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Introduction
• Some definitions

– “… a system composed of many simple processing 
elements operating in parallel whose function is 
determined by network structure, connection strengths, 
and the processing performed at computing elements or 
nodes.” - DARPA (1988)

– A neural network: A set of connected input/output units 
where each connection has a weight associated with it

• During the learning phase, the network learns by 
adjusting the weights so as to be able to predict the 
correct class output of the input signals



Some properties

• Some points from definitions
– Many neuron-like threshold switching units
– Many weighted interconnections among units
– Highly parallel, distributed process
– Emphasis on tuning weights automatically
– …



When to Consider Neural Networks
• Input: High-Dimensional and Discrete or Real-Valued

– e.g., raw sensor input

– Conversion of symbolic data to quantitative (numerical) representations possible

• Output: Discrete or Real Vector-Valued
– e.g., low-level control policy for a robot actuator

– Similar qualitative/quantitative (symbolic/numerical) conversions may apply

• Data: Possibly Noisy

• Target Function: Unknown Form

• Result: Human Readability Less Important Than Performance
– Performance measured purely in terms of accuracy and efficiency

– Readability: ability to explain inferences made using model; similar criteria

• Examples
– Speech phoneme recognition 

– Image classification

– Time signal prediction, Robotics, and many others



Autonomous Learning Vehicle
in a Neural Net (ALVINN)

• Pomerleau et al
– http://www.cs.cmu.edu/afs/cs/project/alv/member/www/projects/ALVINN.html
– Drives 70mph on highways

Hidden-to-Output Unit
Weight Map

(for one hidden unit)

Input-to-Hidden Unit
Weight Map

(for one hidden unit)



Image Recognition and Classifiation
of Postal Codes

Examples of handwritten postal codes 
drawn from a database available from the US Postal service



• 90% Accurate Learning Head Pose, Recognizing 1-of-20 Faces
• http://www.cs.cmu.edu/~tom/faces.html

Example:Neural Nets for Face Recognition

30 x 32 Inputs

Left      Straight     Right         Up

Hidden Layer Weights after 1 Epoch

Hidden Layer Weights after 25 Epochs

Output Layer Weights (including w0 = θ) after 1 Epoch



Example:NetTalk
• Sejnowski and Rosenberg, 1987
• Early Large-Scale Application of Backprop

– Learning to convert text to speech
• Acquired model: a mapping from letters to phonemes and stress marks
• Output passed to a speech synthesizer

– Good performance after training on a vocabulary of ~1000 words

• Very Sophisticated Input-Output Encoding
– Input: 7-letter window; determines the phoneme for the center letter and context on 

each side; distributed (i.e., sparse) representation: 200 bits
– Output: units for articulatory modifiers (e.g., “voiced”), stress, closest phoneme; 

distributed representation
– 40 hidden units; 10000 weights total

• Experimental Results
– Vocabulary: trained on 1024 of 1463 (informal) and 1000 of 20000 (dictionary)
– 78% on informal, ~60% on dictionary

• http://www.boltz.cs.cmu.edu/benchmarks/nettalk.html



ANN and Mining Data 

• ANN originally comes from AI and ML
• Data Mining and Exploration of Data

– We can meet numerical (at least partly) data, …
– Tasks of function approximation, pattern 

classification, etc are also similar
• ANN are very good approximators or classifiers

– However, remember about time cost, 
parameterization, black boxes, …



Examples of Different ANN

• Perceptron
• Multi-Layer Perceptron
• Radial Basis Function (RBF)
• Kohonen Features maps
• Other architectures, e.g.

– Hopfield networks and BAM
– ART



Looking at ANN

• ANN could be defined by:
– Model of artificial network (details of its 

component and processing)
– Topology / architecture of the network
– Learning



Biological Inspirations

• Humans perform complex tasks like vision,
motor control, or language understanding 
very well

• One way to build intelligent machines is to 
try to imitate the (organizational principles 
of) human brain



Biological inspirations

• Some numbers…
– The human brain contains about (or over) 10 billion 

nerve cells (neurons)
– Each neuron is connected to the others through 10000 

synapses

• Properties of the brain 
– It can learn, reorganize itself from experience
– It adapts to the environment 
– It is robust and fault tolerant



Biological neuron

• A neuron has
– A branching input (dendrites)
– A branching output (the axon)

• The information circulates from the dendrites to the axon via the 
cell body

• Axon connects to dendrites via synapses
– Synapses vary in strength
– Synapses may be excitatory or inhibitory 

axon

cell body

synapse

nucleus

dendrites

axon

cell body

synapse

nucleus

dendrites



The Action Potential



Human Brain
• The brain is a highly complex, non-linear, and parallel computer, 

composed of some 1011 neurons that are densely connected (~104

connection per neuron). We have just begun to understand how 
the brain works...

• A neuron is much slower (10-3sec) compared to a silicon logic 
gate (10-9sec), however the massive interconnection between 
neurons make up for  the comparably slow rate.
– Complex perceptual decisions are arrived at quickly (within a 

few hundred milliseconds)
• 100-Steps rule: Since individual neurons operate in a few 

milliseconds, calculations do not involve more than about 100 
serial steps and the information sent from one neuron to another is 
very small (a few bits)

• Plasticity: Some of the neural structure of the brain is present at 
birth, while other parts are developed through learning, especially 
in early stages of life, to adapt to the environment (new inputs).
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Activation Functions

• Step function

• Linear function

• Logistic Sigmoid

• Gaussian
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Activation functions
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Network topologies
Feed Forward Neural Networks

• The information is 
propagated from the 
inputs to the outputs

• Computations of No non 
linear functions from n
input variables by 
compositions of Nc
algebraic functions

• Time has no role (NO 
cycle between outputs and 
inputs)

x1 x2 xn…..

1st hidden 
layer

2nd hidden
layer

Output layer



Network topologies
Recurrent Neural Networks

• Can have arbitrary topologies
• Can model systems with 

internal states (dynamic ones)
• Delays are associated to a 

specific weight
• Training is more difficult
• Performance may be 

problematic
– Stable Outputs may be more 

difficult to evaluate
– Unexpected behavior 

(oscillation, chaos, …)
x1 x2

1

0
10

1
0

0
0



Learning neural networks
• The procedure that consists in estimating the parameters of 

neurons (usually weights) so that the whole network can 
perform a specific task

• Basic types of learning
– The supervised learning
– The unsupervised learning

• The Learning process (supervised)
– Present the network a number of inputs and their corresponding 

outputs
– See how closely the actual outputs match the desired ones
– Modify the parameters to better approximate the desired outputs



The ANN Learning Process
• Neurons can learn, (Hebb, 1949):

– memory is stored in synapses and learning takes place by synaptic 
modifications;

– neurons become organized into larger configurations to perform more 
complex information processing

Hebbian learning:
When two joining cells fire 

simultaneously, the connection 
between them strengthens (Hebb, 
1949)

Discovered at a biomolecular
level by Lomo (1966) (Long-term 
potentiation).

UR
US

CS



Supervised Learning of Neurons
Let us suppose that a sufficiently large set of examples (training 
set) is available.

Supervised learning:
– The network answer to each input pattern is directly 

compared with the desired answer and a feedback is given to 
the network to correct possible errors

Weights matrix 
and 

W

Error
y - d

Required
output

d

yx



Perceptron
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What a Single Perceptron Does 

• Regression: y=wx+w0
• Classification: y=1 if

(wx+w0>0)
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Perceptron

• Rosenblatt (1962)
• Linear separation
• Inputs :Vector of real values

• Outputs :1 or -1
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Error Function

• Training set:
• Error Measure:
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Gradient Descent algorithm
• Simple Gradient Descent Algorithm

– Applicable to different type of learning (with proper representation)

• Algorithm Train-Perceptron (D ≡ {<x, o(x) ≡ d(x)>})
– Initialize all weights wi to random values
– WHILE not all examples correctly predicted DO

FOR each training example x ∈ D
Compute current output o(x)
FOR i = 1 to n

wi ← wi + r(t - o)xi //delta perceptron learning rule

• Definition: Gradient
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Gradient Descent algorithm
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The learning process (stepwise looking for solution): 



Delta Learning Rule (Widrow,Hoff)
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Learning Rate (η)
 ∆w1=  η1  δ x     with   η1 too small

 ∆w2=  η2  δ x     with   η2 right size

 ∆w3=  η3  δ x     with   η3 too big

E(W)

WW*

E(W*)

W(q)

∆W1

∆W2

∆W3



• The standard perceptron learning 
algorithm converges if examples 
are linearly separable → see

• Consider an example of a simple 
logical AND problem Linearly Separable (LS)

Data Set
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Perceptron limitations [Minski,Papert]

x1

x20
0

1

1

The XOR function: the non-linear separability problem

x1 x2

y

1

w1 w2
w1 x1 + w2 x2 -w0 = 0



x1 XOR x2 = (x1 AND ~x2) OR (~x1 AND x2)

Need for constructing MLP

τθ /))(net(1
1)( −−+

= ti ie
to

The solution – 2 layered
network with non-linear
Functions
However → how to learn
weights in such networks



The Universality Property
• A two layer feed-forward neural network with step 

activation functions can implement any Boolean 
function, provided that the number of hidden 
neurons H is sufficiently large (Mc Culloch and Pitts, 
1943) .

• If the input variables are continuous in [0,1] and 
the activation function is the logistic sigmoid, it 
can be proven that any continuous decision 
boundary can be approximated arbitrarily close by 
a two-layer Perceptron with a sufficient number H 
of hidden neurons (Cybenko, 1989) .



MultiLayer Perceptrons

...
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Non-linear regression mapping
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Back propagation (I)
(The Generalized Delta Rule )
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Back Propagation (II)
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Multi-Layer Perceptron
• One or more hidden 

layers
• Where can we use

generalized delta rule?
• Where can we 

compute error?

1st hidden 
layer

2nd hidden
layer

Output layer

Input data

We do not know the desired 
answers of the hidden layer and 
therefore we can not estimate the 
error function.



Back Propagation (III)
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Back Propagation 
(forward phase)

...
x1 x2 xn-1 xn

1 ...
y1 y2 yp-1 yp

2 p-1 p
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Back Propagation 
(backward phase)

...
x1 x2 xn-1 xn

1 ...
δ1 δ2 δp-1 δp

2 p-1 p

1 H...
......

... ...



Elements of Backpropagation

• The set of learning examples is usually showed to 
the algorithms several times (iterations → epochs)
/ sometimes thousands

• The order of showing examples is randomly 
shuffled

• Stopping conditions
– Threshold for RMS (should be smaller than …)
– Max no. of iterations
– Classification evaluations





Tuning learning rate
• Too small – local minimum of error
• Too large – oscillations and unable to go inside the 

global minimum
• Some solutions

– Slowly decreasing the rate with epoches (time)
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Learning Rate and Momentum Term
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Structure Types of
Decision Regions

Exclusive-OR
Problem

Classes with
Meshed regions

Most General
Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Abitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

Different non linearly separable 
problems and number of layers

Neural Networks – An Introduction Dr. Andrew Hunter



Over-fitting
A too large number of parameters can memorize all the examples 
of the training set with the associated noise, errors and 
inconsistencies

E(u)

Training step uu*

E(u*)

Test set

Training set
Validation set



Overtraining in ANNs
• Recall: Definition of Overfitting

– h’ worse than h on Dtrain, better on Dtest

• Overtraining: A Type of Overfitting
– Due to excessive iterations
– Avoidance: stopping criterion

(cross-validation: holdout, k-fold)
– Avoidance: weight decay Error versus epochs (Example 1)



Choosing the number of neurons



Network size

• Pruning algorithms
Start with a large network and gradually remove weights or 

complete units that do not seem to be necessary
– Sensitivity methods
– Penalty-term methods

• Growing algorithms
Start from a small architecture and allow new units to be added 

when necessary.

The universality property requires 
a sufficient number of hidden neurons.



Neural Network as a Classifier
• Weakness

– Long training time 
– Require a number of parameters typically best determined empirically, 

e.g., the network topology or ``structure." 
– Poor interpretability: Difficult to interpret the symbolic meaning behind 

the learned weights and of ``hidden units" in the network

• Strength
– High tolerance to noisy data 
– Ability to classify untrained patterns 
– Well-suited for continuous-valued inputs and outputs
– Successful on a wide array of real-world data
– Algorithms are inherently parallel
– Techniques have recently been developed for the extraction of rules from 

trained neural networks



Knowledge Extraction

– Local approach

The original MLP is decomposed into a series of smaller usually 
single layered sub-networks. The incoming weights form the 
antecedent of a symbolic rule for each unit. Those rules are gradually 
combined together to define a more general set of rules that describes 
the network as a whole.

Disadvantage: Because of the distributed knowledge in an ANN 
hidden units do not typically represent clear logic entities.

– Global approach

A tree of symbolic rules is built to represent the whole network. Each 
rule is then tested against the network behavior until most of training 
space is covered.

Disadvantage: huge trees.



RBF networks
• This is becoming an increasingly popular neural network 

with diverse applications and is probably the main rival to the 
multi-layered perceptron

• Much of the inspiration for RBF networks has come from 
traditional statistics and pattern classification techniques
(mainly local methods for non-parametric regression)

• These include function approximation, regularization 
theory, density estimation and interpolation in the presence 
of noise [Bishop, 1995]

• Cover Theorem on non-linear projections into new feature 
space where difficult decision boundaries maybe linear 
separable



Numerical approximation of functions
• Consider N data points characterized by p features

• and  corresponding N outputs (real values)

• The aim is to find an unknown function (mapping)

• Complicated functions construct from simple 
building blocks (local approximations)
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Function Approximation with
Radial Basis Functions

RBF Networks approximate functions using (radial) basis functions
as the building blocks.



On Exact Interpolation of
• RBFs have their origins in techniques for performing

exact function interpolation [Bishop, 1995]:
– Find a function h(x) such that

h(xn) = tn ∀n=1, ... N

• Radial Basis Function approach (Powel 1987):
– Use a set of N basis functions of the form φ(||x-xn||), one for

each point,where φ(.) is some non-linear function.

– Output: h(x) = Σn wn φ(||x-xn||)



Radial Basis Function Networks
Goal: each hidden unit k should represent a cluster k in the 
input space, for example by containing its prototype xk.

...
x1 x2 xn-1 xn

1 ...
y1 yp

p

...
......

... ...
Φ1 ΦH

( ) ( )∑
=

+Φ=
H

k
ikiki wxwxy

1
0

rr

( )kkk xxx rrr
−Φ=Φ )(

22)( k

kx

k ex σ

µrr

r
−

−

=Φ



Typical radial functions

Examples:
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RBFNs and MLPs

• Locality. In RBFNs only a small fraction of Φk is active 
for each input vector => more efficient training algorithms

• Separation surfaces. MLP produces open separation 
surfaces vs. RBFNs closed separation surfaces

• Approximation capability. The universality property 
still holds for RBFNs if a sufficient number of Φk is given.

• Interpretability. RBFNs are easier to interpret than 
MLPs. Φk can be interpreted as p(cluster k| x) and wik as 
p(Ci|cluster k)



MLPs versus RBFs

• Classification
– MLPs separate classes via 

hyperplanes
– RBFs separate classes via 

hyperspheres
• Learning

– MLPs use distributed learning
– RBFs use localized learning
– RBFs train faster

• Structure
– MLPs have one or more hidden 

layers
– RBFs have only one layer
– RBFs require more hidden neurons 

=> curse of dimensionality

X2

X1

MLP

X2

X1

RBF



The hybrid learning strategy

1. Unsupervised training of the RBF parameters
– K-means clustering algorithm
– Mixtures of Gaussians
– Kohonen Competitive learning

2. Supervised training of the weights connecting 
the hidden and the output layer
– Back-Propagation
– Or a special mathematical approaches to 

solve matrix equations!



RBF units Unsupervised Training
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RBFNs Training Algorithms (I)

• Modified Back-Propagation.
The corresponding expressions of the partial 

derivatives of the error function have to be 
evaluated and included into the gradient descent 
procedure.

• Orthogonal Least Square Algorithm.
RBF units are sequentially introduced. At the first step 

each RBF is centered on one training pattern;  the 
RBF unit with smallest error is retained. The 
algorithms continues on the remaining training data.



RBF analysis of sinus function
• Following lecture og prof. A.Bartkowiak Uniw. 

Wrocławski



RBF analysis of sinus function (2)



Tasks for ANN
• Pattern classification
• Function approximation
• Time series and

forecasting
• Clustering
• Multidimensional

Projections
• Association memory
• Content addressed

memory
• Control strategies
• ..



Unsupervised ANN Learning
• Unsupervised Learning

If the desired answers are not available, not even for a subset 
of data to use as training set, we use unsupervised learning.

•Redundancy
This can happen only if there is redundancy in the training data

• Similarity and Correlation
The network should organize the training data into clusters on 
the basis of similarity and correlation criteria.

• Hebbian Learning and Competitive Learning



Standard Competitive Learning
(winner-take-all)
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SCL: Training algorithm
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SCL Training algorithm
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Learning Vector Quantization (LVQ)

LVQ is the Supervised extension of the 
winner-take-all learning algorithm.
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Improved LVQ
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Kohonen Self-Organizing Maps

• Architecture: 
– Kohonen maps consist of a two-dimensional array of 
neurons, fully connected, with no lateral connections, 
arranged on a squared or hexagonal lattice 

• Learning algorithm: 
– follows the winner-take-all strategy
– forces close neurons to fire for similar inputs (Self-
Organizing Maps)

• Properties:
– The topology of the input space is preserved 



Self organizing maps

• The purpose of SOM is to map a 
multidimensional input space onto a 
topology preserving map of neurons
– Preserve a topological so that 

neighboring neurons respond to « 
similar »input patterns

– The topological structure is often a 2 or 
3 dimensional space

– the distance and proximity relationship 
(i.e., topology) are preserved as much as 
possible

• Similar to specific clustering: cluster 
centers tend to lie in a low-
dimensional manifold in the feature 
space
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• The activation of the 
neuron is spread in its 
direct neighborhood 
=>neighbors become 
sensitive to the same input 
patterns

• Block distance
• The size of the 

neighborhood is initially 
large but reduce over time 
=> Specialization of the 
network

First neighborhood

2nd neighborhood

Visualisation of an influence of different
patterns on neuron outputs



SOM Learning Algorithm
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SOM algorithm
XT=(X1, X2 .. Xd), samples from feature space.
Create a grid with nodes i = 1 .. K in 1D, 2D or 3D, 
each node with d-dimensional vector W(i)T = (W1

(i) W2
(i) .. Wd

(i)), 
W(i) = W(i)(t), changing with t – discrete time. 

1. Initialize: random small W(i)(0) for all i=1...K.
Define parameters of neighborhood function h(|ri−rc|/σ(t),t)

2. Iterate: select randomly input vector X
3. Calculate distances d(X,W(i)), find the winner node W(c) most 

similar (closest to) X
4. Update weights of all neurons in the neighborhood O(rc)
5. Decrease the influence h0(t) and shrink neighborhood σ(t).

6. If in the last T steps all W(i) changed less than ε stop.



• Natural language processing: linguistic analysis, parsing, learning 
languages, hyphenation patterns.

• Optimization: configuration of telephone connections, VLSI
design, time series prediction, scheduling algorithms.

• Signal processing: adaptive filters, real-time signal analysis, 
radar, sonar seismic, USG, EKG, EEG and other medical signals 
...

• Image recognition and processing: segmentation, object 
recognition, texture recognition ...

• Content-based retrieval: examples of WebSOM, Cartia, 
VisierPicSom – similarity based image retrieval.

• More on SOM – see earlier lecture on clustering

Where to use SOM



Software Tools
• Commercial products, e.g.

– Matlab Toolbox
– Statistica Neural Networks
– Peltarion Synapse
– NeuroXL
– …

• Many others
– Sttugart Neural Simulator
– Limitted options WEKA, RapidMiner
– Many university projects.e.g NuClass7 Arlington US
– …



SSN (Univ. Sttugart)



Components in Process



Constructing and Learning ANN in Synapse
• German credit data (UCI repository) – prediction of paying loans by bank 

customers / 700 good decisions and 300 bad ones



Hardware
• Usually more costly
• Specialized electronic devices
• Need for a real, popular application
• However, FPGA implementing ?



Applications
• Aerospace

– High performance aircraft autopilots, flight path simulations, aircraft 
control systems, autopilot enhancements, aircraft component 
simulations, aircraft component fault detectors

• Automotive
– Automobile automatic guidance systems, warranty activity analyzers

• Banking
– Check and other document readers, credit application evaluators

• Defense
– Weapon steering, target tracking, object discrimination, facial 

recognition, new kinds of sensors, sonar, radar and image signal
processing including data compression, feature extraction and noise 
suppression, signal/image identification

• Electronics
– Code sequence prediction, integrated circuit chip layout, process 

control, chip failure analysis, machine vision, voice synthesis, nonlinear 
modeling



Applications
• Financial

– Real estate appraisal, loan advisor, mortgage screening, corporate bond 
rating, credit line use analysis, portfolio trading program, corporate 
financial analysis, currency price prediction

• Manufacturing
– Manufacturing process control, product design and analysis, process 

and machine diagnosis, real-time particle identification, visual quality 
inspection systems, beer testing, welding quality analysis, paper quality 
prediction, computer chip quality analysis, analysis of grinding
operations, chemical product design analysis, machine maintenance 
analysis, project bidding, planning and management, dynamic 
modeling of chemical process systems

• Medical
– Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, 

optimization of transplant times, hospital expense reduction, hospital 
quality improvement, emergency room test advisement



Applications
• Robotics

– Trajectory control, forklift robot, manipulator controllers, vision 
systems

• Speech
– Speech recognition, speech compression, vowel classification, 

text to speech synthesis
• Securities

– Market analysis, automatic bond rating, stock trading advisory 
systems

• Telecommunications
– Image and data compression, automated information services, 

real-time translation of spoken language, customer payment 
processing systems

• Transportation
– Truck brake diagnosis systems, vehicle scheduling, routing 

systems



Conclusions
• ANNs are roughly based on the simulation of biological 
nervous systems
• An equivalence can be established between many ANN 
paradigms and statistical analysis techniques

• Perceptron as a non-linear regression function
• The auto-associator projects input data onto a PC space
• RBFNs can be interpreted as statistical classifiers
• etc …

• ANNs drawbacks: 
• Lack of criteria to define the optimal network size => 
genetic algorithms?
• Many parameters to tune
• Hard interpretation of the ANN analysis process => fuzzy 
models?
• Time and cost computational requirements
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Any questions, remarks?


