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Association rules
Transaction data

Market basket analysis

{Cereal, Milk} → Bread [sup=5%, conf=80%]

Association rule:
„80% of customers who buy cereal and milk also buy 
bread and 5% of customers buy all these products 
together”

TID Produce 
1   MILK, BREAD, EGGS 
2   BREAD, SUGAR 
3   BREAD, CEREAL 
4   MILK, BREAD, SUGAR 
5   MILK, CEREAL 
6   BREAD, CEREAL 
7   MILK, CEREAL 
8   MILK, BREAD, CEREAL, EGGS 
9   MILK, BREAD, CEREAL 

 

Implication means co-occurrence, 
not causality!
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Weka associations
File: weather.nominal.arff
MinSupport: 0.2
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Weka associations: output



Presentation of Association Rules (Table 
Form )
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Visualization of Association Rules: Plane Graph
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Filtering Association Rules
Finding Association Rules is just the beginning in a 
datamining effort. 

Problem: any large dataset can lead to a very large 
number of association rules, even with reasonable Min 
Confidence and Support

Many of these rules are uninteresting, trivial or redundant

Trivial rule example:
pregnant → female with accuracy 1!

Challenge is to select potentially interesting rules

Finding Association rules is a kind of Exploratory Data 
Analysis
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Need for interestingness measures

In the original formulation of association rules, 
support & confidence are the only measures used

Confidence by itself is not sufficient

e.g. if all transactions include Z, then 

any rule I => Z will have confidence 100%.

Other interestingness measures are necessary to 
filter rules!
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Computing Interestingness Measure
Given a rule X → Y, information needed to compute rule 
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

Contingency table for X → Y
f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y

Used to define various measures

support, confidence, lift, Gini,
Piatetsky, J-measure, etc.
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Interestingness Measure: Correlations
and Lift

play basketball ⇒ eat cereal [40%, 66.7%]  is misleading

The overall percentage of students eating cereal is 75% which is higher 

than 66.7%.

play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, 

although with lower support and confidence

Measure of dependent/correlated events: lift or corr, …

500020003000Sum(col.)

12502501000Not cereal

375017502000Cereal

Sum (row)Not basketballBasketball
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Statistical Independence
Population of 1000 students

600 students know how to swim (S)

700 students know how to bike (B)

420 students know how to swim and bike (S,B)

P(S∧B) = 420/1000 = 0.42

P(S) × P(B) = 0.6 × 0.7 = 0.42

P(S∧B) = P(S) × P(B) => Statistical independence

P(S∧B) > P(S) × P(B) => Positively correlated

P(S∧B) < P(S) × P(B) => Negatively correlated
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Association Rule LIFT

The lift of an association rule I => J is defined as:
lift = P(J|I) / P(J) 

Note, P(J) = (support of J) / (no. of transactions)

ratio of confidence to expected confidence

Interpretation:

if  lift > 1, then I and J are positively correlated

lift < 1, then I are J are negatively correlated.

lift = 1, then I and J are independent.
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Illustrative Example

1001090

80575Tea

20515Tea
CoffeeCoffee

Drawback of using confidence only!

Association Rule: Tea → Coffee
Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒ Although confidence is high, rule is misleading

⇒ P(Coffee|Tea) = 0.9375
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Example: Lift/Interest

1001090

80575Tea

20515Tea
CoffeeCoffee

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒ Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)
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Statistical-based Measures
Measures that take into account statistical 
dependence
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Drawback of Lift & Interest

1009010

90900X

10010X

YY

1001090

10100X

90090X

YY

10
)1.0)(1.0(

1.0
==Lift 11.1

)9.0)(9.0(
9.0

==Lift

Statistical independence:

If P(X,Y)=P(X)P(Y)  => Lift = 1

X → Y

P(X∩Y)=10/100 = P(X) =P(Y)
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Example: φ-Coefficient
φ-coefficient is analogous to correlation coefficient 
for continuous variables

1003070

302010X

701060X

YY

1007030

706010X

301020X

YY

5238.0
3.07.03.07.0

7.07.06.0

=
×××

×−
=φ

φ Coefficient is the same for both tables

5238.0
3.07.03.07.0

3.03.02.0

=
×××

×−
=φ
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There are lots of 
measures proposed 
in the literature

Some measures are 
good for certain 
applications, but not 
for others

What criteria should 
we use to determine 
whether a measure 
is good or bad?

What about Apriori-
style support based 
pruning? How does 
it affect these 
measures?
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Properties of A Good Measure

Piatetsky-Shapiro: 
3 properties a good measure M must satisfy:

M(A,B) = 0 if A and B are statistically independent

M(A,B) increase monotonically with P(A,B) when P(A) 
and P(B) remain unchanged

M(A,B) decreases monotonically with P(A) [or P(B)] 
when P(A,B) and P(B) [or P(A)] remain unchanged
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Alternative approaches

Multiple criteria approaches to many evaluation
measures (Pareto border of the set of rules)

Specific systems based on interaction with
advanced users – directing the search

Templates as to the syntax

Other specifications for rules
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Manila, Toivonen Finding Interesting
Association Rules
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Visualization of rules



Mining sequence data

Another important problem strongly 
inspired by frequent itemsets and 

association rules!
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Sequence Data

Object Timestamp Events
A 10 2, 3, 5
A 20 6, 1
A 23 1
B 11 4, 5, 6
B 17 2
B 21 7, 8, 1, 2
B 28 1, 6
C 14 1, 8, 7

Sequence Database:
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Sequence Databases and Sequential 
Pattern Analysis

Transaction databases, time-series databases vs. 
sequence databases

Frequent patterns vs. (frequent) sequential patterns 

Applications of sequential pattern mining

Customer shopping sequences: 

First buy computer, then CD-ROM, and then digital 
camera, within 3 months.

Medical treatment, natural disasters (e.g., earthquakes), 
science & engineering processes, stocks and markets, etc.

Telephone calling patterns, Weblog click streams

DNA sequences and gene structures
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Examples of Sequence Data

Bases A,T,G,CAn element of the DNA 
sequence 

DNA sequence of a 
particular species

Genome 
sequences

Types of alarms 
generated by sensors 

Events triggered by a 
sensor at time t

History of events generated 
by a given sensor

Event data

Home page, index 
page, contact info, etc

A collection of files 
viewed by a Web visitor 
after a single mouse click

Browsing activity of a 
particular Web visitor

Web Data

Books, diary products, 
CDs, etc

A set of items bought by 
a customer at time t

Purchase history of a given 
customer

Customer

Event
(Item)

Element 
(Transaction)

SequenceSequence 
Database

Sequence

E1
E2

E1
E3 E2 E3

E4E2

Element 
(Transaction) Event 

(Item)
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Formal Definition of a Sequence
A sequence is an ordered list of elements (transactions)

s = < e1 e2 e3 … >

Each element contains a collection of events (items)

ei = {i1, i2, …, ik}

Each element is attributed to a specific time or location

Length of a sequence, |s|, is given by the number of 
elements of the sequence

A k-sequence is a sequence that contains k events (items)
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Examples of Sequence
Web sequence:

< {Homepage}  {Electronics}  {Digital Cameras}  {Canon Digital Camera} {Shopping 
Cart}  {Order Confirmation}  {Return to Shopping} >

Sequence of initiating events causing the nuclear accident 
at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

<   {clogged resin} {outlet valve closure} {loss of feedwater} 
{condenser polisher outlet valve shut} {booster pumps trip} 
{main waterpump trips} {main turbine trips} {reactor pressure increases}>

Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers}  {Return of the King}>
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What Is Sequential Pattern Mining?

Given a set of sequences, find the complete set 
of frequent subsequences

A sequence database
A sequence : < (ef) (ab)  (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence 
of <<a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a 
sequential pattern

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID
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Sequential Pattern Mining: Definition

Given: 

a database of sequences 

a user-specified minimum support threshold, minsup

Task:

Find all subsequences with support ≥ minsup
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Sequential Pattern Mining: Challenge

Given a sequence:   <{a b} {c d e} {f} {g h i}>
Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

How many k-subsequences can be extracted from a given 
n-sequence?

<{a  b} {c d  e} {f} {g h  i}>  n = 9

k=4:       Y _    _ Y Y   _  _  _ Y

<{a}         {d e}             {i}>   126
4
9
:Answer

=







=








k
n
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Challenges on Sequential Pattern 
Mining

A huge number of possible sequential patterns are 
hidden in databases

A mining algorithm should 

find the complete set of patterns, when possible, satisfying the 
minimum support (frequency) threshold

be highly efficient, scalable, involving only a small  number of 
database scans

be able to incorporate various kinds of user-specific constraints 
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Studies on Sequential Pattern Mining

Concept introduction and an initial Apriori-like algorithm

R. Agrawal & R. Srikant. “Mining sequential patterns,” ICDE’95

GSP—An Apriori-based, influential mining method (developed at 
IBM Almaden)

R. Srikant & R. Agrawal.  “Mining sequential patterns: 
Generalizations and performance improvements,” EDBT’96

FreeSpan and PrefixSpan (Han et al.@KDD’00; Pei, et 
al.@ICDE’01) 

Projection-based 

But only prefix-based projection: less projections and quickly 
shrinking sequences

Vertical format-based mining: SPADE (Zaki00)
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A Basic Property of Sequential Patterns: 
Apriori like approach

A basic property: Apriori (Agrawal & Sirkant’94) 

If a sequence S is not frequent 

Then, none of the super-sequences of S is frequent

E.g, <hb> is infrequent so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID Given support threshold
min_sup =2 
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GSP—A Generalized Sequential Pattern Mining 
Algorithm

GSP (Generalized Sequential Pattern) mining algorithm

proposed by Agrawal and Srikant, EDBT’96

Outline of the method

Initially, every item in DB is a candidate of length-1

for each level (i.e., sequences of length-k) do

scan database to collect support count for each candidate 
sequence

generate candidate length-(k+1) sequences from length-k frequent 
sequences using Apriori 

repeat until no frequent sequence or no candidate can be found

Major strength: Candidate pruning by Apriori
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Performance on Data Set Gazelle
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Multidimesional sequentianl patterns

Sequential patterns are useful

“free internet access buy package 1 upgrade to package 2”

Marketing, product design & development

Problems: lack of focus

Various groups of customers may have different patterns

MD-sequential pattern mining: integrate multi-dimensional 
analysis and sequential pattern mining
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An example of Multidim. Contxt
sequential pattern

Traditional sequential pattern:

<{TM,CD},{WM},{WM,RD}>

Extended context sequential pattern:

(4000,married,*,*)<(3,*){TM,CD},(*,Sunday){WM},(20,*){WM,RD}>

Sequence /customer context:
Monthly earnings, Martial status,
Profession, Age
Transaction context:
Time from money supply,  
Day of the weak when action done
User actions:
SD –receive money, TM – transfer
WM – withdraw money, CD – create 
time deposit, RD – cancel this deposit

SID1 
(4200,married,tech,24)

Sequences:
(2,Friday)      {TM,CD}
(4,Sunday)     {WM}
(20,Saturday) {RD,WM,TM} 

SID2 
(4000,married,tech,22)

(3,Tuesday)    {TM,CD,WM}
(7,Sunday)     {WM,CD}
(20,Saturday) {RD,WM}
(1,Tuesday)    {TM,CD} 

SID3 
(1500,single,retired,70)

(3,Monday)    {CD,TM,WM}
(10,Monday) {CD,TM,WM}
(16,Sunday)   {WM} 

… …Examples of patterns:
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Frequent Subgraph Mining
Extend association rule mining to finding frequent 
subgraphs

Useful for Web Mining, computational chemistry, 
bioinformatics, spatial data sets, etc

Databases

Homepage

Research

Artificial
Intelligence

Data Mining
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Applications

Market basket analysis
Store layout, client offers

This analysis is applicable whenever a customer purchases multiple 
things in proximity

telecommunication (each customer is a transaction containing the set of 
phone calls)

weather analysis (each time interval is a transaction containing the set 
of observed events)

credit cards

banking services

medical treatments

Finding unusual events
WSARE – What is Strange About Recent Events

…
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Conclusions

Association rule mining 

probably the most significant contribution from the 
database community in KDD

A large number of papers have been published

Many interesting issues have been explored

An interesting research direction

Association analysis in other types of data: sequence
data, spatial data, multimedia data, time series data, etc.
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Summary
Frequent itemsets

Association rules

Subset property

Apriori algorithm

Extensions of this algorithm

Evaluation of association rules

Sequence patterns
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Any questions, remarks?


