: A machine
learning approach. Technical report TR-99/03, Technical University of Berlin, 1999

2 Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4:933–969, 2003

29 / 68

Standard approach to learning to rank

Pros:

• Reduction to classification: we can reuse known concepts and
methods.

• This reduction can solve much more general ranking problem, not
necessarily bipartite.

Cons:

• Scales quadratically with sample size (tricks to reduce complexity on
some special cases).

• Cannot reuse standard classification algorithms without
modification due to structure on f̃ , i.e. f̃(x̃k) = f(xi)− f(xj).

O(n2) is often unacceptable! How about training a real-valued
classifier (works in O(n)) and use it as a ranker?

30 / 68

Standard approach to learning to rank

Pros:

• Reduction to classification: we can reuse known concepts and
methods.

• This reduction can solve much more general ranking problem, not
necessarily bipartite.

Cons:

• Scales quadratically with sample size (tricks to reduce complexity on
some special cases).

• Cannot reuse standard classification algorithms without
modification due to structure on f̃ , i.e. f̃(x̃k) = f(xi)− f(xj).

O(n2) is often unacceptable! How about training a real-valued
classifier (works in O(n)) and use it as a ranker?

30 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

31 / 68

Good classifier can be a bad ranker3

• 0/1 loss of a classifier f : X → R:

`0/1(y, f(x)) = Jf(x)y ≤ 0K, L̂0/1(f) =
1

n

∑
i

`0/1(yi, f(xi))

• Classifier with a fixed 0/1-risk can have arbitrarily bad ranking risk

L̂0/1(f) = n+/n,

L̂rnk(f) = 1.

f(x)

f(x) = 0

• This phenomenon is especially noticeable for unbalanced classes.

3 W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

32 / 68

Good classifier can be a bad ranker3

• 0/1 loss of a classifier f : X → R:

`0/1(y, f(x)) = Jf(x)y ≤ 0K, L̂0/1(f) =
1

n

∑
i

`0/1(yi, f(xi))

• Classifier with a fixed 0/1-risk can have arbitrarily bad ranking risk

L̂0/1(f) = n+/n,

L̂rnk(f) = 1.

f(x)

f(x) = 0

• This phenomenon is especially noticeable for unbalanced classes.

3 W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

32 / 68

Good classifier can be a bad ranker3

• 0/1 loss of a classifier f : X → R:

`0/1(y, f(x)) = Jf(x)y ≤ 0K, L̂0/1(f) =
1

n

∑
i

`0/1(yi, f(xi))

• Classifier with a fixed 0/1-risk can have arbitrarily bad ranking risk

L̂0/1(f) = n+/n,

L̂rnk(f) = 1.
f(x)

f(x) = 0

• This phenomenon is especially noticeable for unbalanced classes.

3 W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

32 / 68

Looking closer

• Assume for simplicity that f(x) ∈ {−1,+1}.

predicted ŷ = f(x)
−1 +1

true y
−1 TN FP
+1 FN TP

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + 0.5 · TP · FP + 0.5 · FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)

2n+n−
=
FP

2n−
+
FN

2n+

We can upperbound:

L̂rnk(f) ≤
FP + FN

2min{n−, n+}
=

n

2min{n−, n+}
L̂0/1(f).

Poor behavior of 0/1 loss comes for class imbalance.

33 / 68

Looking closer

• Assume for simplicity that f(x) ∈ {−1,+1}.

predicted ŷ = f(x)
−1 +1

true y
−1 TN FP
+1 FN TP

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + 0.5 · TP · FP + 0.5 · FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)

2n+n−
=
FP

2n−
+
FN

2n+

We can upperbound:

L̂rnk(f) ≤
FP + FN

2min{n−, n+}
=

n

2min{n−, n+}
L̂0/1(f).

Poor behavior of 0/1 loss comes for class imbalance.

33 / 68

Looking closer

• Assume for simplicity that f(x) ∈ {−1,+1}.

predicted ŷ = f(x)
−1 +1

true y
−1 TN FP
+1 FN TP

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + 0.5 · TP · FP + 0.5 · FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)

2n+n−

=
FP

2n−
+
FN

2n+

We can upperbound:

L̂rnk(f) ≤
FP + FN

2min{n−, n+}
=

n

2min{n−, n+}
L̂0/1(f).

Poor behavior of 0/1 loss comes for class imbalance.

33 / 68

Looking closer

• Assume for simplicity that f(x) ∈ {−1,+1}.

predicted ŷ = f(x)
−1 +1

true y
−1 TN FP
+1 FN TP

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + 0.5 · TP · FP + 0.5 · FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)

2n+n−
=
FP

2n−
+
FN

2n+

We can upperbound:

L̂rnk(f) ≤
FP + FN

2min{n−, n+}
=

n

2min{n−, n+}
L̂0/1(f).

Poor behavior of 0/1 loss comes for class imbalance.

33 / 68

Looking closer

• Assume for simplicity that f(x) ∈ {−1,+1}.

predicted ŷ = f(x)
−1 +1

true y
−1 TN FP
+1 FN TP

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + 0.5 · TP · FP + 0.5 · FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)

2n+n−
=
FP

2n−
+
FN

2n+

We can upperbound:

L̂rnk(f) ≤
FP + FN

2min{n−, n+}
=

n

2min{n−, n+}
L̂0/1(f).

Poor behavior of 0/1 loss comes for class imbalance.

33 / 68

Looking closer

• Assume for simplicity that f(x) ∈ {−1,+1}.

predicted ŷ = f(x)
−1 +1

true y
−1 TN FP
+1 FN TP

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + 0.5 · TP · FP + 0.5 · FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)

2n+n−
=
FP

2n−
+
FN

2n+

We can upperbound:

L̂rnk(f) ≤
FP + FN

2min{n−, n+}
=

n

2min{n−, n+}
L̂0/1(f).

Poor behavior of 0/1 loss comes for class imbalance.
33 / 68

More general bound

• Assume now f(x) ∈ R.

Given fixed TP, FN,FP, TP rate,
what is the worse-case ranking risk?

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + ·TP · FP + ·FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)− FNFP

2n+n−

=
FP

n−
+
FN

n+
− FN

n−

FP

n+
≤ FP

n−
+
FN

n+
.

34 / 68

More general bound

• Assume now f(x) ∈ R.

Given fixed TP, FN,FP, TP rate,
what is the worse-case ranking risk?

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + ·TP · FP + ·FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)− FNFP

2n+n−

=
FP

n−
+
FN

n+
− FN

n−

FP

n+
≤ FP

n−
+
FN

n+
.

34 / 68

More general bound

• Assume now f(x) ∈ R.

Given fixed TP, FN,FP, TP rate,
what is the worse-case ranking risk?

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + ·TP · FP + ·FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)− FNFP

2n+n−

=
FP

n−
+
FN

n+
− FN

n−

FP

n+
≤ FP

n−
+
FN

n+
.

34 / 68

More general bound

• Assume now f(x) ∈ R.

Given fixed TP, FN,FP, TP rate,
what is the worse-case ranking risk?

TN

FN

FP

TP f(x)

f(x) = 0

L̂rnk(f) =
FP · FN + ·TP · FP + ·FN · TN

n+n−

=
FP (FN + TP) + FN(TN + FP)− FNFP

2n+n−

=
FP

n−
+
FN

n+
− FN

n−

FP

n+
≤ FP

n−
+
FN

n+
.

34 / 68

Balanced 0/1 Loss

L̂rnk(f) ≤
FP

n−
+
FN

n+

• 0/1-risk L̂0/1(f) =
FP+FN

n counts all mistakes with equal weights 1
n .

• Balanced 0/1-risk L̂b(f) =
FP
2n−

+ FN
2n+

counts mistakes with weights

proportional to the inverses of class cardinalities.
I Proper normalization because:∑

i:yi=+1
1

2n+
+
∑

i:yi=−1
1

2n−
=
∑

i
1
n = 1.

• Uneven misclassification costs cancel out class imbalance
=⇒ balanced risk “sees” classes as being balanced.

• Classifier which minimizes balanced risk also minimizes ranking
risk!

L̂rnk(f) ≤ 2L̂b(f)

35 / 68

Balanced 0/1 Loss

L̂rnk(f) ≤
FP

n−
+
FN

n+

• 0/1-risk L̂0/1(f) =
FP+FN

n counts all mistakes with equal weights 1
n .

• Balanced 0/1-risk L̂b(f) =
FP
2n−

+ FN
2n+

counts mistakes with weights

proportional to the inverses of class cardinalities.

I Proper normalization because:∑
i:yi=+1

1
2n+

+
∑

i:yi=−1
1

2n−
=
∑

i
1
n = 1.

• Uneven misclassification costs cancel out class imbalance
=⇒ balanced risk “sees” classes as being balanced.

• Classifier which minimizes balanced risk also minimizes ranking
risk!

L̂rnk(f) ≤ 2L̂b(f)

35 / 68

Balanced 0/1 Loss

L̂rnk(f) ≤
FP

n−
+
FN

n+

• 0/1-risk L̂0/1(f) =
FP+FN

n counts all mistakes with equal weights 1
n .

• Balanced 0/1-risk L̂b(f) =
FP
2n−

+ FN
2n+

counts mistakes with weights

proportional to the inverses of class cardinalities.
I Proper normalization because:∑

i:yi=+1
1

2n+
+
∑

i:yi=−1
1

2n−
=
∑

i
1
n = 1.

• Uneven misclassification costs cancel out class imbalance
=⇒ balanced risk “sees” classes as being balanced.

• Classifier which minimizes balanced risk also minimizes ranking
risk!

L̂rnk(f) ≤ 2L̂b(f)

35 / 68

Balanced 0/1 Loss

L̂rnk(f) ≤
FP

n−
+
FN

n+

• 0/1-risk L̂0/1(f) =
FP+FN

n counts all mistakes with equal weights 1
n .

• Balanced 0/1-risk L̂b(f) =
FP
2n−

+ FN
2n+

counts mistakes with weights

proportional to the inverses of class cardinalities.
I Proper normalization because:∑

i:yi=+1
1

2n+
+
∑

i:yi=−1
1

2n−
=
∑

i
1
n = 1.

• Uneven misclassification costs cancel out class imbalance
=⇒ balanced risk “sees” classes as being balanced.

• Classifier which minimizes balanced risk also minimizes ranking
risk!

L̂rnk(f) ≤ 2L̂b(f)

35 / 68

But...

• 0/1 loss/risk (also balanced) is not sensitive to order.

L̂0/1 L̂rnk

1/6 1/36

1/6 6/36

1/6 11/36

f(x)

f(x)

f(x)

f(x) = 0

• Need to consider losses which penalize not only for classification
mistake but also for the distance to 0.
=⇒ Margin-based losses.

36 / 68

But...

• 0/1 loss/risk (also balanced) is not sensitive to order.

L̂0/1 L̂rnk

1/6 1/36

1/6 6/36

1/6 11/36

f(x)

f(x)

f(x)

f(x) = 0

• Need to consider losses which penalize not only for classification
mistake but also for the distance to 0.
=⇒ Margin-based losses.

36 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

37 / 68

Setting

• Moving the theory from empirical level to the population level
I counting → distribution.

• Accuracy measures used so far become expectations.

• Better measure of performance: regret.

38 / 68

Setting

• Examples (x, y) generated by a distribution P (x, y).

• A (real-valued) classifier f : X → R, with accuracy measured by the
risk:

L`(f) := E(x,y)∼P [`(y, f(x))] ,

where ` is a pointwise loss.

• The regret of a classifier f :

Reg`(f) = L`(f)− L`(f∗`),

where f∗` is the Bayes classifier, f∗` = argminf L`(f).

• Regret measures how much worse we perform than the optimal
classifier.

39 / 68

Setting

• A ranker f : X → R, with accuracy measured by ranking risk:

Lrnk(f) := P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′),

where (x, y), (x′, y′) are two independent random examples.

• Ranking risk is a probability that random positive example is ranked
lower than random negative example.

• The ranking regret is defined as:

Regrnk(f) = Lrnk(f)− Lrnk(f
∗
r),

where f∗r = argminf Lrnk(f) is the Bayes ranker.

40 / 68

Setting

• A ranker f : X → R, with accuracy measured by ranking risk:

Lrnk(f) := P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′),

where (x, y), (x′, y′) are two independent random examples.

• Ranking risk is a probability that random positive example is ranked
lower than random negative example.

• The ranking regret is defined as:

Regrnk(f) = Lrnk(f)− Lrnk(f
∗
r),

where f∗r = argminf Lrnk(f) is the Bayes ranker.

40 / 68

Setting

• A ranker f : X → R, with accuracy measured by ranking risk:

Lrnk(f) := P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′),

where (x, y), (x′, y′) are two independent random examples.

• Ranking risk is a probability that random positive example is ranked
lower than random negative example.

• The ranking regret is defined as:

Regrnk(f) = Lrnk(f)− Lrnk(f
∗
r),

where f∗r = argminf Lrnk(f) is the Bayes ranker.

40 / 68

Problem statement

• Each classifier f can be used as a ranker.

• Given a classifier f with classification regret Reg`(f) for some loss
function `, what is the maximum ranking regret of f , Regrnk(f)?
(regret bounds)

• In particular: if a classifier f is close to the optimal classifier f∗` , is its
ranking risk close to to the ranking risk of the optimal ranker f∗r ?
=⇒ ranking calibration.

41 / 68

Problem statement

• Each classifier f can be used as a ranker.

• Given a classifier f with classification regret Reg`(f) for some loss
function `, what is the maximum ranking regret of f , Regrnk(f)?
(regret bounds)

• In particular: if a classifier f is close to the optimal classifier f∗` , is its
ranking risk close to to the ranking risk of the optimal ranker f∗r ?
=⇒ ranking calibration.

41 / 68

Problem statement

• Each classifier f can be used as a ranker.

• Given a classifier f with classification regret Reg`(f) for some loss
function `, what is the maximum ranking regret of f , Regrnk(f)?
(regret bounds)

• In particular: if a classifier f is close to the optimal classifier f∗` , is its
ranking risk close to to the ranking risk of the optimal ranker f∗r ?
=⇒ ranking calibration.

41 / 68

The optimal ranker

Lrnk(f) = P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′)

Question

Based on the result of the previous question, argue that the Bayes ranker
f∗(x) minimizes K(x,x′) +K(x′,x) for every (x,x′). Show that this
implies:

f∗(x) > f∗(x′) if and only if η(x) > η(x′),

i.e., the Bayes ranker f∗(x) is any strictly monotone transformation of
η(x). (examples should be ordered according to η(x))

42 / 68

The optimal ranker

Lrnk(f) = P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′)

Question

Define:

K(x,x′) = η(x)(1− η(x′))
(
Jf(x) < f(x′)K +

1

2
Jf(x) = f(x′)K

)
,

where η(x) = P (y = 1|x). Show that the ranking risk can be rewritten as:

Lrnk(f) =
1

p(1− p)
E(x,x′)

[
K(x,x′)

]
=

1

2p(1− p)
E(x,x′)

[
K(x,x′) +K(x′,x)

]
.

where p = P (y = 1) is the prior probability of positive class

Question

Based on the result of the previous question, argue that the Bayes ranker
f∗(x) minimizes K(x,x′) +K(x′,x) for every (x,x′). Show that this
implies:

f∗(x) > f∗(x′) if and only if η(x) > η(x′),

i.e., the Bayes ranker f∗(x) is any strictly monotone transformation of
η(x). (examples should be ordered according to η(x))

42 / 68

The optimal ranker

Lrnk(f) = P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′)

Question

Based on the result of the previous question, argue that the Bayes ranker
f∗(x) minimizes K(x,x′) +K(x′,x) for every (x,x′). Show that this
implies:

f∗(x) > f∗(x′) if and only if η(x) > η(x′),

i.e., the Bayes ranker f∗(x) is any strictly monotone transformation of
η(x). (examples should be ordered according to η(x))

42 / 68

Surrogate losses and calibration

• Let `(y,x) be a pointwise surrogate loss for ranking.

• We want to be ranking calibrated:

Reg`(fn)→ 0 =⇒ Regrnk(fn)→ 0.

• This implies that the Bayes classifier f∗` must also be the Bayes
ranker.

• Since the Bayes ranker is a strictly monotone transform of η(x), so
must be f∗` .

• The loss ` must “estimate” conditional probability function η(x) or
its strictly increasing transform!

• 0/1 loss ruled out: the Bayes classifier f∗0/1(x) = sign(η(x)− 1/2) is

not a strictly monotone transform of η(x).

43 / 68

Surrogate losses and calibration

• Let `(y,x) be a pointwise surrogate loss for ranking.

• We want to be ranking calibrated:

Reg`(fn)→ 0 =⇒ Regrnk(fn)→ 0.

• This implies that the Bayes classifier f∗` must also be the Bayes
ranker.

• Since the Bayes ranker is a strictly monotone transform of η(x), so
must be f∗` .

• The loss ` must “estimate” conditional probability function η(x) or
its strictly increasing transform!

• 0/1 loss ruled out: the Bayes classifier f∗0/1(x) = sign(η(x)− 1/2) is

not a strictly monotone transform of η(x).

43 / 68

Surrogate losses and calibration

• Let `(y,x) be a pointwise surrogate loss for ranking.

• We want to be ranking calibrated:

Reg`(fn)→ 0 =⇒ Regrnk(fn)→ 0.

• This implies that the Bayes classifier f∗` must also be the Bayes
ranker.

• Since the Bayes ranker is a strictly monotone transform of η(x), so
must be f∗` .

• The loss ` must “estimate” conditional probability function η(x) or
its strictly increasing transform!

• 0/1 loss ruled out: the Bayes classifier f∗0/1(x) = sign(η(x)− 1/2) is

not a strictly monotone transform of η(x).

43 / 68

Surrogate losses and calibration

• Let `(y,x) be a pointwise surrogate loss for ranking.

• We want to be ranking calibrated:

Reg`(fn)→ 0 =⇒ Regrnk(fn)→ 0.

• This implies that the Bayes classifier f∗` must also be the Bayes
ranker.

• Since the Bayes ranker is a strictly monotone transform of η(x), so
must be f∗` .

• The loss ` must “estimate” conditional probability function η(x) or
its strictly increasing transform!

• 0/1 loss ruled out: the Bayes classifier f∗0/1(x) = sign(η(x)− 1/2) is

not a strictly monotone transform of η(x).

43 / 68

Surrogate losses and calibration

• Let `(y,x) be a pointwise surrogate loss for ranking.

• We want to be ranking calibrated:

Reg`(fn)→ 0 =⇒ Regrnk(fn)→ 0.

• This implies that the Bayes classifier f∗` must also be the Bayes
ranker.

• Since the Bayes ranker is a strictly monotone transform of η(x), so
must be f∗` .

• The loss ` must “estimate” conditional probability function η(x) or
its strictly increasing transform!

• 0/1 loss ruled out: the Bayes classifier f∗0/1(x) = sign(η(x)− 1/2) is

not a strictly monotone transform of η(x).

43 / 68

Surrogate losses and calibration

• Let `(y,x) be a pointwise surrogate loss for ranking.

• We want to be ranking calibrated:

Reg`(fn)→ 0 =⇒ Regrnk(fn)→ 0.

• This implies that the Bayes classifier f∗` must also be the Bayes
ranker.

• Since the Bayes ranker is a strictly monotone transform of η(x), so
must be f∗` .

• The loss ` must “estimate” conditional probability function η(x) or
its strictly increasing transform!

• 0/1 loss ruled out: the Bayes classifier f∗0/1(x) = sign(η(x)− 1/2) is

not a strictly monotone transform of η(x).

43 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

44 / 68

Margin-based losses

Motivation:

• Empirical evidence (from published papers, methods used in
industry) suggests that simple scoring classifiers, notably those
minimizing margin-based loss functions, perform quite strongly in
terms of ranking loss (AUC).

• Can we explain this phenomenon on the theoretical grounds?

45 / 68

Margin-based losses

• Loss functions of the form `(y, f(x)) = `(yf(x)).

−3 −2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

yf(x)

lo
ss

0/1 loss
squared error loss
logistic loss
hinge loss
exponential loss

• Bayes classifiers:

loss f∗(η) df∗(η)
dη

squared error 2η − 1 2 > 0
logistic log η

1−η
1

η(1−η) > 0

exponential 1
2 log

η
1−η

1
2η(1−η) > 0

hinge sgn (η − 1/2) 0
• Hinge loss ruled out!

46 / 68

Margin-based losses

• Loss functions of the form `(y, f(x)) = `(yf(x)).

−3 −2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

yf(x)

lo
ss

0/1 loss
squared error loss
logistic loss
hinge loss
exponential loss

• Bayes classifiers:

loss f∗(η) df∗(η)
dη

squared error 2η − 1 2 > 0
logistic log η

1−η
1

η(1−η) > 0

exponential 1
2 log

η
1−η

1
2η(1−η) > 0

hinge sgn (η − 1/2) 0

• Hinge loss ruled out!

46 / 68

Margin-based losses

• Loss functions of the form `(y, f(x)) = `(yf(x)).

−3 −2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

yf(x)

lo
ss

0/1 loss
squared error loss
logistic loss
hinge loss
exponential loss

• Bayes classifiers:

loss f∗(η) df∗(η)
dη

squared error 2η − 1 2 > 0
logistic log η

1−η
1

η(1−η) > 0

exponential 1
2 log

η
1−η

1
2η(1−η) > 0

hinge sgn (η − 1/2) 0
• Hinge loss ruled out!

46 / 68

Regret bounds for exponential and logistic surrogate losses

Theorem4:
The following regret bounds hold for the exponential loss and the logistic
loss, respectively:

Regrnk(f) ≤
1

2p(1− p)

√
3

2

√
Regexp(f),

Regrnk(f) ≤
1

2p(1− p)
√
2
√

Reglog(f),

where Regexp and Reglog are the regrets for exponential and logistic loss,
respectively, and p = P (y = 1).

Can we get rid of the ugly constant 1/(2p(1− p))? Not with the current
loss functions!

4 K. Dembczyński, W. Kot lowski, and E. Hüllermeier. Consistent multilabel ranking through
univariate losses. In International Conference on Machine Learning, 2012
W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

47 / 68

Regret bounds for exponential and logistic surrogate losses

Theorem4:
The following regret bounds hold for the exponential loss and the logistic
loss, respectively:

Regrnk(f) ≤
1

2p(1− p)

√
3

2

√
Regexp(f),

Regrnk(f) ≤
1

2p(1− p)
√
2
√

Reglog(f),

where Regexp and Reglog are the regrets for exponential and logistic loss,
respectively, and p = P (y = 1).

Can we get rid of the ugly constant 1/(2p(1− p))?

Not with the current
loss functions!

4 K. Dembczyński, W. Kot lowski, and E. Hüllermeier. Consistent multilabel ranking through
univariate losses. In International Conference on Machine Learning, 2012
W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

47 / 68

Regret bounds for exponential and logistic surrogate losses

Theorem4:
The following regret bounds hold for the exponential loss and the logistic
loss, respectively:

Regrnk(f) ≤
1

2p(1− p)

√
3

2

√
Regexp(f),

Regrnk(f) ≤
1

2p(1− p)
√
2
√

Reglog(f),

where Regexp and Reglog are the regrets for exponential and logistic loss,
respectively, and p = P (y = 1).

Can we get rid of the ugly constant 1/(2p(1− p))? Not with the current
loss functions!
4 K. Dembczyński, W. Kot lowski, and E. Hüllermeier. Consistent multilabel ranking through

univariate losses. In International Conference on Machine Learning, 2012
W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

47 / 68

Sensitivity to class priors

• Ranking risk is insensitive to any change of the class prior P (y).
I Changing P (y) while keeping P (x|y) fixed does not change the

ranking risk.

Lrnk(f) := P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′)

(depends only on P (x|y), not on p = P (y = 1))

• Surrogate losses are sensitive to class priors.
I This is the origin of the term 1/(2p(1− p)).

• Can we make the surrogate loss insensitive to the priors?

48 / 68

Sensitivity to class priors

• Ranking risk is insensitive to any change of the class prior P (y).
I Changing P (y) while keeping P (x|y) fixed does not change the

ranking risk.

Lrnk(f) := P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′)

(depends only on P (x|y), not on p = P (y = 1))

• Surrogate losses are sensitive to class priors.
I This is the origin of the term 1/(2p(1− p)).

• Can we make the surrogate loss insensitive to the priors?

48 / 68

Sensitivity to class priors

• Ranking risk is insensitive to any change of the class prior P (y).
I Changing P (y) while keeping P (x|y) fixed does not change the

ranking risk.

Lrnk(f) := P (f(x) < f(x′)|y > y′) +
1

2
P (f(x) = f(x′)|y > y′)

(depends only on P (x|y), not on p = P (y = 1))

• Surrogate losses are sensitive to class priors.
I This is the origin of the term 1/(2p(1− p)).

• Can we make the surrogate loss insensitive to the priors?

48 / 68

Balancing

• Given a loss function `(y, ŷ), define its weighted version as:

`w(y, ŷ) = w(y)`(y, ŷ).

• Require weights to satisfy the normalization constraint:

Ey[w(y)] = 1,

i.e., weighting only redistributes the loss without changing its scale.
• Given a loss function `(y, ŷ), define its balanced version as:

`b(y, ŷ) =
1

2P (y)
`(y, ŷ), i.e., w(y) =

1

2P (y)
.

• Properly normalized:

Ey
[

1

2P (y)

]
=

P (y = 1)

2P (y = 1)
+

P (y = −1)
2P (y = −1)

= 1.

• Requires knowing the class priors P (y), but these can be easily
estimated from the training data.

49 / 68

Balancing

• Given a loss function `(y, ŷ), define its weighted version as:

`w(y, ŷ) = w(y)`(y, ŷ).

• Require weights to satisfy the normalization constraint:

Ey[w(y)] = 1,

i.e., weighting only redistributes the loss without changing its scale.

• Given a loss function `(y, ŷ), define its balanced version as:

`b(y, ŷ) =
1

2P (y)
`(y, ŷ), i.e., w(y) =

1

2P (y)
.

• Properly normalized:

Ey
[

1

2P (y)

]
=

P (y = 1)

2P (y = 1)
+

P (y = −1)
2P (y = −1)

= 1.

• Requires knowing the class priors P (y), but these can be easily
estimated from the training data.

49 / 68

Balancing

• Given a loss function `(y, ŷ), define its weighted version as:

`w(y, ŷ) = w(y)`(y, ŷ).

• Require weights to satisfy the normalization constraint:

Ey[w(y)] = 1,

i.e., weighting only redistributes the loss without changing its scale.
• Given a loss function `(y, ŷ), define its balanced version as:

`b(y, ŷ) =
1

2P (y)
`(y, ŷ), i.e., w(y) =

1

2P (y)
.

• Properly normalized:

Ey
[

1

2P (y)

]
=

P (y = 1)

2P (y = 1)
+

P (y = −1)
2P (y = −1)

= 1.

• Requires knowing the class priors P (y), but these can be easily
estimated from the training data.

49 / 68

Balancing

• Given a loss function `(y, ŷ), define its weighted version as:

`w(y, ŷ) = w(y)`(y, ŷ).

• Require weights to satisfy the normalization constraint:

Ey[w(y)] = 1,

i.e., weighting only redistributes the loss without changing its scale.
• Given a loss function `(y, ŷ), define its balanced version as:

`b(y, ŷ) =
1

2P (y)
`(y, ŷ), i.e., w(y) =

1

2P (y)
.

• Properly normalized:

Ey
[

1

2P (y)

]
=

P (y = 1)

2P (y = 1)
+

P (y = −1)
2P (y = −1)

= 1.

• Requires knowing the class priors P (y), but these can be easily
estimated from the training data.

49 / 68

Balancing

• Given a loss function `(y, ŷ), define its weighted version as:

`w(y, ŷ) = w(y)`(y, ŷ).

• Require weights to satisfy the normalization constraint:

Ey[w(y)] = 1,

i.e., weighting only redistributes the loss without changing its scale.
• Given a loss function `(y, ŷ), define its balanced version as:

`b(y, ŷ) =
1

2P (y)
`(y, ŷ), i.e., w(y) =

1

2P (y)
.

• Properly normalized:

Ey
[

1

2P (y)

]
=

P (y = 1)

2P (y = 1)
+

P (y = −1)
2P (y = −1)

= 1.

• Requires knowing the class priors P (y), but these can be easily
estimated from the training data.

49 / 68

Balancing

Balancing counteracts the uneven priors.

The expected balanced loss `b(y, f(x)) with respect to a distribution
P (x, y) with class prior p, is the same as the expected original loss
`(y, f(x)) with respect to a distribution P̃ (x, y), such that:

P̃ (x|y) = P (x|y), y ∈ {−1, 1}, P̃ (y = 1) = P̃ (y = −1) = 1/2.

Proof:

L`b(f) =

∫
`b(y, f(x))P (x, y)dxdy =

∫
1

2P (y)
`(y, f(x))P (x|y)P (y)dxdy

=

∫
`(y, f(x))P (x|y)1

2
dxdy =

∫
`(y, f(x))P̃ (x, y)dxdy = L̃`(f).

50 / 68

Balancing

Balancing counteracts the uneven priors.

The expected balanced loss `b(y, f(x)) with respect to a distribution
P (x, y) with class prior p, is the same as the expected original loss
`(y, f(x)) with respect to a distribution P̃ (x, y), such that:

P̃ (x|y) = P (x|y), y ∈ {−1, 1}, P̃ (y = 1) = P̃ (y = −1) = 1/2.

Proof:

L`b(f) =

∫
`b(y, f(x))P (x, y)dxdy =

∫
1

2P (y)
`(y, f(x))P (x|y)P (y)dxdy

=

∫
`(y, f(x))P (x|y)1

2
dxdy =

∫
`(y, f(x))P̃ (x, y)dxdy = L̃`(f).

50 / 68

Regret bounds for balanced exponential and logistic surrogate losses

Theorem5:
The following regret bounds hold for the balanced exponential loss and
balanced logistic loss, respectively:

Regrnk(f) ≤ 2

√
3

2

√
Regb.exp(f),

Regrnk(f) ≤ 2
√
2
√

Regb.log(f),

where Regb.exp and Regb.log are the regrets for balanced exponential and
balanced logistic losses, respectively.

the term 1/(2p(1− p)) has been replaced by 2.

Proof: The expected balanced loss is equal to the expected original
loss w.r.t P̃ (x, y) with priors equal to 1/2. Apply previous theorem for
P̃ (x, y) and note that ranking regret is invariant to changing the priors.

5 W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

51 / 68

Regret bounds for balanced exponential and logistic surrogate losses

Theorem5:
The following regret bounds hold for the balanced exponential loss and
balanced logistic loss, respectively:

Regrnk(f) ≤ 2

√
3

2

√
Regb.exp(f),

Regrnk(f) ≤ 2
√
2
√

Regb.log(f),

where Regb.exp and Regb.log are the regrets for balanced exponential and
balanced logistic losses, respectively.

the term 1/(2p(1− p)) has been replaced by 2.

Proof: The expected balanced loss is equal to the expected original
loss w.r.t P̃ (x, y) with priors equal to 1/2. Apply previous theorem for
P̃ (x, y) and note that ranking regret is invariant to changing the priors.

5 W. Kot lowski, K. Dembczyński, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113–1120, 2011

51 / 68

Does balancing matters?

• The Bayes classifiers for balanced losses

f∗b. exp(x) =
1

2
log

η(x)

1− η(x)
− 1

2
log

p

1− p
= f∗exp(x) + f0,

f∗b. log(x) = log
η(x)

1− η(x)
− log

p

1− p
= f∗log(x) + f1,

are shifted versions of the unbalanced counterparts.
⇒ constant shift does not influence ranking!

• For exponential loss, the above can be shown not only for Bayes
classifier, but also for classifiers trained by minimizing the empirical
risk.

52 / 68

Does balancing matters?

• The Bayes classifiers for balanced losses

f∗b. exp(x) =
1

2
log

η(x)

1− η(x)
− 1

2
log

p

1− p
= f∗exp(x) + f0,

f∗b. log(x) = log
η(x)

1− η(x)
− log

p

1− p
= f∗log(x) + f1,

are shifted versions of the unbalanced counterparts.
⇒ constant shift does not influence ranking!

• For exponential loss, the above can be shown not only for Bayes
classifier, but also for classifiers trained by minimizing the empirical
risk.

52 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

53 / 68

Overview

• Artificial and real data.
• We train standard linear classifiers based on:

I logistic loss (logistic regression),
I exponential loss (AdaBoost).

• We check how they perform compared to a specialized
“state-of-the-art” linear algorithm for bipartite ranking (SVM-OR).

• No significant difference in ranking accuracy. . .

• . . . but that’s what we want, as our algorithms are simple, fast and
widely accessible in software packages.

54 / 68

Overview

• Artificial and real data.
• We train standard linear classifiers based on:

I logistic loss (logistic regression),
I exponential loss (AdaBoost).

• We check how they perform compared to a specialized
“state-of-the-art” linear algorithm for bipartite ranking (SVM-OR).

• No significant difference in ranking accuracy. . .

• . . . but that’s what we want, as our algorithms are simple, fast and
widely accessible in software packages.

54 / 68

Overview

• Artificial and real data.
• We train standard linear classifiers based on:

I logistic loss (logistic regression),
I exponential loss (AdaBoost).

• We check how they perform compared to a specialized
“state-of-the-art” linear algorithm for bipartite ranking (SVM-OR).

• No significant difference in ranking accuracy. . .

• . . . but that’s what we want, as our algorithms are simple, fast and
widely accessible in software packages.

54 / 68

Experiment – Artificial Data

• Input x = (x1, . . . , x50) ∈ [0, 1]50 drawn uniformly.
• Output y is generated by thresholding a function f(x), i.e.,
y = sgn (f(x)) + random noise (Bayes rank risk 0.1).

• Two models for f(x): linear and nonlinear.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

• By varying class priors we get balanced (P (y = +1) = 0.5) and
imbalanced (P (y = +1) = 0.9) models.
• 30 random models, 30 training sets (of size 1000) per model, test set

of size 10000.
• Linear classifier trained by minimizing (1) exponential, (2) logistic,

and (3) pairwise hinge loss (SVM-OR)

55 / 68

Experiment – Artificial Data

• Input x = (x1, . . . , x50) ∈ [0, 1]50 drawn uniformly.
• Output y is generated by thresholding a function f(x), i.e.,
y = sgn (f(x)) + random noise (Bayes rank risk 0.1).
• Two models for f(x): linear and nonlinear.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

• By varying class priors we get balanced (P (y = +1) = 0.5) and
imbalanced (P (y = +1) = 0.9) models.
• 30 random models, 30 training sets (of size 1000) per model, test set

of size 10000.
• Linear classifier trained by minimizing (1) exponential, (2) logistic,

and (3) pairwise hinge loss (SVM-OR)

55 / 68

Experiment – Artificial Data

• Input x = (x1, . . . , x50) ∈ [0, 1]50 drawn uniformly.
• Output y is generated by thresholding a function f(x), i.e.,
y = sgn (f(x)) + random noise (Bayes rank risk 0.1).
• Two models for f(x): linear and nonlinear.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

• By varying class priors we get balanced (P (y = +1) = 0.5) and
imbalanced (P (y = +1) = 0.9) models.

• 30 random models, 30 training sets (of size 1000) per model, test set
of size 10000.
• Linear classifier trained by minimizing (1) exponential, (2) logistic,

and (3) pairwise hinge loss (SVM-OR)

55 / 68

Experiment – Artificial Data

• Input x = (x1, . . . , x50) ∈ [0, 1]50 drawn uniformly.
• Output y is generated by thresholding a function f(x), i.e.,
y = sgn (f(x)) + random noise (Bayes rank risk 0.1).
• Two models for f(x): linear and nonlinear.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

• By varying class priors we get balanced (P (y = +1) = 0.5) and
imbalanced (P (y = +1) = 0.9) models.
• 30 random models, 30 training sets (of size 1000) per model, test set

of size 10000.

• Linear classifier trained by minimizing (1) exponential, (2) logistic,
and (3) pairwise hinge loss (SVM-OR)

55 / 68

Experiment – Artificial Data

• Input x = (x1, . . . , x50) ∈ [0, 1]50 drawn uniformly.
• Output y is generated by thresholding a function f(x), i.e.,
y = sgn (f(x)) + random noise (Bayes rank risk 0.1).
• Two models for f(x): linear and nonlinear.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

• By varying class priors we get balanced (P (y = +1) = 0.5) and
imbalanced (P (y = +1) = 0.9) models.
• 30 random models, 30 training sets (of size 1000) per model, test set

of size 10000.
• Linear classifier trained by minimizing (1) exponential, (2) logistic,

and (3) pairwise hinge loss (SVM-OR)
55 / 68

Artificial Data – Results

Exponential SVM−OR Logistic

0.
10

5
0.

11
0

0.
11

5
0.

12
0

0.
12

5
0.

13
0 linear, balanced

Exponential SVM−OR Logistic

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

nonlinear, balanced

Exponential SVM−OR Logistic

0.
11

0
0.

11
5

0.
12

0
0.

12
5

0.
13

0
0.

13
5

linear, imbalanced

Exponential SVM−OR Logistic

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

nonlinear, imbalanced

56 / 68

Real Data – Results

Dataset Exponential SVM-OR Logistic

Breast-w 0.0051 0.0049 0.0054
Breast-c 0.3077 0.2955 0.3005
Colic 0.1251 0.1352 0.1179
Diabetes 0.1724 0.1702 0.1804
Haberman 0.3684 0.3153 0.3820
Heart-h 0.0887 0.1005 0.0929
Hepatitis 0.1289 0.1321 0.1230
Ionosphere 0.0811 0.0773 0.0884
Vote 0.0098 0.0103 0.0096

Covtype 0.1635 0.1604 0.1623
KDD04 0.2114 0.2083 0.2143

57 / 68

Outline

1 Bipartite ranking

2 Standard approach to ranking

3 Ranking by classification (0/1 Loss)

4 Some statistical decision theory for ranking

5 Margin-based losses and regret bounds

6 Experiments

7 Theory of strongly proper losses for bipartite ranking

58 / 68

Proper composite loss6

• Given a pointwise margin loss `(f), define its conditional risk:

Cη(f) = η`(f) + (1− η)`(−f).

• We call `(f) proper composite if there exists a strictly increasing
(and therefore invertible) link function ψ : [0, 1]→ R, such that:

ψ(η) ∈ argmin
f
Cη(f) for any η.

• Bayes classsifier is an invertible function of conditional probability η.
(inverting the relation we get probability estimate from f)
• Holds for most of considered margin-based losses:

loss f∗(η) = ψ(η) η(f∗) = ψ−1(f∗)

squared error 2η − 1 1+f∗

2
logistic log η

1−η
1

1+e−f∗

exponential 1
2 log

η
1−η

1
1+e−2f∗

6 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653–1674, 2014

59 / 68

Proper composite loss6

• Given a pointwise margin loss `(f), define its conditional risk:

Cη(f) = η`(f) + (1− η)`(−f).

• We call `(f) proper composite if there exists a strictly increasing
(and therefore invertible) link function ψ : [0, 1]→ R, such that:

ψ(η) ∈ argmin
f
Cη(f) for any η.

• Bayes classsifier is an invertible function of conditional probability η.
(inverting the relation we get probability estimate from f)
• Holds for most of considered margin-based losses:

loss f∗(η) = ψ(η) η(f∗) = ψ−1(f∗)

squared error 2η − 1 1+f∗

2
logistic log η

1−η
1

1+e−f∗

exponential 1
2 log

η
1−η

1
1+e−2f∗

6 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653–1674, 2014

59 / 68

Proper composite loss6

• Given a pointwise margin loss `(f), define its conditional risk:

Cη(f) = η`(f) + (1− η)`(−f).

• We call `(f) proper composite if there exists a strictly increasing
(and therefore invertible) link function ψ : [0, 1]→ R, such that:

ψ(η) ∈ argmin
f
Cη(f) for any η.

• Bayes classsifier is an invertible function of conditional probability η.
(inverting the relation we get probability estimate from f)

• Holds for most of considered margin-based losses:

loss f∗(η) = ψ(η) η(f∗) = ψ−1(f∗)

squared error 2η − 1 1+f∗

2
logistic log η

1−η
1

1+e−f∗

exponential 1
2 log

η
1−η

1
1+e−2f∗

6 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653–1674, 2014

59 / 68

Proper composite loss6

• Given a pointwise margin loss `(f), define its conditional risk:

Cη(f) = η`(f) + (1− η)`(−f).

• We call `(f) proper composite if there exists a strictly increasing
(and therefore invertible) link function ψ : [0, 1]→ R, such that:

ψ(η) ∈ argmin
f
Cη(f) for any η.

• Bayes classsifier is an invertible function of conditional probability η.
(inverting the relation we get probability estimate from f)
• Holds for most of considered margin-based losses:

loss f∗(η) = ψ(η) η(f∗) = ψ−1(f∗)

squared error 2η − 1 1+f∗

2
logistic log η

1−η
1

1+e−f∗

exponential 1
2 log

η
1−η

1
1+e−2f∗

6 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653–1674, 2014

59 / 68

Strongly proper composite loss7

• We call `(f) λ-strongly proper composite if

Cη(f)−H(η) ≥ λ

2

(
η − ψ−1(f)

)2
, H(η) = min

f
Cη(f),

i.e. conditional regret is lowerbounded by squared difference between
the true conditional probability η and estimated conditional
probability ψ−1(f).

7 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653–1674, 2014

60 / 68

Main result8

Theorem: Let `(y, f(x)) be λ-strongly proper composite margin loss.
Then:

Regrnk(f) ≤
1

p(1− p)

√
2

λ

√
Reg`(f).

8 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653–1674, 2014

61 / 68

Proof

Use strong properness:

Cη(f(x))−H(η(x)) ≥ λ

2

(
η(x)− ψ−1(f(x))

)2
to bound: (

η(x)− ψ−1(f(x))
)2 ≤ 2

λ
(Cη(f(x))−H(η(x)))

Take expectation on both sides:

Ex

[(
η(x)− ψ−1(f(x))

)2] ≤ 2

λ
(L`(f)− L∗`)) =

2

λ
Reg`(f).

62 / 68

Proof

Use strong properness:

Cη(f(x))−H(η(x)) ≥ λ

2

(
η(x)− ψ−1(f(x))

)2
to bound: (

η(x)− ψ−1(f(x))
)2 ≤ 2

λ
(Cη(f(x))−H(η(x)))

Take expectation on both sides:

Ex

[(
η(x)− ψ−1(f(x))

)2] ≤ 2

λ
(L`(f)− L∗`)) =

2

λ
Reg`(f).

62 / 68

Proof

Use strong properness:

Cη(f(x))−H(η(x)) ≥ λ

2

(
η(x)− ψ−1(f(x))

)2
to bound: (

η(x)− ψ−1(f(x))
)2 ≤ 2

λ
(Cη(f(x))−H(η(x)))

Take expectation on both sides:

Ex

[(
η(x)− ψ−1(f(x))

)2] ≤ 2

λ
(L`(f)− L∗`)) =

2

λ
Reg`(f).

62 / 68

Proof — cont.

We now need a lemma, which will not be proved here:

Lemma: For any f ′, such that f ′(x) ∈ [0, 1] for all x:

Regrnk(f
′) ≤ 1

p(1− p)
Ex

[
|η(x)− f ′(x)|

]

We take f ′(x) := ψ−1(f(x)) and get from the lemma and Jensen’s
inequality:

Regrnk(f
′) ≤ 1

p(1− p)
Ex

[
|η(x)− ψ−1(f(x))|

]
≤ 1

p(1− p)
√
Ex [(η(x)− ψ−1(f(x)))2]

Jensen: if f convex, then f(E[X]) ≤ E[f(X)]

Finally, since f ′ and f are strictly monotonically related,

Regrnk(f
′) = Regrnk(f).

63 / 68

Proof — cont.

We now need a lemma, which will not be proved here:

Lemma: For any f ′, such that f ′(x) ∈ [0, 1] for all x:

Regrnk(f
′) ≤ 1

p(1− p)
Ex

[
|η(x)− f ′(x)|

]
We take f ′(x) := ψ−1(f(x)) and get from the lemma and Jensen’s
inequality:

Regrnk(f
′) ≤ 1

p(1− p)
Ex

[
|η(x)− ψ−1(f(x))|

]
≤ 1

p(1− p)
√
Ex [(η(x)− ψ−1(f(x)))2]

Jensen: if f convex, then f(E[X]) ≤ E[f(X)]

Finally, since f ′ and f are strictly monotonically related,

Regrnk(f
′) = Regrnk(f).

63 / 68

Proof — cont.

We now need a lemma, which will not be proved here:

Lemma: For any f ′, such that f ′(x) ∈ [0, 1] for all x:

Regrnk(f
′) ≤ 1

p(1− p)
Ex

[
|η(x)− f ′(x)|

]
We take f ′(x) := ψ−1(f(x)) and get from the lemma and Jensen’s
inequality:

Regrnk(f
′) ≤ 1

p(1− p)
Ex

[
|η(x)− ψ−1(f(x))|

]
≤ 1

p(1− p)
√
Ex [(η(x)− ψ−1(f(x)))2]

Jensen: if f convex, then f(E[X]) ≤ E[f(X)]

Finally, since f ′ and f are strictly monotonically related,

Regrnk(f
′) = Regrnk(f).

63 / 68

Proof – cont.

Taking it all together:

Regrnk(f) ≤
1

p(1− p)
√
Ex [(η(x)− ψ−1(f(x)))2],

Ex

[(
η(x)− ψ−1(f(x))

)2] ≤ 2

λ
Reg`(f),

we get the desired bound:

Regrnk(f) ≤
1

p(1− p)

√
2

λ

√
Reg`(f).

64 / 68

Proof – cont.

Taking it all together:

Regrnk(f) ≤
1

p(1− p)
√
Ex [(η(x)− ψ−1(f(x)))2],

Ex

[(
η(x)− ψ−1(f(x))

)2] ≤ 2

λ
Reg`(f),

we get the desired bound:

Regrnk(f) ≤
1

p(1− p)

√
2

λ

√
Reg`(f).

64 / 68

How to calculate λ?

Fact: if H(η) is twice differentiable, and −dH2(η)
dη2

> λ for any η, then ` is
λ-strongly proper.

loss H(η) −dH2(η)
dη2

λ

squared error 4η(1− η) 8 8
logistic −η log η − (1− η) log(1− η) 1

η(1−η) 4

exponential 2
√
η(1− η) 1

2(η(1−η))3/2 4

65 / 68

Regret bounds

Corrolary:

• For squared error loss:

Regrnk(f) ≤
1

p(1− p)
1

2

√
Regsq(f).

• For logistic loss:

Regrnk(f) ≤
1

p(1− p)
1√
2

√
Reglog(f).

• For exponential loss:

Regrnk(f) ≤
1

p(1− p)
1√
2

√
Regexp(f).

The term 1
p(1−p) can be removed by balancing the loss, as before.

66 / 68

Regret bounds

Corrolary:

• For squared error loss:

Regrnk(f) ≤
1

p(1− p)
1

2

√
Regsq(f).

• For logistic loss:

Regrnk(f) ≤
1

p(1− p)
1√
2

√
Reglog(f).

• For exponential loss:

Regrnk(f) ≤
1

p(1− p)
1√
2

√
Regexp(f).

The term 1
p(1−p) can be removed by balancing the loss, as before.

66 / 68

Conclusions

• Theoretical results suggesting that minimizing margin-based pointwise
loss functions is sufficient to achieve low rank regret.

• Also confirmed by experimental results, both for synthetic and
benchmark data.

• The results are intuitively plausible (and hence not very surprising),
yet they provide a sound theoretical explanation of previous
observations and give some new insights.

67 / 68

Thank you for your attention!

68 / 68

	Bipartite ranking
	Standard approach to ranking
	Ranking by classification (0/1 Loss)
	Some statistical decision theory for ranking
	Margin-based losses and regret bounds
	Experiments
	Theory of strongly proper losses for bipartite ranking

