
Artificial Neural Networks –
Basics of MLP, RBF and

Kohonen Networks

Jerzy Stefanowski
Institute of Computing Science

Lecture 13 in Data Mining
for M.Sc. Course of SE

version for 2010

Acknowledgments

• Slides are also based on ideas coming from
presentations as:
– Rosaria Silipo: Lecture on ANN. IDA Spring School 2001
– Prévotet Jean-Christophe (Paris VI): Tutorial on Neural

Networks
– Włodzisław Duch: Lectures on Computational Intelligence
– Few others

• and many of my notes for a course on Machine
Learning and Neural Networks (Polish Language
ISWD – see my personal web page for more slides)

Outline
• Introduction

– Inspirations
– The biological and artificial neurons
– Architecure of networks and basic learning rules

• Single Linear and Non-linear Perceptrons
– Delta learning rule

• MultiLayer Perceptrons
– MLPs and Back-Propagation
– Tuning parameters of BP

• Radial Basis Functions
– Architectures and learning algorithms

• Competitive Learning
– Competitive Learning, LVQ, Kohonen self-organizing maps.

• Applications and Software Tools
• Final Remarks

Introduction
• Some definitions

– “… a system composed of many simple processing
elements operating in parallel whose function is
determined by network structure, connection strengths,
and the processing performed at computing elements or
nodes.” - DARPA (1988)

– A neural network: A set of connected input/output units
where each connection has a weight associated with it

• During the learning phase, the network learns by
adjusting the weights so as to be able to predict the
correct class output of the input signals

Some properties

• Some points from definitions
– Many neuron-like threshold switching units
– Many weighted interconnections among units
– Highly parallel, distributed process
– Emphasis on tuning weights automatically
– …

When to Consider Neural Networks
• Input: High-Dimensional and Discrete or Real-Valued

– e.g., raw sensor input

– Conversion of symbolic data to quantitative (numerical) representations possible

• Output: Discrete or Real Vector-Valued
– e.g., low-level control policy for a robot actuator

– Similar qualitative/quantitative (symbolic/numerical) conversions may apply

• Data: Possibly Noisy

• Target Function: Unknown Form

• Result: Human Readability Less Important Than Performance
– Performance measured purely in terms of accuracy and efficiency

– Readability: ability to explain inferences made using model; similar criteria

• Examples
– Speech phoneme recognition

– Image classification

– Time signal prediction, Robotics, and many others

Autonomous Learning Vehicle
in a Neural Net (ALVINN)

• Pomerleau et al
– http://www.cs.cmu.edu/afs/cs/project/alv/member/www/projects/ALVINN.html
– Drives 70mph on highways

Hidden-to-Output Unit
Weight Map

(for one hidden unit)

Input-to-Hidden Unit
Weight Map

(for one hidden unit)

Image Recognition and Classifiation
of Postal Codes

Examples of handwritten postal codes
drawn from a database available from the US Postal service

• 90% Accurate Learning Head Pose, Recognizing 1-of-20 Faces
• http://www.cs.cmu.edu/~tom/faces.html

Example:Neural Nets for Face Recognition

30 x 32 Inputs

Left Straight Right Up

Hidden Layer Weights after 1 Epoch

Hidden Layer Weights after 25 Epochs

Output Layer Weights (including w0 = θ) after 1 Epoch

Example:NetTalk
• Sejnowski and Rosenberg, 1987
• Early Large-Scale Application of Backprop

– Learning to convert text to speech
• Acquired model: a mapping from letters to phonemes and stress marks
• Output passed to a speech synthesizer

– Good performance after training on a vocabulary of ~1000 words

• Very Sophisticated Input-Output Encoding
– Input: 7-letter window; determines the phoneme for the center letter and context on

each side; distributed (i.e., sparse) representation: 200 bits
– Output: units for articulatory modifiers (e.g., “voiced”), stress, closest phoneme;

distributed representation
– 40 hidden units; 10000 weights total

• Experimental Results
– Vocabulary: trained on 1024 of 1463 (informal) and 1000 of 20000 (dictionary)
– 78% on informal, ~60% on dictionary

• http://www.boltz.cs.cmu.edu/benchmarks/nettalk.html

ANN and Mining Data

• ANN originally comes from AI and ML
• Data Mining and Exploration of Data

– We can meet numerical (at least partly) data, …
– Tasks of function approximation, pattern

classification, etc are also similar
• ANN are very good approximators or classifiers

– However, remember about time cost,
parameterization, black boxes, …

Examples of Different ANN

• Perceptron
• Multi-Layer Perceptron
• Radial Basis Function (RBF)
• Kohonen Features maps
• Other architectures, e.g.

– Hopfield networks and BAM
– ART

Looking at ANN

• ANN could be defined by:
– Model of artificial network (details of its

component and processing)
– Topology / architecture of the network
– Learning

Biological Inspirations

• Humans perform complex tasks like vision,
motor control, or language understanding
very well

• One way to build intelligent machines is to
try to imitate the (organizational principles
of) human brain

Biological inspirations

• Some numbers…
– The human brain contains about (or over) 10 billion

nerve cells (neurons)
– Each neuron is connected to the others through 10000

synapses

• Properties of the brain
– It can learn, reorganize itself from experience
– It adapts to the environment
– It is robust and fault tolerant

Biological neuron

• A neuron has
– A branching input (dendrites)
– A branching output (the axon)

• The information circulates from the dendrites to the axon via the
cell body

• Axon connects to dendrites via synapses
– Synapses vary in strength
– Synapses may be excitatory or inhibitory

axon

cell body

synapse

nucleus

dendrites

axon

cell body

synapse

nucleus

dendrites

The Action Potential

Human Brain
• The brain is a highly complex, non-linear, and parallel computer,

composed of some 1011 neurons that are densely connected (~104

connection per neuron). We have just begun to understand how
the brain works...

• A neuron is much slower (10-3sec) compared to a silicon logic
gate (10-9sec), however the massive interconnection between
neurons make up for the comparably slow rate.
– Complex perceptual decisions are arrived at quickly (within a

few hundred milliseconds)
• 100-Steps rule: Since individual neurons operate in a few

milliseconds, calculations do not involve more than about 100
serial steps and the information sent from one neuron to another is
very small (a few bits)

• Plasticity: Some of the neural structure of the brain is present at
birth, while other parts are developed through learning, especially
in early stages of life, to adapt to the environment (new inputs).

u b

y

The Artificial Neuron
(Mc Culloch and Pitt, 1943)

x1

xn

w1

wx

wn

yΣ a

u b

y

u b

y

u a

y

() ()⎟
⎠

⎞
⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
−=+ ∑∑

==

⎟
⎠
⎞⎜

⎝
⎛

n

k
kk

n

k
kk txwfutxwfty

01
1

Activation Functions

• Step function

• Linear function

• Logistic Sigmoid

• Gaussian

⎩
⎨
⎧

<−
≥+

=
uaif
uaif

af
1
1

)(

⎪
⎩

⎪
⎨

⎧

−<−
<≤−

≥+
=

uaif
uauifa

uaif
af

1

1
)(

hae
af −+

=
1

1)(

22)(σ
ua

eaf
−

−
=

Activation functions

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Linear

Sigmoidal (logistic)

Hyperbolic tangent

xy =

)exp(1
1

x
y

β−+
=

)exp()exp(
)exp()exp(

xx
xxy

−+
−−

=

0
0,2
0,4
0,6
0,8
1

1,2

-6 -4 -2 0 2 4 6

e

f(e)

1

-1

Step function

Network topologies
Feed Forward Neural Networks

• The information is
propagated from the
inputs to the outputs

• Computations of No non
linear functions from n
input variables by
compositions of Nc
algebraic functions

• Time has no role (NO
cycle between outputs and
inputs)

x1 x2 xn…..

1st hidden
layer

2nd hidden
layer

Output layer

Network topologies
Recurrent Neural Networks

• Can have arbitrary topologies
• Can model systems with

internal states (dynamic ones)
• Delays are associated to a

specific weight
• Training is more difficult
• Performance may be

problematic
– Stable Outputs may be more

difficult to evaluate
– Unexpected behavior

(oscillation, chaos, …)
x1 x2

1

0
10

1
0

0
0

Learning neural networks
• The procedure that consists in estimating the parameters of

neurons (usually weights) so that the whole network can
perform a specific task

• Basic types of learning
– The supervised learning
– The unsupervised learning

• The Learning process (supervised)
– Present the network a number of inputs and their corresponding

outputs
– See how closely the actual outputs match the desired ones
– Modify the parameters to better approximate the desired outputs

The ANN Learning Process
• Neurons can learn, (Hebb, 1949):

– memory is stored in synapses and learning takes place by synaptic
modifications;

– neurons become organized into larger configurations to perform more
complex information processing

Hebbian learning:
When two joining cells fire

simultaneously, the connection
between them strengthens (Hebb,
1949)

Discovered at a biomolecular
level by Lomo (1966) (Long-term
potentiation).

UR
US

CS

Supervised Learning of Neurons
Let us suppose that a sufficiently large set of examples (training
set) is available.

Supervised learning:
– The network answer to each input pattern is directly

compared with the desired answer and a feedback is given to
the network to correct possible errors

Weights matrix
and

W

Error
y - d

Required
output

d

yx

Perceptron

() () pitxwfty
n

k
kiki ...,2,11

0
=⎟

⎠

⎞
⎜
⎝

⎛
=+ ∑

=

...

...
x1 x2 xn-1 xn

y1

1

w1,1 w1,n

w1,2 w1,n-1

...

......

y2 yp-1 yp

2 p-1 p

wp,1
wp-1,1

wp,nw2,1

What a Single Perceptron Does

• Regression: y=wx+w0
• Classification: y=1 if

(wx+w0>0)

w
w0

y

x

x0=+1

w
w0

y

x

s

w0

y

x

() []xw Toy
−+

==
exp1

1sigmoid

Perceptron

• Rosenblatt (1962)
• Linear separation
• Inputs :Vector of real values

• Outputs :1 or -1

022110 =++ xwxww

+ ++
+

+
+

+
+

+
+ + +

+
+ +

+

+
++

+
+

+

+
+

+ +
+ ++ +

+ +
+

+

+

+

1+=y

1−=y

0w 1w 2w
∑

1x 2x1

22110 xwxwwo ++=

)(ofy =

Error Function

• Training set:
• Error Measure:

() ()q
i

q
i dofWE −=

(){ }mqdxT qq ...,,2,1, ==

E(W)

WW*

E(W*)

Gradient Descent algorithm
• Simple Gradient Descent Algorithm

– Applicable to different type of learning (with proper representation)

• Algorithm Train-Perceptron (D ≡ {<x, o(x) ≡ d(x)>})
– Initialize all weights wi to random values
– WHILE not all examples correctly predicted DO

FOR each training example x ∈ D
Compute current output o(x)
FOR i = 1 to n

wi ← wi + r(t - o)xi //delta perceptron learning rule

• Definition: Gradient

[] ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

≡∇
n10 w

E,,
w
E,

w
EwE K

r

Gradient Descent algorithm

() () ()∑∑ ∑
== =

=−=
m

q

q
m

q

p

i

q
i

q
i WEdoWE

11 1

2

2
1

() () () ()∑∑
==

∆=
∂

∂
−=

∂
∂

−=∆
m

q

q
ik

m

q ik

q

ik
ik tw

w
tE

w
tEtw

11
ηη

The gradient descent algorithm:

() () ()twtwtw ikikik ∆+=+ 1

The RMS error function:

The learning process (stepwise looking for solution):

Delta Learning Rule (Widrow,Hoff)

()
=

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∂

=
∂
∂ ∑

=

ik

p

i

q
i

q
i

ik

q

w

do

w
E 1

2

2
1

q
k

q
i

q
ik xw δη−=∆

= Αfter some computations --

In literature: Error is usually calculated as (d – o),
and delta learning rule will be given in a form:

q
k

q
i

q
ik xw δη=∆

Learning Rate (η)
 ∆w1= η1 δ x with η1 too small

 ∆w2= η2 δ x with η2 right size

 ∆w3= η3 δ x with η3 too big

E(W)

WW*

E(W*)

W(q)

∆W1

∆W2

∆W3

• The standard perceptron learning
algorithm converges if examples
are linearly separable → see

• Consider an example of a simple
logical AND problem Linearly Separable (LS)

Data Set

x1

x2

+
+

+

+
+

+
+

+

+

+
+

-

-
-

-
-

-

--

-

-

-

-
-

- - -

Perceptron limitations [Minski,Papert]

x1

x20
0

1

1

The XOR function: the non-linear separability problem

x1 x2

y

1

w1 w2
w1 x1 + w2 x2 -w0 = 0

x1 XOR x2 = (x1 AND ~x2) OR (~x1 AND x2)

Need for constructing MLP

τθ /))(net(1
1)(−−+

= ti ie
to

The solution – 2 layered
network with non-linear
Functions
However → how to learn
weights in such networks

The Universality Property
• A two layer feed-forward neural network with step

activation functions can implement any Boolean
function, provided that the number of hidden
neurons H is sufficiently large (Mc Culloch and Pitts,
1943) .

• If the input variables are continuous in [0,1] and
the activation function is the logistic sigmoid, it
can be proven that any continuous decision
boundary can be approximated arbitrarily close by
a two-layer Perceptron with a sufficient number H
of hidden neurons (Cybenko, 1989) .

MultiLayer Perceptrons

...

...
x1 x2 xn-1 xn

y1

1 ...

......

y2 yp-1 yp

2 p-1 p

1 H...
...

Non-linear regression mapping

() () ()1...,,1...,,1
)1(

0
−==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== ∑

−

=

lnklniowfafy
ln

k
kikiiii

Output of a generic MLP neuron in layer l

Two-layer MLP, only one output unit with linear
activation function.

()

() 0

)1(

1
01

)1(

0

0

0
1

)1(

0
111

wvxvfw

xvfwowby

n

k
k

T
kkk

n

k

n

j
jkjkk

n

k
kk

++=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

∑

∑ ∑∑

=

= ==

rr

Back propagation (I)
(The Generalized Delta Rule)

ik

q
i

q
i

q

ik

q

w
a

a
E

w
E

∂
∂

∂
∂

=
∂
∂

ik

q
q
ik w

Ew
∂
∂

−=∆ η

Gradient Descent formula for a weight wik connecting units
from two generic layers l and l-1 (i∈layer l, k ∈layer l-1)
after presentation of training pattern q.

Now calculations should take into account activation
function.

Back Propagation (II)

q
i

q
q

i a
E

∂
∂

=δq
k

ik

q
i o

w
a

=
∂
∂

q
k

q
i

ik

q
q
ik o

w
Ew δηη −=

∂
∂

−=∆

()()q
i

q
i

q
iq

i

q
q

i doaf
a
E

−=
∂
∂

= 'δ

For output units (i∈layer L) – generalized delta learning rule:

Multi-Layer Perceptron
• One or more hidden

layers
• Where can we use

generalized delta rule?
• Where can we

compute error?

1st hidden
layer

2nd hidden
layer

Output layer

Input data

We do not know the desired
answers of the hidden layer and
therefore we can not estimate the
error function.

Back Propagation (III)

()

()

()
()

∑

∑

∑

+

=

+

=

+

=

=

=
∂

∂
=

=
∂

∂

∂
∂

=
∂
∂

=

1

1

1

1

1

1

'
ln

j
ji

q
j

q
i

ln

j
q
i

q
jq

j

ln

j
q

i

q
j

q
j

q

q
i

q
q

i

waf

a
a

b
a

a
E

a
E

δ

δ

δ

For hidden units (i∈layer l < L):

We do not know the desired answers of the hidden layer and
therefore we can not estimate the error function.

Back Propagation
(forward phase)

...
x1 x2 xn-1 xn

1 ...
y1 y2 yp-1 yp

2 p-1 p

1 H...
......

... ...

Back Propagation
(backward phase)

...
x1 x2 xn-1 xn

1 ...
δ1 δ2 δp-1 δp

2 p-1 p

1 H...
......

... ...

Elements of Backpropagation

• The set of learning examples is usually showed to
the algorithms several times (iterations → epochs)
/ sometimes thousands

• The order of showing examples is randomly
shuffled

• Stopping conditions
– Threshold for RMS (should be smaller than …)
– Max no. of iterations
– Classification evaluations

Tuning learning rate
• Too small – local minimum of error
• Too large – oscillations and unable to go inside the

global minimum
• Some solutions

– Slowly decreasing the rate with epoches (time)

wi

E Sp

Sk

Learning Rate and Momentum Term
E(W)

WW*

E(W*)

W(q)

∆W1

∆W2

∆W3

Wmin

1−∆+
∂
∂

−=∆ q
ik

ik

q
q
ik w

w
Ew αη

Structure Types of
Decision Regions

Exclusive-OR
Problem

Classes with
Meshed regions

Most General
Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Abitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

Different non linearly separable
problems and number of layers

Neural Networks – An Introduction Dr. Andrew Hunter

Over-fitting
A too large number of parameters can memorize all the examples
of the training set with the associated noise, errors and
inconsistencies

E(u)

Training step uu*

E(u*)

Test set

Training set
Validation set

Overtraining in ANNs
• Recall: Definition of Overfitting

– h’ worse than h on Dtrain, better on Dtest

• Overtraining: A Type of Overfitting
– Due to excessive iterations
– Avoidance: stopping criterion

(cross-validation: holdout, k-fold)
– Avoidance: weight decay Error versus epochs (Example 1)

Choosing the number of neurons

Network size

• Pruning algorithms
Start with a large network and gradually remove weights or

complete units that do not seem to be necessary
– Sensitivity methods
– Penalty-term methods

• Growing algorithms
Start from a small architecture and allow new units to be added

when necessary.

The universality property requires
a sufficient number of hidden neurons.

Neural Network as a Classifier
• Weakness

– Long training time
– Require a number of parameters typically best determined empirically,

e.g., the network topology or ``structure."
– Poor interpretability: Difficult to interpret the symbolic meaning behind

the learned weights and of ``hidden units" in the network

• Strength
– High tolerance to noisy data
– Ability to classify untrained patterns
– Well-suited for continuous-valued inputs and outputs
– Successful on a wide array of real-world data
– Algorithms are inherently parallel
– Techniques have recently been developed for the extraction of rules from

trained neural networks

Knowledge Extraction

– Local approach

The original MLP is decomposed into a series of smaller usually
single layered sub-networks. The incoming weights form the
antecedent of a symbolic rule for each unit. Those rules are gradually
combined together to define a more general set of rules that describes
the network as a whole.

Disadvantage: Because of the distributed knowledge in an ANN
hidden units do not typically represent clear logic entities.

– Global approach

A tree of symbolic rules is built to represent the whole network. Each
rule is then tested against the network behavior until most of training
space is covered.

Disadvantage: huge trees.

RBF networks
• This is becoming an increasingly popular neural network

with diverse applications and is probably the main rival to the
multi-layered perceptron

• Much of the inspiration for RBF networks has come from
traditional statistics and pattern classification techniques
(mainly local methods for non-parametric regression)

• These include function approximation, regularization
theory, density estimation and interpolation in the presence
of noise [Bishop, 1995]

• Cover Theorem on non-linear projections into new feature
space where difficult decision boundaries maybe linear
separable

Numerical approximation of functions
• Consider N data points characterized by p features

• and corresponding N outputs (real values)

• The aim is to find an unknown function (mapping)

• Complicated functions construct from simple
building blocks (local approximations)

},,1{ NiRm
i K=∈x

},,1|{ NiRdi K=∈

Nidf ii ,,1)(K=∀=x

Function Approximation with
Radial Basis Functions

RBF Networks approximate functions using (radial) basis functions
as the building blocks.

On Exact Interpolation of
• RBFs have their origins in techniques for performing

exact function interpolation [Bishop, 1995]:
– Find a function h(x) such that

h(xn) = tn ∀n=1, ... N

• Radial Basis Function approach (Powel 1987):
– Use a set of N basis functions of the form φ(||x-xn||), one for

each point,where φ(.) is some non-linear function.

– Output: h(x) = Σn wn φ(||x-xn||)

Radial Basis Function Networks
Goal: each hidden unit k should represent a cluster k in the
input space, for example by containing its prototype xk.

...
x1 x2 xn-1 xn

1 ...
y1 yp

p

...
......

... ...
Φ1 ΦH

() ()∑
=

+Φ=
H

k
ikiki wxwxy

1
0

rr

()kkk xxx rrr
−Φ=Φ)(

22)(k

kx

k ex σ

µrr

r
−

−

=Φ

Typical radial functions

Examples:

()
()

2

2 2

2 2

(/)

2

()

() , 0

() , 1 0

()
() () ln()

i

r

h r r X X

h r r

h r r

h r e
h r r r

α

β

σ

σ α

σ β

σ σ

−

−

= = −

= + >

= + > >

=

=

Simple radial

Inverse multiquadratic
Multiquadratic
Gauss
Thin splines (cienkiej płytki)

RBFNs and MLPs

• Locality. In RBFNs only a small fraction of Φk is active
for each input vector => more efficient training algorithms

• Separation surfaces. MLP produces open separation
surfaces vs. RBFNs closed separation surfaces

• Approximation capability. The universality property
still holds for RBFNs if a sufficient number of Φk is given.

• Interpretability. RBFNs are easier to interpret than
MLPs. Φk can be interpreted as p(cluster k| x) and wik as
p(Ci|cluster k)

MLPs versus RBFs

• Classification
– MLPs separate classes via

hyperplanes
– RBFs separate classes via

hyperspheres
• Learning

– MLPs use distributed learning
– RBFs use localized learning
– RBFs train faster

• Structure
– MLPs have one or more hidden

layers
– RBFs have only one layer
– RBFs require more hidden neurons

=> curse of dimensionality

X2

X1

MLP

X2

X1

RBF

The hybrid learning strategy

1. Unsupervised training of the RBF parameters
– K-means clustering algorithm
– Mixtures of Gaussians
– Kohonen Competitive learning

2. Supervised training of the weights connecting
the hidden and the output layer
– Back-Propagation
– Or a special mathematical approaches to

solve matrix equations!

RBF units Unsupervised Training

()∏
=

=
m

q

qxp
1

r
l

∑
∈

=
kSq

q

k
k x

N
rr 1µ

∑ ∑
= ∈

−=
H

k Sq
k

q

k

xJ
1

2
µrr

• K-means algorithm.

() () ()∑
=

Φ=
H

j
jj xxxo

1

rrr α

• Mixtures of Gaussians.

∑
=

−=
H

i
jiH 1

1 µµσ rr

RBFNs Training Algorithms (I)

• Modified Back-Propagation.
The corresponding expressions of the partial

derivatives of the error function have to be
evaluated and included into the gradient descent
procedure.

• Orthogonal Least Square Algorithm.
RBF units are sequentially introduced. At the first step

each RBF is centered on one training pattern; the
RBF unit with smallest error is retained. The
algorithms continues on the remaining training data.

RBF analysis of sinus function
• Following lecture og prof. A.Bartkowiak Uniw.

Wrocławski

RBF analysis of sinus function (2)

Tasks for ANN
• Pattern classification
• Function approximation
• Time series and

forecasting
• Clustering
• Multidimensional

Projections
• Association memory
• Content addressed

memory
• Control strategies
• ..

Unsupervised ANN Learning
• Unsupervised Learning

If the desired answers are not available, not even for a subset
of data to use as training set, we use unsupervised learning.

•Redundancy
This can happen only if there is redundancy in the training data

• Similarity and Correlation
The network should organize the training data into clusters on
the basis of similarity and correlation criteria.

• Hebbian Learning and Competitive Learning

Standard Competitive Learning
(winner-take-all)

1 p2

y1 y2 yp

x1 x2 xn

...
...

0≥ijw

xwxwa T
i

n

j
jiji

rr
== ∑

=1

()
⎪⎩

⎪
⎨
⎧ =

= =

otherwise

xwxwif
y

T
kpk

T
i

i 0

max:1 ,...,1
rrrr

⎪⎩

⎪
⎨
⎧ −=−

== =

otherwise

xwxwif
ywif kpki

ii
0

min:1
1 ,...,1

rrrr
r

SCL: Training algorithm

()() ()() qTq
i

qTq
i xtwxtw rrrr 1+≤

() ()() ()()()
⎪⎩

⎪
⎨
⎧ ==∆

otherwise
xtwxtwifxtw

qTq
kk

qTq
i

q
q
i

0
max: rrrrr

r η

Goal:

()() ()()() qTq
i

Tq
i xtwtw rrr

∆+=

()twq
i
rη−

η > 0 (usually 0.1 < η < 0.7)

SCL Training algorithm

1 p2

y1 y2 y3

x1 x2 x3

w1
w2 w3

w3

w1

w2

before
training

w1

w2

w3

after
training

Learning Vector Quantization (LVQ)

LVQ is the Supervised extension of the
winner-take-all learning algorithm.

()
() ()()
() ()()

⎪
⎩

⎪
⎨

⎧

−−

−+

=∆

winneranotisiif

incorrectisiunitofclassiftwxt

correctisiunitofclassiftwxt

tw
q

qq
i

q

qq
i

q

q
i

:0

:

:
rr

rr

r η

η

Improved LVQ

() () ()()
() () ()()
() jiktw

twxttw

twxttw

k

q
j

qq
j

q
i

qq
i

,0 ≠=∆

−+=∆

−−=∆

r

rrr

rrr

η

η

The class of the input vector q is different from the class represented
by winner unit i, but it is the same as close unit j.

The class of the input vector q is the same as winner unit i and
close unit j.

() () ()()
() jiktw

jihtwxttw

k

q
h

qq
h

,0
,

≠=∆
=−+=∆

r

rrr ηε

Kohonen Self-Organizing Maps

• Architecture:
– Kohonen maps consist of a two-dimensional array of
neurons, fully connected, with no lateral connections,
arranged on a squared or hexagonal lattice

• Learning algorithm:
– follows the winner-take-all strategy
– forces close neurons to fire for similar inputs (Self-
Organizing Maps)

• Properties:
– The topology of the input space is preserved

Self organizing maps

• The purpose of SOM is to map a
multidimensional input space onto a
topology preserving map of neurons
– Preserve a topological so that

neighboring neurons respond to «
similar »input patterns

– The topological structure is often a 2 or
3 dimensional space

– the distance and proximity relationship
(i.e., topology) are preserved as much as
possible

• Similar to specific clustering: cluster
centers tend to lie in a low-
dimensional manifold in the feature
space

o
o

oo
x

x

x
x=dane

siatka neuronów

N-wymiarowa

xo=pozycje wag
 neuronów

o

o o

o

o

o

o
o

przestrzeń danych

wagi wskazują
na punkty w N-D

w 2-D

• The activation of the
neuron is spread in its
direct neighborhood
=>neighbors become
sensitive to the same input
patterns

• Block distance
• The size of the

neighborhood is initially
large but reduce over time
=> Specialization of the
network

First neighborhood

2nd neighborhood

Visualisation of an influence of different
patterns on neuron outputs

SOM Learning Algorithm

() () () ()()twxtikttw q
k

qqq
k

rrr
−Λ+=∆ ,,η for all units k

Winner take-all learning rule

Neighborhood function ()
() ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −−
=Λ 2

2

2
exp,,

t

rr
tik

qikq

σ

Quantization Error ∑
=

−=
m

q

q
i

q wx
m

Q
1

21 rr

Average Distortion ()∑
=

−Λ=
m

q

q
i

qqq wxtii
m

D
1

2
,,1 rr

SOM algorithm
XT=(X1, X2 .. Xd), samples from feature space.
Create a grid with nodes i = 1 .. K in 1D, 2D or 3D,
each node with d-dimensional vector W(i)T = (W1

(i) W2
(i) .. Wd

(i)),
W(i) = W(i)(t), changing with t – discrete time.

1. Initialize: random small W(i)(0) for all i=1...K.
Define parameters of neighborhood function h(|ri−rc|/σ(t),t)

2. Iterate: select randomly input vector X
3. Calculate distances d(X,W(i)), find the winner node W(c) most

similar (closest to) X
4. Update weights of all neurons in the neighborhood O(rc)
5. Decrease the influence h0(t) and shrink neighborhood σ(t).

6. If in the last T steps all W(i) changed less than ε stop.

• Natural language processing: linguistic analysis, parsing, learning
languages, hyphenation patterns.

• Optimization: configuration of telephone connections, VLSI
design, time series prediction, scheduling algorithms.

• Signal processing: adaptive filters, real-time signal analysis,
radar, sonar seismic, USG, EKG, EEG and other medical signals
...

• Image recognition and processing: segmentation, object
recognition, texture recognition ...

• Content-based retrieval: examples of WebSOM, Cartia,
VisierPicSom – similarity based image retrieval.

• More on SOM – see earlier lecture on clustering

Where to use SOM

Software Tools
• Commercial products, e.g.

– Matlab Toolbox
– Statistica Neural Networks
– Peltarion Synapse
– NeuroXL
– …

• Many others
– Sttugart Neural Simulator
– Limitted options WEKA, RapidMiner
– Many university projects.e.g NuClass7 Arlington US
– …

SSN (Univ. Sttugart)

Components in Process

Constructing and Learning ANN in Synapse
• German credit data (UCI repository) – prediction of paying loans by bank

customers / 700 good decisions and 300 bad ones

Hardware
• Usually more costly
• Specialized electronic devices
• Need for a real, popular application
• However, FPGA implementing ?

Applications
• Aerospace

– High performance aircraft autopilots, flight path simulations, aircraft
control systems, autopilot enhancements, aircraft component
simulations, aircraft component fault detectors

• Automotive
– Automobile automatic guidance systems, warranty activity analyzers

• Banking
– Check and other document readers, credit application evaluators

• Defense
– Weapon steering, target tracking, object discrimination, facial

recognition, new kinds of sensors, sonar, radar and image signal
processing including data compression, feature extraction and noise
suppression, signal/image identification

• Electronics
– Code sequence prediction, integrated circuit chip layout, process

control, chip failure analysis, machine vision, voice synthesis, nonlinear
modeling

Applications
• Financial

– Real estate appraisal, loan advisor, mortgage screening, corporate bond
rating, credit line use analysis, portfolio trading program, corporate
financial analysis, currency price prediction

• Manufacturing
– Manufacturing process control, product design and analysis, process

and machine diagnosis, real-time particle identification, visual quality
inspection systems, beer testing, welding quality analysis, paper quality
prediction, computer chip quality analysis, analysis of grinding
operations, chemical product design analysis, machine maintenance
analysis, project bidding, planning and management, dynamic
modeling of chemical process systems

• Medical
– Breast cancer cell analysis, EEG and ECG analysis, prosthesis design,

optimization of transplant times, hospital expense reduction, hospital
quality improvement, emergency room test advisement

Applications
• Robotics

– Trajectory control, forklift robot, manipulator controllers, vision
systems

• Speech
– Speech recognition, speech compression, vowel classification,

text to speech synthesis
• Securities

– Market analysis, automatic bond rating, stock trading advisory
systems

• Telecommunications
– Image and data compression, automated information services,

real-time translation of spoken language, customer payment
processing systems

• Transportation
– Truck brake diagnosis systems, vehicle scheduling, routing

systems

Conclusions
• ANNs are roughly based on the simulation of biological
nervous systems
• An equivalence can be established between many ANN
paradigms and statistical analysis techniques

• Perceptron as a non-linear regression function
• The auto-associator projects input data onto a PC space
• RBFNs can be interpreted as statistical classifiers
• etc …

• ANNs drawbacks:
• Lack of criteria to define the optimal network size =>
genetic algorithms?
• Many parameters to tune
• Hard interpretation of the ANN analysis process => fuzzy
models?
• Time and cost computational requirements

References
• J. Hertz, A. Krogh, R.G. Palmer, “Introduction to the

theory of Neural Computation”, Addison-Wesley, 1991.

• C.M. Bishop, “Neural Networks for pattern
recognition”, Oxford University Press, New York, 1995.

• S. Haykin, “Neural Networks, a comprehensive
foundation”, IEEE Press, 1994.

• J.M. Zurada, R.J. Marks, C.J. Robonson Eds.,
“Computational Intelligence imitating life”, IEEE Press,
New York, 1994.

• Many others

References in Polish Language
• Osowski Stanisław: Sieci Neuronowe do przetwarzania

informacji. Warszawa 2000
• J.M. Zurada, Baruch: Sztuczne sieci neuronowe, PWN.
• Several books by R.Tadeusiewicz
• Krawiec K., Stefanowski J.: Uczenie maszynowe i sieci

neuronowe, Wydawnictwo Politechniki Poznańskiej, Poznań
2004

• WWW teaching materials,np:
• prof. Włodzisław Duch, UMK Toruń
• prof. Anna Bartkowiak UWr Wrocław
• My own slides for II part of the course Machine

Learning
• Many others

Any questions, remarks?

