Association rules

Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 10 SE Master Course 2008/2009 This lecture is based on the following resources - slides:

G.Piatetsky-Shapiro: Association Rules and Frequent Item Analysis.

and partly on

- J.Han: Mining Association Rules in Large
- Databases
- and my other notes.

Outline

- Transactions
- Frequent itemsets
- Subset Property
- Association rules
- Applications

Association rules

- Transaction data
- Market basket analysis

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

- {Cheese, Milk} \rightarrow Bread [sup=5%, conf=80%]
- Association rule: "80% of customers who buy *cheese* and *milk* also buy *bread* and 5% of customers buy all these products together"

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why is Frequent Pattern or Association Mining an Essential Task in Data Mining?

- Foundation for many essential data mining tasks
 - Association, correlation, causality
 - Sequential patterns, temporal or cyclic association, partial periodicity, spatial and multimedia association
 - Associative classification, cluster analysis, fascicles (semantic data compression)
- DB approach to efficient mining massive data
- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc

Transactions Example

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

Transaction database: Example, 1

TID	Products		
1	A, B, E		
2	B, D		
3	B, C		
4	A, B, D		
5	A, C		
6	B, C		
7	A, C		
8	A, B, C, E		
9	A, B, C		

ITEMS:

Instances = Transactions

- A = milk
- B= bread
- C= cereal
- **D**= sugar
- E = eggs

Transaction database: Example, 2

Attributes converted to binary flags

TID	Products
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

TID	Α	В	С	D	Ε
1	1	1	0	0	1
2	0	1	0	1	0
3	0	1	1	0	0
4	1	1	0	1	0
5	1	0	1	0	0
6	0	1	1	0	0
7	1	0	1	0	0
8	1	1	1	0	1
9	1	1	1	0	0

Definitions

- Item: *attribute=value* pair or simply *value*
 - usually attributes are converted to binary *flags* for each value, e.g. **product="A"** is written as "A"
- Itemset I: a subset of possible items
 - Example: I = {A,B,E} (order unimportant)
- Transaction: (TID, itemset)
 - TID is transaction ID

Support and Frequent Itemsets

- Support of an itemset
 - sup(I) = no. of transactions t that support
 (i.e. contain) I
- In example database:
 - sup ({A,B,E}) = 2, sup ({B,C}) = 4
- Frequent itemset *I* is one with at least the minimum support count
 - sup(I) >= minsup

SUBSET PROPERTY (Agrawal et al..)

- Every subset of a frequent set is frequent!
- Q: Why is it so?
- A: Example: Suppose {A,B} is frequent. Since each occurrence of A,B includes both A and B, then both A and B must also be frequent
- Similar argument for larger itemsets
- Almost all association rule algorithms are based on this subset property

Association Rules

- Association rule R : Itemset1 => Itemset2
 - Itemset1, 2 are disjoint and Itemset2 is non-empty
 - meaning: if transaction includes *Itemset1* then it also has *Itemset2*
- Examples
 - A,B => E,C
 - A => B,C

From Frequent Itemsets to Association Rules

- Q: Given frequent set {A,B,E}, what are possible association rules?
 - A => B, E
 - A, B => E
 - A, E => B
 - B => A, E
 - B, E => A
 - E => A, B
 - = __ => A,B,E (empty rule), or true => A,B,E

Rule Support and Confidence

• Suppose R : I => J is an association rule

- sup (R) = sup (I \cup J) is the *support count*
 - support of itemset I \cup J (I or J)
- conf (R) = sup(J) / sup(R) is the confidence of R
 - fraction of transactions with $\rm I \cup J$ that have J
- Association rules with minimum support and count are sometimes called "*strong*" rules

Classification vs Association Rules

Classification Rules

- Focus on one target field
- Specify class in all cases
- Measures: Accuracy

Association Rules

- Many target fields
- Applicable in some cases
- Measures: Support, Confidence, Lift

Association Rules Example, 1

 Q: Given frequent set {A,B,E}, what association rules have minsup = 2 and minconf= 50% ?

A, B => E : conf=2/4 = 50%

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B , D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B , C

Association Rules Example, 2

• Q: Given frequent set {A,B,E}, what association rules have minsup = 2 and minconf= 50% ?

A, B => E : conf=2/4 = 50%

A, E => B : conf=2/2 = 100%

B, E => A : conf=2/2 = 100%

E => A, B : conf = 2/2 = 100%

Don't qualify

A =>B, E : conf=2/6 =33%< 50% B => A, E : conf=2/7 = 28% < 50% => A,B,E : conf: 2/9 = 22% < 50%

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

Find Strong Association Rules

• A rule has the parameters *minsup* and *minconf*.

sup(R) >= minsup and conf (R) >= minconf

• Problem:

- Find all association rules with given *minsup* and *minconf*
- First, find all frequent itemsets

Finding Frequent Itemsets

- Start by finding one-item sets (easy)
- *Q: How?*
- A: Simply count the frequencies of all items

Finding itemsets: next level

- Apriori algorithm (Agrawal & Srikant 94)
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If (A B) is a frequent item set, then (A) and (B) have to be frequent item sets as well!
 - In general: if X is frequent k-item set, then all (k-1)item subsets of X are also frequent
 - \Rightarrow Compute *k*-item set by merging (*k*-1)-item sets

Another example

Given: five three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

- Lexicographic order improves efficiency!
- Candidate four-item sets:

(A B C D) Q: OK?

A: yes, because all 3-item subsets are frequent

(A C D E) Q: OK?

A: No, because (C D E) is not frequent

Pruning search space

Apriori: A Candidate Generation-and-test Approach - Summary

- Any subset of a frequent itemset must be frequent
 - if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - generate length (k+1) candidate itemsets from length k frequent itemsets, and
 - test the candidates against DB
- The performance studies show its efficiency and scalability
- Agrawal & Srikant 1994, Mannila, et al. 1994

Mining Association Rules—an Example

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Min. support 50% Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For rule $A \Rightarrow C$:

support = support($\{A\} \cup \{C\}$) = 50%

confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

The Apriori Algorithm—An Example

The Apriori Algorithm

Pseudo-code:

- C_k : Candidate itemset of size k
- L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k} = \text{candidates in } C_{k} \text{ with min support} \end{cases}$

 L_{k+1} = candidates in C_{k+1} with min_support end

return $\cup_k L_{ki}$

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

insert into C_k

select *p.item*₁, *p.item*₂, ..., *p.item*_{k-1}, *q.item*_{k-1}

from **L**_{k-1} **p**, **L**_{k-1} **q**

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

Step 2: pruning

forall *itemsets c in C_k* do

forall (k-1)-subsets s of c do

if (s is not in L_{k-1}) then delete c from C_k

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a *hash-tree*
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Generating Association Rules

- Two stage process:
 - Determine frequent itemsets e.g. with the Apriori algorithm.
 - For each frequent item set I
 - for each subset *J* of *I*
 - determine all association rules of the form: I-J => J
- Main idea used in both stages : subset property

Example: Generating Rules from an Itemset

Frequent itemset from golf data:

Humidity = Normal, Windy = False, Play = Yes (4)

Seven potential rules:

If Humidity = Normal and Windy = False then Play = Yes4/4If Humidity = Normal and Play = Yes then Windy = False4/6If Windy = False and Play = Yes then Humidity = Normal4/6If Humidity = Normal then Windy = False and Play = Yes4/7If Windy = False then Humidity = Normal and Play = Yes4/8If Play = Yes then Humidity = Normal and Windy = False4/9If True then Humidity = Normal and Windy = False and Play = Yes4/12

Rules for the weather data

Rules with support > 1 and confidence = 100%:

	Association rule		Sup.	Conf.
1	Humidity=Normal Windy=False	⇒Play=Yes	4	100%
2	Temperature=Cool	⇒Humidity=Normal	4	100%
3	Outlook=Overcast	⇒Play=Yes	4	100%
4	Temperature=Cold Play=Yes	⇒Humidity=Normal	3	100%
•••	•••		•••	•••
58	Outlook=Sunny Temperature=Hot	⇒Humidity=High	2	100%

 In total: 3 rules with support four, 5 with support three, and 50 with support two

Association Rule Mining

Bottleneck of Frequent-pattern Mining with Apriori

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset i₁i₂...i₁₀₀
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100^2} + \dots + \binom{1}{100^0} = 2^{100} 1 = 1.27 \times 10^{30} !$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?
- Another algorithms \rightarrow FP Tree

Mining Frequent Patterns Without Complete Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

FP-Growth vs. Apriori: Scalability With the Support Threshold

Weka associations

File: weather.nominal.arff MinSupport: 0.2

🌺 weka.gui.GenericObjectEditor 📃 🗖 🗙				
weka.associatio	ons.Apriori	i	•	
About				
Finds associat	ion rules.		More	
me	tricType	Confidence	•	
lowerBoundMir	Support	0.2		
m	inMetric	0.9		
upperBoundMir	Support	1.0		
removeAllMis	singCols	False	•	
significa	nceLevel	-1.0		
	delta	0.05		
n	umRules	10		
Open	Save	ОК	Cancel	

Weka associations: output

🌺 Weka Knowle	edge Explorer	<u>_ </u>
Preprocess Class	sify Cluster Associate Select attributes Visualize	
Associator		
Apriori -N 10 -T 0 -C	C 0.9 -D 0.05 -U 1.0 -M 0.2 -S -1.0	
Start Stop	p Associator output	
Save Output	Size of set of large itemsets L(2): 26	
Result list	Size of set of large itemsets L(3): 4	
22:29:06 - Apriori 22:29:53 - Apriori	Best rules found:	
	<pre>1. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1) 2. temperature=cool 4 ==> humidity=normal 4 conf:(1) 3. outlook=overcast 4 ==> play=yes 4 conf:(1) 4. temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1) 5. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1) 6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1) 7. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1) 8. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1)</pre>	
Log 22:29:06: Started wi 22:29:56: Finished v 22:29:53: Started wi 22:29:53: Finished v	veka.associations.Apriori weka.associations.Apriori veka.associations.Apriori weka.associations.Apriori	
Status OK		. × 0

Presentation of Association Rules (Table Form)

	Body	Implies	Head	Supp (%)	Conf (%)	F	G	H	
1	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00'	28.45	40.4				
2	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00'	20.46	29.05				
3	cost(x) = '0.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	59.17	84.04				
4	cost(x) = '0.00~1000.00'	==>	revenue(x) = '1000.00~1500.00'	10.45	14.84				
5	cost(x) = '0.00~1000.00'	==>	region(x) = 'United States'	22.56	32.04				
6	cost(x) = '1000.00~2000.00'	==>	order_qty(x) = '0.00~100.00'	12.91	69.34				
7	order_gty(x) = '0.00~100.00'	==>	revenue(x) = '0.00~500.00'	28.45	34.54				
8	order_gty(x) = '0.00~100.00'	==>	cost(x) = '1000.00~2000.00'	12.91	15.67				
9	order_qty(x) = '0.00~100.00'	==>	region(x) = 'United States'	25.9	31.45				
10	order_qty(x) = '0.00~100.00'	==>	cost(x) = '0.00~1000.00'	59.17	71.86				
11	order_qty(x) = '0.00~100.00'	==>	product_line(x) = 'Tents'	13.52	16.42				
12	order_qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	23.88				
13	product_line(x) = 'Tents'	==>	order_qty(x) = '0.00~100.00'	13.52	98.72				
14	region(x) = 'United States'	==>	order_qty(x) = '0.00~100.00'	25.9	81.94				
15	region(x) = 'United States'	==>	cost(x) = '0.00~1000.00'	22.56	71.39				
16	revenue(x) = '0.00~500.00'	==>	cost(x) = '0.00~1000.00'	28.45	100				
17	revenue(x) = '0.00~500.00'	==>	order_qty(x) = '0.00~100.00'	28.45	100				
18	revenue(x) = '1000.00~1500.00'	==>	cost(x) = '0.00~1000.00'	10.45	96.75				
19	revenue(x) = '500.00~1000.00'	==>	cost(x) = '0.00~1000.00'	20.46	100				
20	revenue(x) = '500.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	19.67	96.14				
21									
22									
23	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4				
24	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4				
25	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
26	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
27	cost(x) = '0.00~1000.00' AND order_qt <u>y(x) = '0.00~100.00'</u>	==>	revenue(x) = '500.00~1000.00'	19.67	33.23				
	Sheet1 /								1

Visualization of Association Rules: Plane Graph

Filtering Association Rules

- Problem: any large dataset can lead to very large number of association rules, even with reasonable Min Confidence and Support
- Confidence by itself is not sufficient
 - e.g. if all transactions include Z, then
 - any rule I => Z will have confidence 100%.
- Other measures to filter rules

Association Rule LIFT

• The *lift* of an association rule I => J is defined as:

- lift = P(J|I) / P(J)
- Note, P(J) = (support of J) / (no. of transactions)
- ratio of confidence to expected confidence

- Interpretation:
 - if lift > 1, then I and J are positively correlated
 lift < 1, then I are J are negatively correlated.
 lift = 1, then I and J are independent.

Interestingness Measure: Correlations and Lift

- *play basketball* \Rightarrow *eat cereal* [40%, 66.7%] is misleading
 - The overall percentage of students eating cereal is 75% which is higher than 66.7%.
- *play basketball* ⇒ *not eat cereal* [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift or corr

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

Beyond Binary Data

Hierarchies

- drink → milk → low-fat milk → Stop&Shop low-fat milk
 ...
- find associations on any level

Sequences over time

Multiple-level Association Rules

- Items often form hierarchy
- Flexible support settings: Items at the lower level are expected to have lower support.

Figure 1: A taxonomy for the relevant data items

- Transaction database can be encoded based on dimensions and levels
- explore shared multi-level mining

uniform support

reduced support

Quantitative Association Rules

ID	Age	Salary	Maritial Status	NumCars
100	44	30 000	married	2
200	55	45 000	married	3
300	45	50 000	divorced	1
400	34	44 000	single	0
500	45	38 000	married	2
600	33	44 000	single	2

Sample Rules	Support	Confidence
age:4455> and < status: married> ==> <numcars:2></numcars:2>	50%	100%
<numcars: 01=""> ==> <married: no=""></married:></numcars:>	33%	66,70%

Multi-dimensional Association

Single-dimensional rules:

buys(X, "milk") \Rightarrow buys(X, "bread")

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (*no repeated predicates*)

age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")

- hybrid-dimension assoc. rules (*repeated predicates*)
 age(X, "19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes
 - finite number of possible values, no ordering among values
- Quantitative Attributes
 - numeric, implicit ordering among values

Sequence Databases and Sequential Pattern Analysis

- Transaction databases, time-series databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- Applications of sequential pattern mining
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatment, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, etc.
 - Telephone calling patterns, Weblog click streams
 - DNA sequences and gene structures

What Is Sequential Pattern Mining?

 Given a set of sequences, find the complete set of *frequent* subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A <u>sequence database</u>

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<a(bc)dc> is a <u>subsequence</u> of <<u>a(abc)(ac)d(c</u>f)>

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential pattern</u>

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
 - be highly efficient, scalable, involving only a small number of database scans
 - be able to incorporate various kinds of user-specific constraints

Applications

- Market basket analysis
 - Store layout, client offers
- This analysis is applicable whenever a customer purchases multiple things in proximity
 - telecommunication (each customer is a transaction containing the set of phone calls)
 - weather analysis (each time interval is a transaction containing the set of observed events)
 - credit cards

. . .

- banking services
- medical treatments
- Finding unusual events
 - WSARE What is Strange About Recent Events

Conclusions

- Association rule mining
 - probably the most significant contribution from the database community in KDD
 - A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction
 - Association analysis in other types of data: sequence data, spatial data, multimedia data, time series data, etc.

Summary

- Frequent itemsets
- Association rules
- Subset property
- Apriori algorithm
- Extensions of this algorithms
- Sequence patterns
- Applications

Any questions, remarks?

