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Outline

1 Bipartite ranking
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Ranking problem

Order a set of objects {x,x2,...,x,}

according to the preferences of a subject.

4/68



Example

— book recommendations
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Example — information retrieval

GO Sle michael jordan learning En

Internet Grafika Filmy Wiadomosci Mapy Wiecej = Narzedzia wyszukiwania

Okoto 18 500 000 wynikow (0,27 s)

Michael Jordan | EECS at UC Berkeley
www.eecs.berkeley.edu/Faculty/...[jordan.html ~ Tlumaczenie strony

Michael |. Jordan is the Pehong Chen Distinguished Professor in the Department of ...
F. R. Bach and M. Jordan, "Learning spectral clustering. with application to ...

Ta strona byta przez ciebie odwiedzana 3 razy. Ostatnie odwiedziny: 27.06.14

Michael |. Jordan's Home Page

www.cs.berkeley.edu/~jordan/ ~ Tlumaczenie strony

18 sie 2004 - Graphical models, variational methods. machine learning. reasoning
under uncertainty.

Michael |. Jordan - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki'Michael_|._Jordan ~ Tlumaczenie strony

Michael Irwin Jordan (born 1956) is an American scientist, Professor at the University
of California. Berkeley and leading researcher in machine learning and ...

Michael |. Jordan - Google Scholar Citations
scholar.google.com/citations?user=yxUdugMAAAAJ ~ Tlumaczenie strony
Professor of EECS and Professor of Statistics, University of California, Berkeley -
Verified email at cs.berkeley.edu

Michael |. Jordan ... Jordan the Joumnal of machine Learning research 3, 993-1022,

8787 20032 .. GRG Lanckriet. N Cristianini. P Bartlett. LE Ghaoui. MI Jordan 6/68



Example — rank aggregation problem

Leadership - How much leadership experience has the candidate
demonstrated?

Educational Experience - Do they have the requisite Education to be
able to contribute on the Board?

Professional Background - Do they have the skills and experience
(managerial, financial, and fiduciary) on offer to serve PASS?

Vision - Do they have a compelling vision for how they can contribute
to the growth/expansion of PASS?

Volunteer Experience outside PASS - Do they have a compelling
history of volunteerism?

Volunteer Contribution inside PASS — Da they show a history of
dedication and involvement towards helping PASS achieve its mission
and goals?

Reputation (inside PASS) - Do they have a good reputation for their
contributions (volunteer or otherwise) to PASS in the community?

References (all) - Do they have strong references? Does the
Board/PASS community support their bid for a Board seat?

Fit - How do their skills, experience, and strengths fit/complement the
profile of the sitting Board?

Accountability - Do they do what they say they will?
Bias to action - Are they driven to deliver results?

Performance - Do they deliver on their commitments, and do they
make a significant contribution?

_ »
2
k-1 E n° €
] 2 £ 3 K 2 g
3 c g 2 = £
- & = S e w s
] [T] I 2] 2 K] 2
i F | 3| E| 8| E| ¢
& z ] & E] a H
2.00 3.57 3.00 2.33 3.14 3.86 3.71
2.40 3.57 2.83 3.00 2.86 4.00 3.29
2.00 3.71 2.67 3.00 2.86 3.86 3.71
1.80 2.86 1.83 2.33 271 3.71 3.71
2.00 3.14 2.17 2.17 2.86 3.43 2.86
3.00 3.29 2.67 2.00 4.00 4.00 4.00
2.60 3.00 2.83 2.67 3.86 3.86 3.71
3.00 3.29 3.00 2.50 3.43 3.57 3.57
1.80 3.29 2.33 217 3.00 4.00 3.86
2.60 3.57 3.33 3.00 3.71 3.86 3.71
2.60 3.86 3.33 2.83 3.57 3.86 3.86
2.60 3.57 3.33 2.67 3.71 3.86 3.71
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Example — computational advertising

lenovo thinkpad

Internet Grafika Filmy Wiadomosci Mapy Wigcej ~ Narzedzia wyszukiwania

Okoto 8 170 000 wynikow (0,32 s)

Wyniki wyszukiwania w Zakupach Goaogle Sponsorowane @
IBM / Lenovo IBM/ Lenovo IBM/ Lenovo Lenovo IBM/ Lenovo
Thinkpad T61, Thinkpad ... Thinkpad ... ThinkPad ... Thinkpad ...
999,00 zt 999,00 zt 1299,00 zt 2 069,00 zt 1 499,00 zt
Laptops.pl Laptops.pl Laptops.pl X-KOM.pl Laptops.pl
Laptopy Lenovo ThinkPad - kuzniewski.pl ®

www.kuzniewski.pl/thinkpad ~
Solidne notebooki dla biznesu. Szyhka wysylka, dostawa za darmo!
@ Potwiejska 17, Poznan - 61 639 62 70 - 4,0 %% %% 8 opinii

Laptopy Lenovo ThinkPad - Allegro.pl
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Example — protein structure prediction




Bipartite ranking

® Feedback information: binary labels.

L1
T2
T3
T4
L5

-1
+1
+1
+1
-1

To > 1,3 = T1,
X4 > T1,T2 > Iy,
xr3 > T5,T4 > IT5.

Labels express preference, relevance, interest, etc.
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® The feedback easy to acquire, sometimes implicitly.

® Good testbed for ranking algorithms and theoretical analysis.
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Bipartite ranking

® Feedback information: binary labels.

I -1
zo +1 To > x1,T3 > T,
x3 +1 T4 > T1,T2 > T3,
rq4 +1 xr3 > T5,T4 > IT5.
xT5 -1

Labels express preference, relevance, interest, etc.

Arguably the simplest problem of learning to rank.

® The feedback easy to acquire, sometimes implicitly.

® Good testbed for ranking algorithms and theoretical analysis.

Example

® |mplicit feedback from search engine results.
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Bipartite ranking

® Training data: {(x1,v1), (®2,%2),..., (Tn,yn)} v € {—1,+1}.

X Xa X3 Y
05 5 1 +1
21 7 0 +1
0.7 2 1 -1
1.8 5 0 -1
54 0 1 -1
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® Training data: {(x1,v1), (®2,%2),..., (Tn,yn)} v € {—1,+1}.

Bipartite ranking

X Xa X3 Y
05 5 1 +1
21 7 0 +1
0.7 2 1 -1
1.8 5 0 -1
54 0 1 -1

® Sort objects, so that objects with y; = +1 are ranked higher than

objects with y; = —1.
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Pairwise disagreement

Evaluation metrics — pairwise disagreement

® Counts the number of reversed preferences over all pairs of objects.

object

rank feedback

T
)
T3
T4
5
Lo
x7
Ty

1

00O ~J O U = W N

+1
-1
+1
+1
-1
+1
-1
-1
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Pairwise disagreement

Evaluation metrics — pairwise disagreement

® Counts the number of reversed preferences over all pairs of objects.

object

rank feedback

T
)
T3
T4
5
Lo
x7
Ty

1

00O ~J O U = W N

+1
-1
+1
+1
-1
+1
-1
-1

]

Number of reversed preferences: 4.
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Ranking by scoring

® | earn a scoring function f: X — R, which sorts objects according
to the preferences.

® FError rate of f o number of reversed pairwise preferences.

sort according to f(x)

) @)
40— C—0 00— 0010 —
o

f(z)

o -
ranking error
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Ranking by scoring

® |earn a scoring function
f: X — R, which sorts objects

according to the preferences. lsort according to f(x)
® Error rate of f oc number of ° o
0~ 09000 -000O0>
P ° °
reversed pairwise preferences. ranking emror f(x)

e Empirical ranking risk:

Zrnk (f) = L

> X ([[f(wn<f<wj>ﬂ+§nf<wi>=f<wj>1b,

nyn_— . .
+ i yi=+1j:y;=—1

where . = [{i: y; = +1}|,n_ = [{i: y; = ~1}|.
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Ranking by scoring

® |earn a scoring function
f: X — R, which sorts objects

according to the preferences. lsort according to f(x)
® Error rate of f oc number of ° o
0~ 09000 -000O0>
P ° °
reversed pairwise preferences. ranking emror f(x)

e Empirical ranking risk:

Zrnk (f) = L

> X ([[f(wn<f<wj>ﬂ+§nf<xi>=f<wj>1b,

nyn_— . .
+ i yi=+1j:y;=—1

where .y = |{i: yi = +1},n- = |{i: yi = —1}]
¢ (Empirical) Area under ROC Curve: AUC(f)=1— Emk(f).
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Area under ROC curve (AUC)

object score f(x) label

T 3.5 +1

9 2 —1]

T3 1.2 +1

T4 0.6 +1

5 0.1 -1 ]
Tg —0.5 +1

x7 —-1.2 -1

T —2.2 -1

ny=4, n_=4, Lu(f)=— =025  AUC(f) =0.75

4.4
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Area under ROC curve (AUC) in binary classification

® Real-valued scoring function f: X — R.
® Objects with binary labels y; € {—1,+1}.
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® | abel prediction by thresholding f at some point 0:

[+ i f(m) > 6,
y(m)_{—1 if f(z) < 0.
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Area under ROC curve (AUC) in binary classification

® Real-valued scoring function f: X — R.
® Objects with binary labels y; € {—1,+1}.
® | abel prediction by thresholding f at some point 0:

[+ i f(m) > 6,
(w)_{—1 if f(z) < 0.

® Vary the threshold 6 from —oo to oo and count the number of true
positives and false positives:
glei) =1 Ay =1}

TP = ‘{wl
g(xi) =1 A y; = —1}]
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Area under ROC curve (AUC) in binary classification

threshold

TP FP

object score f(x) label
T 3.5 +1
Lo 2 -1
3 1.2 +1
L4 0.6 +1
Ts5 0.1 -1
g —0.5 +1
x7 —1.2 -1
s —2.2 -1

[3.5, 00)
[2,3.5)
1.2,2.3)
0.6,1.2)
[0.1,0.6)
[~0.5,0.1)
[—1.2,-0.5)
[-2.2,-1.2)
(—o0,—2.2)
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threshold

TP FP
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Area under ROC curve (AUC) in binary classification

threshold

TP FP

object score f(x) label
T 3.5 +1
Lo 2 -1
3 1.2 +1
L4 0.6 +1
Ts5 0.1 -1
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[3.5, 00)
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[~0.5,0.1)
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[-2.2,-1.2)
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0
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Area under ROC curve (AUC) in binary classification

threshold

TP FP

object score f(x) label
T 3.5 +1
9 2 —1
3 1.2 +1
L4 0.6 +1
Ts5 0.1 -1
g —0.5 +1
7 —1.2 -1
s —2.2 -1

[3.5, 00)
[2,3.5)
1.2,2.3)
0.6,1.2)
[0.1,0.6)
[~0.5,0.1)
[—1.2,-0.5)
[-2.2,-1.2)
(—o0,—2.2)

0 0
1 0
1 1
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Area under ROC curve (AUC) in binary classification

object score f(x) label threshold TP FP

5 [3.5,00) 0 0

ii 3; i [2,3.5) 1 0

3 1.2 +1 [12,23) 1 1

x4 0.6 +1 0.6,12) 2 1
x5 0.1 -1 0.1,0.6)
T6 -0.5 +1 [—0.5,0.1)
x7 -1.2 ~1 [-1.2,-0.5)
g —-292 -1 [—2.2,—1.2)
(—00,—2.2)
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Area under ROC curve (AUC) in binary classification

object score f(x) label threshold TP FP

[3.5,00) 0 0
Ty 3.5 +1
w3 0.6 41 [0.6,1.2) 2 1
. ' 01,06) 3 1
5 0.1 1
[—0.5,0.1)
L6 -0.5 +1
[-1.2,-0.5)
x7 —1.2 -1
z 99 1 [-2.2,-1.2)
- : (—o00,—2.2)

17/68



Area under ROC curve (AUC) in binary classification

object score f(x) label threshold TP FP

5 [3.5,00) 0 0

ii 3; i [2,3.5) 1 0

3 1.2 +1 [12,23) 1 1

T 0.6 41 06,1.2) 2 1

x5 0.1 1 [0.1,0.6) 3 1

x6 —0.5 +1 [-0.5,01) 3 2
T7 19 1 [-1.2,-0.5)
(—00,—2.2)
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Area under ROC curve (AUC) in binary classification

object score f(x) label threshold TP FP

5 [3.5,00) 0 0
zi 3; i [2,3.5) 1 0
3 1.2 +1 [12,23) 1 1
T 0.6 41 06,1.2) 2 1
x5 0.1 1 [0.1,0.6) 3 1
6 —0.5 41 [-0.5,01) 3 2
x7 -1.2 1 [-1.2,-0.5) 4 2

- : (—00,—2.2)
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Area under ROC curve (AUC) in binary classification

object score f(x) label threshold TP FP

5 [3.5,00) 0 0
zi 3; i [2,3.5) 1 0
3 1.2 +1 [12,23) 1 1
T4 0.6 41 [0.6,1.2) 92 1
x5 0.1 1 [0.1,0.6) 3 1
xg —0.5 +1 [-0.5,0.1) 3 2
7 —1.2 -1 [-1.2,-0.5) 4 2
x —99 1 [-2.2,-1.2) 4 3

8 ) A
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Area under ROC curve (AUC) in binary classification

object score f(x) label threshold TP FP

5 [3.5,00) 0 0

zi 3; i [2,3.5) 1 0
3 1.2 +1 [12,23) 1 1
T4 0.6 41 [0.6,1.2) 92 1
x5 0.1 1 [0.1,0.6) 3 1
xg -0.5 +1 [-0.5,0.1) 3 2
7 —1.2 -1 [-1.2,-0.5) 4 2
s 929 1 [-2.2,-1.2) 4 3
' (—00,—22) 4 4
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Area under ROC curve (AUC) in binary classification

1.00

True Positive Rate

0.25

0.00

I I [
0.00 0.25 0.50 0.75 1.00

False Positive Rate
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Area under ROC curve (AUC) in binary classification

1.00

True Positive Rate
0 |50

0.25

2,

[ [ [
0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.00

AUC =1/4-1/4
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Area under ROC curve (AUC) in binary classification

1.00

True Positive Rate
0 I50

L0
Cﬂ'
o
S 7
S | | |
0.00 0.25 0.50 0.75 1.00

False Positive Rate

AUC =1/4-1/4+1/4-3/4
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Area under ROC curve (AUC) in binary classification

1.00

True Positive Rate
0 I50

0.25

I I [
0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.00

AUC =1/4-1/4+1/4-3/4+1/2-1=0.75
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Area under ROC curve (AUC) in binary classification

0.5-

True Positive Rate

— Bayesian Network
Logistic Regression

— Naive Bayes

— RBF Network

0 0.5 1.0
False Positive Rate
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Area under ROC curve (AUC) in binary classification

® ROC curve measures the performance of binary classifier as
threshold is varied.
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Area under ROC curve (AUC) in binary classification

ROC curve measures the performance of binary classifier as
threshold is varied.

ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1— FP rate).

Allows to make optimal decision for any misclassification costs.

Area under the ROC curve will often be a better classifier's
evaluation metric than accuracy (thresholding at 0), especially for:

» Imbalanced data.
» Unknown misclassification costs.
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Area under ROC curve (AUC) in binary classification

ROC curve measures the performance of binary classifier as
threshold is varied.

ROC curve gives full characteristic of the classifier in terms of
sensitivity (TP rate) vs. specificity (1— FP rate).

Allows to make optimal decision for any misclassification costs.
Area under the ROC curve will often be a better classifier's

evaluation metric than accuracy (thresholding at 0), especially for:

» Imbalanced data.
» Unknown misclassification costs.

Interest in optimizing AUC for binary classification without
reference to ranking.
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Outline

2 Standard approach to ranking
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Standard approach to learning to rank

Reduction from bipartite ranking to pairwise binary classification:

Given:

® Data set {(z1,v1), (%2,Y2),- .., (Tn,yn)}, Where each
(mlayz) € X X y
® (Class F of real-valued prediction functions f: X — R,
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Standard approach to learning to rank

Reduction from bipartite ranking to pairwise binary classification:

Given:
® Data set {(z1,v1), (%2,Y2),- .., (Tn,yn)}, Where each
(zi,yi) € X x V.
® (Class F of real-valued prediction functions f: X — R,
Define:
® A new dataset {&y,x}h_, K =nyn_,
® A new class F of functions f: X x X — R.
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Standard approach to learning to rank

Data transformation:

® Take each pair {(x;,vi), (x;,;)} with y; = +1 and y; = —1, and
make a learning example (&, gx), such that:

jk: = (:Biawj)7 gk - +1
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Standard approach to learning to rank

Data transformation:

® Take each pair {(x;,vi), (x;,;)} with y; = +1 and y; = —1, and
make a learning example (&, gx), such that:

jk: = (:Biawj)7 gk - +1

Function transformation:
e For any f € F, define f € F by:

f@) = f(m;) — f(z;),  forany &y, = (i, x;).
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Standard approach to learning to rank

x, = (x4, Tj), U = +1.

f(@) = f(z:) — f(z;),  for any & = (i, ;).

® Easy to see that for any f, the empirical ranking risk of [ is equal
to the empirical 0/1-risk of f:

27/68



Standard approach to learning to rank

x, = (x4, Tj), U = +1.

f(@) = f(z:) — f(z;),  for any & = (i, ;).

® Easy to see that for any f, the empirical ranking risk of [ is equal
to the empirical 0/1-risk of f:

top (3. 7(@)) = 19 (@) < 0] + 3 [ (@) = 0]

= [f(@) < fla)] + () = ()]

27/68



Standard approach to learning to rank

x, = (x4, Tj), U = +1.

f(@) = f(z:) — f(z;),  for any & = (i, ;).
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Standard approach to learning to rank

x, = (x4, Tj), U = +1.

f(@) = f(z:) — f(z;),  for any & = (i, ;).

® Easy to see that for any f, the empirical ranking risk of [ is equal
to the empirical 0/1-risk of f:

top (3. 7(@)) = 19 (@) < 0] + 3 [ (@) = 0]
= [f(i) < f@;)] + 517 (@) = ()]

Summing over pairs of positive and negative examples gives ranking
risk.

® Take your favourite surrogate loss for binary classification £(y, f(x)),
and use it for g and f(&). Problem solved.
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Standard approach to learning to rank

f(@r) = f(@i) = f(=;),  forany &), = (@i, 2;).
Questions
® Why not include as well negative examples in the reduction:
T = (@i, xj), Uk =sgn (¥ — y;)

® Does f need to have a structure: f(Zy) = f(x;) — f(x;)?
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Standard approach to learning to rank

Examples:
e SVM-OR!: hinge loss.
¢ RankBoost?: exponential loss.

® A vast number of other pairwise approaches.

1 R. Herbrich, T. Graepel, and K. Obermayer. Regression models for ordinal data: A machine
learning approach. Technical report TR-99/03, Technical University of Berlin, 1999
2 Y. Freund, R. lyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4:933-969, 2003
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Standard approach to learning to rank

Pros:

® Reduction to classification: we can reuse known concepts and
methods.

® This reduction can solve much more general ranking problem, not
necessarily bipartite.

Cons:

® Scales quadratically with sample size (tricks to reduce complexity on
some special cases).

® Cannot reuse standard classification algorithms without
modification due to structure on f, i.e. f(Zy) = f(x;) — f(x;).
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Standard approach to learning to rank

Pros:

® Reduction to classification: we can reuse known concepts and
methods.

® This reduction can solve much more general ranking problem, not
necessarily bipartite.

Cons:

® Scales quadratically with sample size (tricks to reduce complexity on
some special cases).

® Cannot reuse standard classification algorithms without
modification due to structure on f, i.e. f(Zy) = f(x;) — f(x;).

O(n?) is often unacceptable! How about training a real-valued
classifier (works in O(n)) and use it as a ranker?
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Outline

3 Ranking by classification (0/1 Loss)
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Good classifier can be a bad ranker?

® 0/1 loss of a classifier f: X — R:

gO/l(ya f(x)) = [f(x)y < 0], Z0/1(f) = izgo/l(yzﬁ f(xi))

3w Kottowski, K. Dembczyniski, and E. Hiillermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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Good classifier can be a bad ranker?

® 0/1 loss of a classifier f: X — R:
fopr @) = U@y <0 oja(h) == 3 boys (s £(22)

¢ Classifier with a fixed 0/1-risk can have arbitrarily bad ranking risk

fl@)=0

f(z)

3 W. Kottowski, K. Dembczynski, and E. Hiillermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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Good classifier can be a bad ranker?

® 0/1 loss of a classifier f: X — R:

gO/l(ya f(x)) = [f(x)y < 0], Z0/1(f) = izgo/l(yzﬁ f(xi))

¢ Classifier with a fixed 0/1-risk can have arbitrarily bad ranking risk

1f(®) =0
§0/1(f) =ny/n, : : i
Lk (f) =1 E

® This phenomenon is especially noticeable for unbalanced classes.

f(z)

3 W. Kottowski, K. Dembczynski, and E. Hiillermeier. Bipartite ranking through minimization of

univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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® Assume for simplicity that f(x) € {—1,+1}.

predicted § = f(x)

true y

Looking closer

z)=0
rr

—1 | +1 NG
—1[ TN | FP
T1[FN [ TP FNQ

QTP f(=)
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® Assume for simplicity that f(x) € {—1,+1}.

predicted § = f(x) 1fz) =0
-1 | +1 NG ! @rr
1| TN | FP .
tre y — 1N TP FNQ E QTP f(z)

FP-FN4+05-TP-FP+0.5-FN -TN

Ernk(f) =
nyn—
_ FP(FN+TP)+ FN(TN + FP) __FP n FN
B 2nyn_ C2n_ 2ng
We can upperbound:
FP+FN n

Loy (f)-
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Looking closer

® Assume for simplicity that f(x) € {—1,+1}.

predicted § = f(x) 1fz) =0
-1 | +1 NG ! @rr
1| TN | FP .
tre y — 1N TP FNQ E QTP f(z)

FP-FN4+05-TP-FP+0.5-FN -TN

Ernk(f) =
nyn—
_ FP(FN+TP)+ FN(TN + FP) __FP n FN
B 2nyn_ C2n_ 2ng
We can upperbound:
FP+FN n

Loy (f)-

Ernk(f) <

~ 2min{n_,n4} - 2min{n_,ny}

Poor behavior of 0/1 loss comes for class imbalance.
33/68



More general bound

e Assume now f(x) € R.

Given fixed TP, FN, FP, TP rate,
what is the worse-case ranking risk?

NG

FNQ
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More general bound

e Assume now f(x) € R.

Given fixed TP, FN, FP, TP rate, NG E
what is the worse-case ranking risk? FNO E OTP )

FP-FN+.-TP-FP+ -FN-TN
nyn_
FP(FN+TP)+ FN(TN+ FP)— FNFP
2nyn_
FP FN FNFP < 5234_£EY

&

rnk(f) =

n. ny n_ny  n_  ng
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Balanced 0/1 Loss

~ FP FN
Lrnk(f) < —+ —
n_ n4

® 0/1-risk Eo/l(f) = EPLEN counts all mistakes with equal weights .
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proportional to the inverses of class cardinalities.
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Balanced 0/1 Loss

~ FP FN
Lrnk(f) < — 4 —
n_ n4

0/1-risk Eo/l(f) = EPLEN counts all mistakes with equal weights .

Balanced 0/1-risk Ly(f) = £L 4 % counts mistakes with weights
proportional to the inverses of class cardinalities.
» Proper normalization because:
Zi?yi:-H ﬁ + Zi:yi:—l Qn% = Zz % =1
Uneven misclassification costs cancel out class imbalance
—> balanced risk “sees” classes as being balanced.
Classifier which minimizes balanced risk also minimizes ranking
risk! R R
Lrnk(f) < 2Lb(f)
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But...

® (/1 loss/risk (also balanced) is not sensitive to order.

LO/l Lk :]‘(a:) =0
0090000 0—0000—
1/6 | 1/36 E ()
'.—O—O—O—‘—’—:—O—O—O—Q—O—O—)
1/6 6/36 ! ()
1/6 | 11/36 : f(z)
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But...

® (/1 loss/risk (also balanced) is not sensitive to order.

LO/l Lrnk
1/6 | 1/36
1/6 | 6/36
1/6 | 11/36

:f(a:) =0
-FFH—O—O+0—0—0—0—0—0—>
-.—O—O—O—C—C-:-O—O—O—O—O—O—)

' f(z)

® Need to consider losses which penalize not only for classification
mistake but also for the distance to 0.
—> Margin-based losses.
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Outline

4 Some statistical decision theory for ranking

37/68



Setting

® Moving the theory from empirical level to the population level
P> counting — distribution.

® Accuracy measures used so far become expectations.

® Better measure of performance: regret.
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Setting

Examples (x,y) generated by a distribution P(x,y).
A (real-valued) classifier f: X — R, with accuracy measured by the
risk:
L(f) == E@y~p [y, f())],
where £ is a pointwise loss.

The regret of a classifier f:

Reg,(f) = Le(f) — Le(f7),

where f; is the Bayes classifier, f/ = argmin; L,(f).
Regret measures how much worse we perform than the optimal
classifier.
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Setting

® A ranker f: X — R, with accuracy measured by ranking risk:

L) = P(f(@) < @)y > o) + 3 P(f(@) = f(@)ly > o)

where (z,y), (z',y') are two independent random examples.
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Setting

® A ranker f: X — R, with accuracy measured by ranking risk:

L) = P(f(@) < @)y > o) + 3 P(f(@) = f(@)ly > o)

where (z,y), (z',y') are two independent random examples.

® Ranking risk is a probability that random positive example is ranked
lower than random negative example.

® The ranking regret is defined as:

Regunk(f) = Link(f) — Lrnk(f:)’

where f = argmin; Ly (f) is the Bayes ranker.
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Problem statement

® Each classifier f can be used as a ranker.
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Problem statement

® Each classifier f can be used as a ranker.

® Given a classifier f with classification regret Reg,(f) for some loss
function ¢, what is the maximum ranking regret of f, Reg...(f)?
(regret bounds)

® In particular: if a classifier f is close to the optimal classifier f;, is its
ranking risk close to to the ranking risk of the optimal ranker f7
= ranking calibration.

41/68



The optimal ranker

Lus(f) = P(f(@) < @)y > o) + 5P (@) = @)y > o)
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The optimal ranker

Lus(f) = P(f(@) < @)y > o) + 5P (@) = @)y > o)

Question
Define:

K(@,a') = (@)1 - () (If@) < f@)] + 515@) = f)]),

where n(x) = P(y = 1|x). Show that the ranking risk can be rewritten as:

- p(1—p) Ewe) [K(z,2')]
- 2]?(11—]))E(w,w/) (K (z,2) + K(2',2)] .

where p = P(y = 1) is the prior probability of positive class
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The optimal ranker

Lus(f) = P(f(@) < @)y > o) + 5P (@) = @)y > o)

Question

Based on the result of the previous question, argue that the Bayes ranker
f*(x) minimizes K(xz,x’) + K(x', x) for every (z,x’). Show that this
implies:

() > () if and only if n(x) > n(z'),

i.e., the Bayes ranker f*(x) is any strictly monotone transformation of
n(x). (examples should be ordered according to n(x))

42/68



Surrogate losses and calibration

® Let /(y,x) be a pointwise surrogate loss for ranking.
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Surrogate losses and calibration

Let /(y,x) be a pointwise surrogate loss for ranking.

We want to be ranking calibrated:

Reg@(fn) - 0= Regrnk(fn) — 0.

This implies that the Bayes classifier f; must also be the Bayes
ranker.

Since the Bayes ranker is a strictly monotone transform of n(x), so
must be f;.

The loss ¢ must “estimate” conditional probability function n(x) or
its strictly increasing transform!

0/1 loss ruled out: the Bayes classifier fg‘/l(w) =sign(n(x) —1/2) is
not a strictly monotone transform of n(x).

43/68



Outline

5 Margin-based losses and regret bounds
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Margin-based losses

Motivation:

® Empirical evidence (from published papers, methods used in
industry) suggests that simple scoring classifiers, notably those
minimizing margin-based loss functions, perform quite strongly in
terms of ranking loss (AUC).

® Can we explain this phenomenon on the theoretical grounds?
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® Loss functions of the form {(y, f(x)) = {(yf(x)).

loss

1.0 1.5

20 25 3.0

0.0 0.5

Margin-based losses

|
/

= 0/1loss

squared error loss
logistic loss

hinge loss
exponential loss
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Margin-based losses

® Loss functions of the form {(y, f(x)) = {(yf(x)).

:. - seer 0/1 loss
squared error loss
2 —— logistic loss
—— hinge loss
_g 2 exponential loss
= T T T T - T T T = T
-3 -2 —1 0 1 2 3 4
yf(2)
® Bayes classifiers:
df*(n)
loss *
squared error 2n—-1 2>0
logistic log 1L —L=>0
& N & 1*;]1 n(1=n)
exponential 5 log —— 57— > 0
-p 2981 -n) ~
hinge sgn (n —1/2) 0
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Margin-based losses

® Loss functions of the form {(y, f(x)) = {(yf(x)).

:. - seer 0/1 loss
squared error loss
2 —— logistic loss
—— hinge loss
_g 2 exponential loss
S T T T T —
3 2 -1 0 1 2 3 4
vf(z)
® Bayes classifiers:
df*(n)
loss *
squared error 2n—-1 2>0
logistic log - L.>0
& N & 177 n(ll—n)
exponential s log —& 5= >0
‘p 298 T ) ~
hinge sgn (n —1/2) 0

® Hinge loss ruled out! 1668



Regret bounds for exponential and logistic surrogate losses

Theorem*:
The following regret bounds hold for the exponential loss and the logistic

loss, respectively:

1 3
Regrnk(f) < 2]7(1]7)\/; Regexp(f)?
1

Regrnk(f) < m\/i Reglog(f)7

where Reg.,,, and Regj,, are the regrets for exponential and logistic loss,
respectively, and p = P(y = 1).

4 K. Dembczyniski, W. Kottowski, and E. Hiillermeier. Consistent multilabel ranking through
univariate losses. In International Conference on Machine Learning, 2012
W. Kottowski, K. Dembczyniski, and E. Hiillermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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Regret bounds for exponential and logistic surrogate losses

Theorem?*:

The following regret bounds hold for the exponential loss and the logistic
loss, respectively:

Regrnk(f) < 2p(11p)\/§\/ Regexp(f)7
Regrnk(f) < 2p(11_p)\/§\/ Reglog(f)7

where Reg.,,, and Regj,, are the regrets for exponential and logistic loss,
respectively, and p = P(y = 1).

Can we get rid of the ugly constant 1/(2p(1 — p))?
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Regret bounds for exponential and logistic surrogate losses

Theorem?*:

The following regret bounds hold for the exponential loss and the logistic
loss, respectively:

Regrnk(f) < 2p(11p)\/§\/ Regexp(f)7
Regrnk(f) < 2p(11_p)\/§\/ Reglog(f)7

where Reg.,,, and Regj,, are the regrets for exponential and logistic loss,
respectively, and p = P(y = 1).

Can we get rid of the ugly constant 1/(2p(1 —p))? Not with the current
loss functions!

4 K. Dembczyniski, W. Kottowski, and E. Hiillermeier. Consistent multilabel ranking through
univariate losses. In International Conference on Machine Learning, 2012
W. Kottowski, K. Dembczyniski, and E. Hiillermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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Sensitivity to class priors

® Ranking risk is insensitive to any change of the class prior P(y).

» Changing P(y) while keeping P(x]y) fixed does not change the
ranking risk.

Luw(f) = P((@) < f(@)ly > ') + L P(f(2) = [y > o)

(depends only on P(z|y), not on p = P(y = 1))
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Sensitivity to class priors

® Ranking risk is insensitive to any change of the class prior P(y).

» Changing P(y) while keeping P(x]y) fixed does not change the
ranking risk.

Luw(f) = P((@) < f(@)ly > ') + L P(f(2) = [y > o)

(depends only on P(z|y), not on p = P(y = 1))

® Surrogate losses are sensitive to class priors.
» This is the origin of the term 1/(2p(1 — p)).

® Can we make the surrogate loss insensitive to the priors?

48/68



Balancing

® Given a loss function £(y, 3), define its weighted version as:

Cw(y,9) = w(y)l(y,9)-
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Balancing

® Given a loss function £(y, 3), define its weighted version as:

U (y,9) = w(y)l(y, ).
® Require weights to satisfy the normalization constraint:

Ey[w(y)] =1,

i.e., weighting only redistributes the loss without changing its scale.

49/68



Balancing

® Given a loss function £(y, 3), define its weighted version as:

U (y,9) = w(y)l(y, ).
® Require weights to satisfy the normalization constraint:

Ey[w(y)] = 17
i.e., weighting only redistributes the loss without changing its scale.
® Given a loss function £(y,7), define its balanced version as:

1 1

b (y,9) = 55—y, 9), e, w(y) = 2P
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Balancing

® Given a loss function £(y, 3), define its weighted version as:
by (y,9) = w(y)l(y, ).
® Require weights to satisfy the normalization constraint:
Ey[w(y)] = 17

i.e., weighting only redistributes the loss without changing its scale

® Given a loss function £(y,7), define its balanced version as:
1

.9 = gpert). e, wl) = gpes

® Properly normalized:
1 Ply=1 Ply=-1
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Balancing

® Given a loss function £(y, 3), define its weighted version as:
by (y,9) = w(y)l(y, ).
® Require weights to satisfy the normalization constraint:
Ey[w(y)] = 17

i.e., weighting only redistributes the loss without changing its scale

® Given a loss function £(y,7), define its balanced version as:
1

.9 = gpert). e, wl) = gpes

® Properly normalized:
1 Ply=1 Ply=-1

2P(y)] ~ 2P(y=1)  2P(y=—1)

® Requires knowing the class priors P(y), but these can be easily
estimated from the training data.

49/68



Balancing

Balancing counteracts the uneven priors.

The expected balanced loss ¢, (y, f(x)) with respect to a distribution
P(x,y) with class prior p, is the same as the expected original loss
£(y, f(x)) with respect to a distribution P(x,y), such that:

P(xly) = P(zly),y € {-1,1}, P(y=1)=Py=-1)=1/2.
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Balancing

Balancing counteracts the uneven priors.

The expected balanced loss ¢, (y, f(x)) with respect to a distribution
P(x,y) with class prior p, is the same as the expected original loss
£(y, f(x)) with respect to a distribution P(x,y), such that:

P(xly) = P(zly),y € {-1,1}, P(y=1)=Py=-1)=1/2.

Proof:
L (D)= [l S (@) Pl@.y)dzdy = [ ot 1) Plaly) Ply)dady

/ ty, £ (@) P(aly) gy = / Uy, f()) P, y)dady = L(f).
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Regret bounds for balanced exponential and logistic surrogate losses

Theorem?:

The following regret bounds hold for the balanced exponential loss and
balanced logistic loss, respect|vely

Regrnk \/7 \/ Regb exp

Regrnk(f) < 2\/§ Regb.log(f)7

where Regy, o, and Regy, 1o, are the regrets for balanced exponential and
balanced logistic losses, respectively.

the term 1/(2p(1 — p)) has been replaced by 2.

5 W. Kottowski, K. Dembczynski, and E. Hiillermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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Regret bounds for balanced exponential and logistic surrogate losses

Theorem?:

The following regret bounds hold for the balanced exponential loss and
balanced logistic loss, respect|vely

Regrnk f \/ Regb exp

Regrnk(f) < 2\/§ Regb.log(f)7

where Regy, o, and Regy, 1o, are the regrets for balanced exponential and
balanced logistic losses, respectively.

the term 1/(2p(1 — p)) has been replaced by 2.

Proof: The expected balanced loss is equal to the expected original
loss w.r.t P(z,y) with priors equal to 1/2. Apply previous theorem for
P(x,y) and note that ranking regret is invariant to changing the priors.

5 W. Kottowski, K. Dembczynski, and E. Hiillermeier. Bipartite ranking through minimization of
univariate loss. In International Conference on Machine Learning, pages 1113-1120, 2011
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Does balancing matters?

® The Bayes classifiers for balanced losses

1 1
fg.exp<$) = QIOglﬁ(?:;:():B) - ilog 1 fp = f:xp(w> + fo,

Fiaos@) = log {10 < log 1P = fiy(a) +

are shifted versions of the unbalanced counterparts.
= constant shift does not influence ranking!
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Does balancing matters?

® The Bayes classifiers for balanced losses

* 1 1 *
fb.exp(w) = QIOg% - ilog 1 fp = fexp(z) + fo,

Fiaos@) = log {10 < log 1P = fiy(a) +

are shifted versions of the unbalanced counterparts.
= constant shift does not influence ranking!

® For exponential loss, the above can be shown not only for Bayes
classifier, but also for classifiers trained by minimizing the empirical
risk.

52/68



Outline

6 Experiments
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Overview

® Artificial and real data.

® \We train standard linear classifiers based on:
> logistic loss (logistic regression),
» exponential loss (AdaBoost).

® We check how they perform compared to a specialized
“state-of-the-art” linear algorithm for bipartite ranking (SVM-OR).
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Overview

Artificial and real data.

We train standard linear classifiers based on:
> logistic loss (logistic regression),
» exponential loss (AdaBoost).

We check how they perform compared to a specialized
“state-of-the-art” linear algorithm for bipartite ranking (SVM-OR).

No significant difference in ranking accuracy. ..

... but that's what we want, as our algorithms are simple, fast and
widely accessible in software packages.
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Experiment — Artificial Data
® Input & = (21,...,250) € [0,1]5° drawn uniformly.

® Qutput y is generated by thresholding a function f(x), i.e.,
y =sgn (f(x)) + random noise (Bayes rank risk 0.1).
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® Input x = (z1,..

Experiment — Artificial Data

., x50) € [0,1]°° drawn uniformly.
® Qutput y is generated by thresholding a function f(x), i.e.,

y =sgn (f(x)) + random noise (Bayes rank risk 0.1).
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® Two models for f(x): linear and nonlinear.
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® Input x = (z1,.
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Experiment — Artificial Data

.., 50) € [0,1]°° drawn uniformly.
® Qutput y is generated by thresholding a function f(x), i.e.,
y =sgn (f(x)) + random noise (Bayes rank risk 0.1).

Two models for f(x): linear and nonlinear.

pt
®
S
@
]

<
]

o
o

_____

0.2

0.4
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ying class pr
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lors we get

1

a
S

imbalanced (P(y = +1) = 0.9) models.
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30 random models, 30 training sets (of size 1000) per model, test set
of size 10000.

Linear classifier trained by minimizing (1) exponential, (2) logistic,
and (3) pairwise hinge loss (SVM-OR)
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Artificial Data — Results
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Real Data — Results

DATASET EXPONENTIAL SVM-OR LOGISTIC
BREAST-W 0.0051 0.0049 0.0054
BREAST-C 0.3077 0.2955 0.3005
CoLic 0.1251 0.1352 0.1179
DIABETES 0.1724 0.1702 0.1804
HABERMAN 0.3684 0.3153 0.3820
HEART-H 0.0887 0.1005 0.0929
HEPATITIS 0.1289 0.1321 0.1230
IONOSPHERE 0.0811 0.0773 0.0884
VOTE 0.0098 0.0103 0.0096
COVTYPE 0.1635 0.1604 0.1623
KDD04 0.2114 0.2083 0.2143
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Outline

7 Theory of strongly proper losses for bipartite ranking
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Proper composite loss®

® Given a pointwise margin loss (), define its conditional risk:

Co(f) = nb(f) + (1 = n)t(=f).

5 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653-1674, 2014
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Proper composite loss®

Given a pointwise margin loss £(f), define its conditional risk:
Cy(f) = nl(f) + (@ —n)e(=f).

We call ¢(f) proper composite if there exists a strictly increasing
(and therefore invertible) link function % : [0, 1] — R, such that:

P(n) € argmfin Cy(f) for any .

Bayes classsifier is an invertible function of conditional probability 7.
(inverting the relation we get probability estimate from f)

® Holds for most of considered margin-based losses:
loss ) = 90)_ () =o' ()
squared error 2n—1 %
. . 77 1
logistic log T T F
exponential 1log % 1%%2/'

6 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-

nal of Machine Learning Research, 15:1653—-1674, 2014
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Strongly proper composite loss’

® We call £(f) \-strongly proper composite if
A
Colf) = H(m) = 5 (1= (£, H() =minGy(f),

i.e. conditional regret is lowerbounded by squared difference between
the true conditional probability 7 and estimated conditional
probability ¢ ~1(f).

" Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653-1674, 2014
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Main result®

Theorem: Let /(y, f(x)) be A-strongly proper composite margin loss.

Then:
1 2
Regk(f) < p(l—p)\/:v Reg,(f).

8 Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. Jour-
nal of Machine Learning Research, 15:1653-1674, 2014
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Proof
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Proof

Use strong properness:

to bound:
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Use strong properness:

to bound:
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Proof — cont.

We now need a lemma, which will not be proved here:

Lemma: For any f/, such that f'(x) € [0, 1] for all «:

Regi(f') < Eq [In(z) — f'(2)|]

1
p(1—p)
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We now need a lemma, which will not be proved here:

Lemma: For any f/, such that f'(x) € [0, 1] for all «:

Regi(f') < Eq [In(z) — f'(2)|]

1
p(1—p)

We take f'(x) := 1~ 1(f(x)) and get from the lemma and Jensen's
inequality:

1
p(1—p)
b 1 2
S VEz [(n(x) — v=1(f(x)))?]
Jensen: if f convex, then f(E[X]) < E[f(X)]

Regrnk (f/) <

Eq [[n(x) — &~ (f(2))]]
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Proof — cont.

We now need a lemma, which will not be proved here:

Lemma: For any f/, such that f'(x) € [0, 1] for all «:

1_p) Eq [|n(z) — /()]

Regrnk(f,) < p(l

We take f'(x) := 1~ 1(f(x)) and get from the lemma and Jensen's
inequality:

1
p(1—p)

1 =
< m\/Ew [(n(z) — v~ (f(=)))?]

Jensen: if f convex, then f(E[X]) < E[f(X)]

Regni(f') < Eq [[n(x) — &~ (f(2))]]

Finally, since f’ and f are strictly monotonically related,

Regrnk(f/) = Regrnk(f)‘
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Proof — cont.

Taking it all together:

i VEe (@) — (@),

By (@) — o7 (f(@))"] < $Regi(f)

/\

Regrnk (f)
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Proof — cont.

Taking it all together:

we get the desired bound:

Regrnk( \/7 V Reg@
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How to calculate \?

dH?(n)
2

> A for any 7, then £ is

Fact: if H(n) is twice differentiable, and —
A-strongly proper.

dH?(n)

loss H(n) ~dn® A
squared error dn(l —n) 8 3
logistic —nlogn—(1—n)log(l—n) ;45 4
exponential 2/n(1 —n) W 4
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Regret bounds

Corrolary:

® For squared error loss:

Rt (/) < o L 3/ Regal)
® For logistic loss:
Reg(/) <~ = [Reiog ()
p(1—p) V2 ¢
® For exponential loss:
Reg(f) < ——— —= 1 /Regouy (1)
p(1—p)v2 :
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Regret bounds

Corrolary:

® For squared error loss:

Regy(f) < p(ll_p); Regag(f)-
® For logistic loss:
Reg(f) < — o= [Resiog (f).
p(1—p) V2 ¢
® For exponential loss:
Reg(f) < ——— —= 1 /Regouy (1)
p(1—p) V2 ’

The term p(lil_p) can be removed by balancing the loss, as before.
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Conclusions

® Theoretical results suggesting that minimizing margin-based pointwise
loss functions is sufficient to achieve low rank regret.

® Also confirmed by experimental results, both for synthetic and
benchmark data.

® The results are intuitively plausible (and hence not very surprising),
yet they provide a sound theoretical explanation of previous
observations and give some new insights.
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Thank you for your attention!
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