Advanced Topics on Association Rules and Mining Sequence Data

Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lectures 11 SE Master Course 2010

Acknowledgments:

This lecture is based on the following resources - slides:

G.Piatetsky-Shapiro: Association Rules and

Frequent Item Analysis.

and partly on two lectures

J.Han: Mining Association Rules in Large Databases; Tan, Steinbach, Kumar: Introduction to Data Mining and my other notes.

Outline

- Transactions
- Frequent itemsets
- Subset Property
- Association rules
- Applications

Association rules

- Transaction data
- Market basket analysis

Produce
MILK, BREAD, EGGS
BREAD, SUGAR
BREAD, CEREAL
MILK, BREAD, SUGAR
MILK, CEREAL
BREAD, CEREAL
MILK, CEREAL
MILK, BREAD, CEREAL, EGG
MILK, BREAD, CEREAL

- {Cereal, Milk} \rightarrow Bread [sup=5%, conf=80%]
- Association rule: "80% of customers who buy *cereal* and *milk* also buy *bread* and 5% of customers buy all these products together"

Implication means co-occurrence, not causality!

Weka associations

File: weather.nominal.arff MinSupport: 0.2

Weka associations: output

🌺 Weka Knowle	edge Explorer	<u>_ </u>
Preprocess Class	sify Cluster Associate Select attributes Visualize	
Associator		
Apriori -N 10 -T 0 -C	C 0.9 -D 0.05 -U 1.0 -M 0.2 -S -1.0	
Start Stop	p Associator output	
Save Output	Size of set of large itemsets L(2): 26	
Result list	Size of set of large itemsets L(3): 4	
22:29:06 - Apriori 22:29:53 - Apriori	Best rules found:	
	<pre>1. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1) 2. temperature=cool 4 ==> humidity=normal 4 conf:(1) 3. outlook=overcast 4 ==> play=yes 4 conf:(1) 4. temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1) 5. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1) 6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1) 7. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1) 8. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1)</pre>	
Log 22:29:06: Started wi 22:29:56: Finished v 22:29:53: Started wi 22:29:53: Finished v	veka.associations.Apriori weka.associations.Apriori veka.associations.Apriori weka.associations.Apriori	
Status OK		. × 0

Presentation of Association Rules (Table Form)

	Body	Implies	Head	Supp (%)	Conf (%)	F	G	H	
1	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00'	28.45	40.4				
2	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00'	20.46	29.05				
3	cost(x) = '0.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	59.17	84.04				
4	cost(x) = '0.00~1000.00'	==>	revenue(x) = '1000.00~1500.00'	10.45	14.84				
5	cost(x) = '0.00~1000.00'	==>	region(x) = 'United States'	22.56	32.04				
6	cost(x) = '1000.00~2000.00'	==>	order_qty(x) = '0.00~100.00'	12.91	69.34				
7	order_gty(x) = '0.00~100.00'	==>	revenue(x) = '0.00~500.00'	28.45	34.54				
8	order_gty(x) = '0.00~100.00'	==>	cost(x) = '1000.00~2000.00'	12.91	15.67				
9	order_qty(x) = '0.00~100.00'	==>	region(x) = 'United States'	25.9	31.45				
10	order_qty(x) = '0.00~100.00'	==>	cost(x) = '0.00~1000.00'	59.17	71.86				
11	order_qty(x) = '0.00~100.00'	==>	product_line(x) = 'Tents'	13.52	16.42				
12	order_qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	23.88				
13	product_line(x) = 'Tents'	==>	order_qty(x) = '0.00~100.00'	13.52	98.72				
14	region(x) = 'United States'	==>	order_qty(x) = '0.00~100.00'	25.9	81.94				
15	region(x) = 'United States'	==>	cost(x) = '0.00~1000.00'	22.56	71.39				
16	revenue(x) = '0.00~500.00'	==>	cost(x) = '0.00~1000.00'	28.45	100				
17	revenue(x) = '0.00~500.00'	==>	order_qty(x) = '0.00~100.00'	28.45	100				
18	revenue(x) = '1000.00~1500.00'	==>	cost(x) = '0.00~1000.00'	10.45	96.75				
19	revenue(x) = '500.00~1000.00'	==>	cost(x) = '0.00~1000.00'	20.46	100				
20	revenue(x) = '500.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	19.67	96.14				
21									
22									
23	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4				
24	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4				
25	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
26	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
27	cost(x) = '0.00~1000.00' AND order_qt <u>y(x) = '0.00~100.00'</u>	==>	revenue(x) = '500.00~1000.00'	19.67	33.23				
	Sheet1 /								1

Visualization of Association Rules: Plane Graph

Filtering Association Rules

- Finding Association Rules is just the beginning in a datamining effort.
- Problem: any large dataset can lead to a very large number of association rules, even with reasonable Min Confidence and Support
 - Many of these rules are uninteresting, trivial or redundant
- Trivial rule example:
 - pregnant \rightarrow female with accuracy 1!
- Challenge is to select potentially interesting rules
- Finding Association rules is a kind of Exploratory Data Analysis

Need for interestingness measures

- In the original formulation of association rules, support & confidence are the only measures used
- Confidence by itself is not sufficient
 - e.g. if all transactions include Z, then
 - any rule I => Z will have confidence 100%.
- Other interestingness measures are necessary to filter rules!

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 $\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of } \underline{X} \text{ and } \overline{Y} \\ f_{01} : \text{ support of } \underline{X} \text{ and } \underline{Y} \\ f_{00} : \text{ support of } \overline{X} \text{ and } \underline{Y} \end{array}$

Used to define various measures

support, confidence, lift, Gini,
 Piatetsky, J-measure, etc.

Interestingness Measure: Correlations and Lift

- *play basketball* \Rightarrow *eat cereal* [40%, 66.7%] is misleading
 - The overall percentage of students eating cereal is 75% which is higher than 66.7%.
- *play basketball* ⇒ *not eat cereal* [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift or corr, ...

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

Statistical Independence

Population of 1000 students

- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)
- $P(S \land B) = 420/1000 = 0.42$
- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
- $P(S \land B) = P(S) \times P(B) =>$ Statistical independence
- $P(S \land B) > P(S) \times P(B) =>$ Positively correlated
- $P(S \land B) < P(S) \times P(B) =>$ Negatively correlated

Association Rule LIFT

• The *lift* of an association rule I => J is defined as:

- lift = P(J|I) / P(J)
- Note, P(J) = (support of J) / (no. of transactions)
- ratio of confidence to expected confidence

- Interpretation:
 - if lift > 1, then I and J are positively correlated
 lift < 1, then I are J are negatively correlated.
 lift = 1, then I and J are independent.

Illustrative Example

	Coffee	Coffee	
Теа	15	5	20
Теа	75	5	80
	90	10	100

Drawback of using confidence only!

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Although <u>confidence</u> is high, rule is misleading

 \Rightarrow P(Coffee|Tea) = 0.9375

Example: Lift/Interest

	Coffee	Coffee	
Теа	15	5	20
Теа	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Statistical-based Measures

 Measures that take into account statistical dependence

$$\begin{split} Lift &= \frac{P(Y \mid X)}{P(Y)} \\ Interest &= \frac{P(X,Y)}{P(X)P(Y)} \\ PS &= P(X,Y) - P(X)P(Y) \\ \phi - coefficient &= \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}} \end{split}$$

Drawback of Lift & Interest

 $X \rightarrow Y$

	Y	Y	
Х	10	0	10
I×	0	90	90
	10	90	100

	Y	Y	
Х	90	0	90
X	0	10	10
	90	10	100

$$P(X \cap Y) = 10/100 = P(X) = P(Y)$$

 $Lift = \frac{0.1}{(0.1)(0.1)} = 10$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence: If P(X,Y)=P(X)P(Y) => Lift = 1

	Y	Y	
Х	60	10	70
X	10	20	30
	70	30	100

	Y	Y	
Х	20	10	30
X	10	60	70
	30	70	100

$\boldsymbol{\phi}$ Coefficient is the same for both tables

here are lots of neasures proposed neasures broposed

| Meseume

Some measures are jood for certain ipplications, but not or others

Vhat criteria should ve use to determine vhether a measure s good or bad?

Vhat about Aprioristyle support based pruning? How does t affect these neasures?

π	THURSDAY C	1 OTHER
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{k} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio ($lpha$)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(\overline{A},\overline{B})P(\overline{A}\overline{B}) - P(\overline{A},\overline{B})P(\overline{A},\overline{B})}{P(\overline{A},\overline{B})P(\overline{A}\overline{B}) + P(\overline{A},\overline{B})P(\overline{A},\overline{B})} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}}{\frac{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}}$
7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
8	J-Measure (J)	$\max \Big(P(A,B) \log(rac{P(B A)}{P(B)}) + P(A\overline{B}) \log(rac{P(\overline{B} A)}{P(\overline{B})}),$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2 \right)$
		$-P(B)^2 - P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	$\cos ine (IS)$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(\overline{B})+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A B)} \max(P(B A) - P(B) P(A B) - P(A))$

| khammula

Properties of A Good Measure

- Piatetsky-Shapiro:
 - 3 properties a good measure M must satisfy:
 - M(A,B) = 0 if A and B are statistically independent

 M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged

 M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Alternative approaches

- Multiple criteria approaches to many evaluation measures (Pareto border of the set of rules)
- Specific systems based on interaction with advanced users – directing the search
 - Templates as to the syntax
 - Other specifications for rules

Manila, Toivonen Finding Interesting Association Rules

	r / RULE SELECTION $rac{}{\sim}$
File Rules Presentation	Help
Selection criteria:	Template definitions $\bigtriangledown \diamondsuit \Leftrightarrow$
 ⊙ confidence 0.7 	
● support 0.3 🖨	Graduate Course, Any Course* => Design And Analysis of Algorithms
⊙ commonness 0.25 🔶	Restrictive:
● rule size 2 🖨 => 1 🖨	Any Course Any Course* =>
or rules to show 50	
Templates:	Browsing Graph
Inclusive Restrictive	
Do	Browse Graph
View file: c:\datamine	\ilmo\results\rules.all

Figure 1: Rule Visualizer / Rule Selection.

Visualization of rules

Figure 3: Rule Visualizer / Rule Browsing.

Figure 4: Rule Visualizer / Rule Graph.

Mining sequence data

Another important problem strongly inspired by frequent itemsets and association rules!

Sequence Data

Sequence Database:

			-
Object	Timestamp	Events	
А	10	2, 3, 5	
А	20	6, 1	
А	23	1	
В	11	4, 5, 6	
В	17	2	
В	21	7, 8, 1, 2	
В	28	1, 6	
С	14	1, 8, 7	

Sequence Databases and Sequential Pattern Analysis

- Transaction databases, time-series databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- Applications of sequential pattern mining
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatment, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, etc.
 - Telephone calling patterns, Weblog click streams
 - DNA sequences and gene structures

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, et
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

A sequence is an ordered list of elements (transactions)

 $s = \langle e_1 e_2 e_3 ... \rangle$

Each element contains a collection of events (items)

 $e_i = \{i_1, i_2, ..., i_k\}$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>

Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

What Is Sequential Pattern Mining?

 Given a set of sequences, find the complete set of *frequent* subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A <u>sequence database</u>

SID	sequence	
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	
20	<(ad)c(bc)(ae)>	
30 <(ef)(<u>ab</u>)(df) <u>c</u> b>		
40	<eg(af)cbc></eg(af)cbc>	

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<a(bc)dc> is a <u>subsequence</u> of <<u>a(abc)(ac)d(c</u>f)>

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential pattern</u>

Sequential Pattern Mining: Definition

• Given:

- a database of sequences
- a user-specified minimum support threshold, *minsup*

Task:

• Find all subsequences with support \geq *minsup*

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

 $\{a \in d \in g >, < \{c d e\} >, < \{b \in g\} >, etc.$

How many k-subsequences can be extracted from a given n-sequence?

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
 - be highly efficient, scalable, involving only a small number of database scans
 - be able to incorporate various kinds of user-specific constraints

Studies on Sequential Pattern Mining

- Concept introduction and an initial Apriori-like algorithm
 - R. Agrawal & R. Srikant. "Mining sequential patterns," ICDE'95
- GSP—An Apriori-based, influential mining method (developed at IBM Almaden)
 - R. Srikant & R. Agrawal. "Mining sequential patterns: Generalizations and performance improvements," EDBT'96
- FreeSpan and PrefixSpan (Han et al.@KDD'00; Pei, et al.@ICDE'01)
 - Projection-based
 - But only prefix-based projection: less projections and quickly shrinking sequences
- Vertical format-based mining: SPADE (Zaki00)

A Basic Property of Sequential Patterns: Apriori like approach

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then, none of the super-sequences of S is frequent
 - E.g, $\langle hb \rangle$ is infrequent \rightarrow so do $\langle hab \rangle$ and $\langle (ah)b \rangle$

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given support threshold
<i>min_sup</i> =2

GSP—A Generalized Sequential Pattern Mining Algorithm

- GSP (Generalized Sequential Pattern) mining algorithm
 - proposed by Agrawal and Srikant, EDBT'96
- Outline of the method
 - Initially, every item in DB is a candidate of length-1
 - for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

Performance on Data Set Gazelle

Multidimesional sequentianl patterns

- Sequential patterns are useful
 - "free internet access \rightarrow buy package 1 \rightarrow upgrade to package 2"
 - Marketing, product design & development
- Problems: lack of focus
 - Various groups of customers may have different patterns
- MD-sequential pattern mining: integrate multi-dimensional analysis and sequential pattern mining

An example of Multidim. Contxt sequential pattern

Sequence /customer context:	
Monthly earnings, Martial status	, ,

Profession, Age

Transaction context:

Time from money supply, Day of the weak when action done **User actions**:

SD –receive money, TM – transfer WM – withdraw money, CD – create time deposit, RD – cancel this deposit

Examples of patterns:

Traditional sequential pattern:

<{TM,CD},{WM},{WM,RD}>

Extended context sequential pattern:

(4000, married, *, *)	<(3,*){TM,CD),(*,Sunday){	WM},(20,	*){WM,RD}>
	40			

Sequences:	
SID1	$(2,Friday) $ {TM,CD}
(4200,married,tech.24)	$(4,Sunday) \{WM\}$
	(20,Saturday) {RD,WM,TM
SID2	(3,Tuesday) {TM,CD,WM
(4000,married,tech,22)	(7,Sunday) {WM,CD}
	(20,Saturday) {RD,WM}
	$(1,Tuesday) $ {TM,CD}
SID3	(3,Monday) {CD,TM,WM
(1500,single,retired,70)	⁾ (10,Monday) {CD,TM,WM
	(16,Sunday) $\{WM\}$
• • •	•••

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Applications

- Market basket analysis
 - Store layout, client offers
- This analysis is applicable whenever a customer purchases multiple things in proximity
 - telecommunication (each customer is a transaction containing the set of phone calls)
 - weather analysis (each time interval is a transaction containing the set of observed events)
 - credit cards

. . .

- banking services
- medical treatments
- Finding unusual events
 - WSARE What is Strange About Recent Events

Conclusions

- Association rule mining
 - probably the most significant contribution from the database community in KDD
 - A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction
 - Association analysis in other types of data: sequence data, spatial data, multimedia data, time series data, etc.

Summary

- Frequent itemsets
- Association rules
- Subset property
- Apriori algorithm
- Extensions of this algorithm
- Evaluation of association rules
- Sequence patterns

Any questions, remarks?

