# Mining Classification Knowledge Remarks on Non-Symbolic Methods



JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology

SE lecture - revision 2013

#### Outline

- 1. Bayesian classification
- 2. K nearest neighbors
- 3. Linear discrimination
- 4. Artificial neural networks
- 5. Other remarks

## **Bayesian Classification: Why?**

- Probabilistic learning: Calculate explicit probabilities for hypothesis (decision), among the most practical approaches to certain types of learning problems
- <u>Probabilistic prediction</u>: Predict multiple hypotheses, weighted by their probabilities
- <u>Applications</u>: Quite effective in some problems, e.g. text classification
- Good mathematical background and reference point to other methods

#### **Bayesian Theorem: Basics**

- Let X be a data sample whose class label is unknown
- Let H be a hypothesis that X belongs to class C
- For classification problems, determine P(H/X): the probability that the hypothesis holds given the observed data sample X
- P(H): prior probability of hypothesis H (i.e. the initial probability before we observe any data, reflects the background knowledge)
- P(X): probability that sample data is observed
- P(X|H) : probability of observing the sample X, given that the hypothesis holds

#### **Bayesian** Theorem

- Given training data *X*, posteriori probability of a hypothesis *H*, *P*(*H*|*X*) follows the Bayes theorem  $P(H|X) = \frac{P(X|H)P(H)}{P(X)}$
- Informally, this can be written as posterior =likelihood x prior / evidence
- MAP (maximum posteriori) hypothesis

 $h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h).$ 



 Practical difficulty: require initial knowledge of many probabilities, significant computational cost

#### **Bayesian** Classifiers

Consider each attribute and class label as random variables

Given a record with attributes  $(A_1, A_2, ..., A_n)$ 

- Goal is to predict class C
- Specifically, we want to find the value of C that maximizes P(C| A<sub>1</sub>, A<sub>2</sub>,...,A<sub>n</sub>)
- Can we estimate P(C| A<sub>1</sub>, A<sub>2</sub>,...,A<sub>n</sub>) directly from data?

#### **Bayesian** Classifiers

- Approach:
  - compute the posterior probability P(C | A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes P(C | A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>)
- Equivalent to choosing value of C that maximizes P(A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>|C) P(C)
- How to estimate  $P(A_1, A_2, ..., A_n | C)$ ?

#### Naïve Bayes Classifier

- Assume independence among attributes A<sub>i</sub> when class is given:
  - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
  - Can estimate  $P(A_i | C_i)$  for all  $A_i$  and  $C_i$ .
  - New point is classified to C<sub>j</sub> if P(C<sub>i</sub>) Π P(A<sub>i</sub>| C<sub>i</sub>) is maximal.
- Greatly reduces requirements to collect enough data , only count the class distribution.

#### Probabilities for weather data

| Out      | tlook |     | Tempe | erature | )   | Hu     | midity |      |       | Windy    |       | Pla    | ay   |
|----------|-------|-----|-------|---------|-----|--------|--------|------|-------|----------|-------|--------|------|
|          | Yes   | No  |       | Yes     | No  |        | Yes    | No   |       | Yes      | No    | Yes    | No   |
| Sunny    | 2     | 3   | Hot   | 2       | 2   | High   | 3      | 4    | False | 6        | 2     | 9      | 5    |
| Overcast | 4     | 0   | Mild  | 4       | 2   | Normal | 6      | 1    | True  | 3        | 3     |        |      |
| Rainy    | 3     | 2   | Cool  | 3       | 1   |        |        |      |       |          |       |        |      |
| Sunny    | 2/9   | 3/5 | Hot   | 2/9     | 2/5 | High   | 3/9    | 4/5  | False | 6/9      | 2/5   | 9/14   | 5/14 |
| Overcast | 4/9   | 0/5 | Mild  | 4/9     | 2/5 | Normal | 6/9    | 1/5  | True  | 3/9      | 3/5   |        |      |
| Rainy    | 3/9   | 2/5 | Cool  | 3/9     | 1/5 |        | Outlo  |      | Temp  | Humidity | Wind  | y Play |      |
|          |       |     |       |         |     |        | Sunr   | -    | Hot   | High     | False |        |      |
|          |       |     |       |         |     |        | Sunr   | -    | Hot   | High     | True  | No     |      |
|          |       |     |       |         |     |        | Over   | cast | Hot   | High     | False | Yes    |      |
|          |       |     |       |         |     |        | Rain   | У    | Mild  | High     | False | Yes    |      |
|          |       |     |       |         |     |        | Rain   | У    | Cool  | Normal   | False | Yes    |      |
|          |       |     |       |         |     |        | Rain   | у    | Cool  | Normal   | True  | No     |      |
|          |       |     |       |         |     |        | Over   | cast | Cool  | Normal   | True  | Yes    | 00   |
|          |       |     |       |         |     |        | Sunr   | ıy   | Mild  | High     | False | No     |      |
|          |       |     |       |         |     |        | Sunr   | ıy   | Cool  | Normal   | False | Yes    |      |
|          |       |     |       |         |     |        | Rain   | y    | Mild  | Normal   | False | Yes    |      |
|          |       |     |       |         |     |        | Sunr   | ıy   | Mild  | Normal   | True  | Yes    |      |
|          |       |     |       |         |     |        | Over   | cast | Mild  | High     | True  | Yes    |      |
|          |       |     |       |         |     |        | Over   | cast | Hot   | Normal   | False | Yes    |      |
| : 44 0:  |       |     |       |         |     |        | Rain   | у    | Mild  | High     | True  | No     |      |

#### Probabilities for weather data

| Outlook  |     | Temperature |      | Humidity |     | Windy  |     |     | Play  |     |     |      |      |
|----------|-----|-------------|------|----------|-----|--------|-----|-----|-------|-----|-----|------|------|
|          | Yes | No          |      | Yes      | No  |        | Yes | No  |       | Yes | No  | Yes  | No   |
| Sunny    | 2   | 3           | Hot  | 2        | 2   | High   | 3   | 4   | False | 6   | 2   | 9    | 5    |
| Overcast | 4   | 0           | Mild | 4        | 2   | Normal | 6   | 1   | True  | 3   | 3   |      |      |
| Rainy    | 3   | 2           | Cool | 3        | 1   |        |     |     |       |     |     |      |      |
| Sunny    | 2/9 | 3/5         | Hot  | 2/9      | 2/5 | High   | 3/9 | 4/5 | False | 6/9 | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9 | 0/5         | Mild | 4/9      | 2/5 | Normal | 6/9 | 1/5 | True  | 3/9 | 3/5 |      |      |
| Rainy    | 3/9 | 2/5         | Cool | 3/9      | 1/5 |        |     |     |       |     |     |      |      |

• A new day:

| Outlook | Temp. | Humidity | Windy | Play |
|---------|-------|----------|-------|------|
| Sunny   | Cool  | High     | True  | ?    |

#### Likelihood of the two classes

- For "yes" =  $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$
- For "no" =  $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

witten&eibe

#### Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

| Outlook | Temp. | Humidity | Windy | Play |
|---------|-------|----------|-------|------|
| ?       | Cool  | High     | True  | ?    |

```
Likelihood of "yes" = 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238
Likelihood of "no" = 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343
P("yes") = 0.0238 / (0.0238 + 0.0343) = 41\%
P("no") = 0.0343 / (0.0238 + 0.0343) = 59\%
```

#### Naïve Bayes: discussion

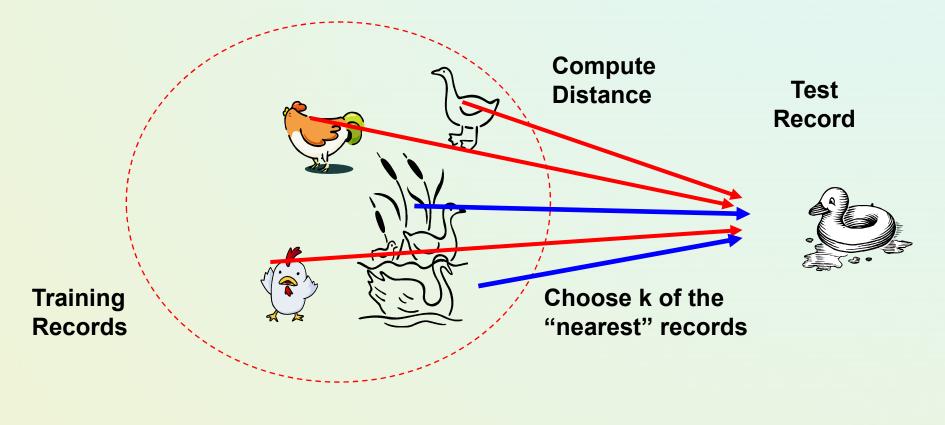
- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes
   will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (→ kernel density estimators)

#### **Instance-Based Methods**

- Instance-based learning: Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified.
- Typical approaches:
  - <u>k-nearest neighbor approach</u>:
    - Instances represented as points in a Euclidean space.
  - Locally weighted regression:
    - Constructs local approximation.

#### **Nearest Neighbor Classifiers**

- Basic idea:
  - If it walks like a duck, quacks like a duck, then it's probably a duck



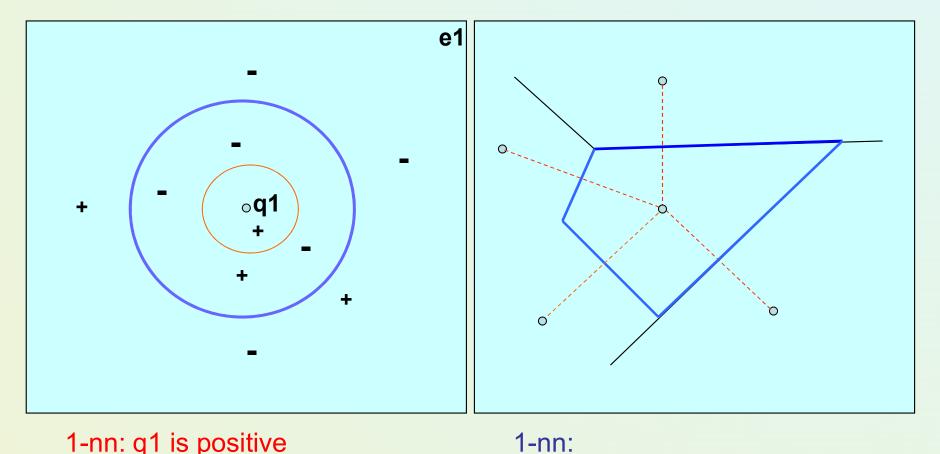
#### k-Nearest-Neighbor Algorithm

#### The case of discrete set of classes.

- 1. Take the instance *x* to be classified
- 2. Find *k* nearest neighbors of *x* in the training data.
- Determine the class c of the majority of the instances among the k nearest neighbors.
- 4. Return the class c as the classification of x.

The distance functions are composed from difference metric  $d_a$  defined for each two instances  $x_i$  and  $x_j$ .

#### **Classification & Decision Boundaries**



1-nn: q1 is positive5-nn: q1 is classified as negative

#### The distance function

- Simplest case: one numeric attribute
  - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
  - Weighting the attributes might be necessary

#### **Instance-based** learning

- Distance function defines what's learned
- Most instance-based schemes use Euclidean distance:

$$\sqrt{(a_1^{(1)} - a_1^{(2)})^2 + (a_2^{(1)} - a_2^{(2)})^2 + \dots + (a_k^{(1)} - a_k^{(2)})^2}$$

 $a^{(1)}$  and  $a^{(2)}$ : two instances with k attributes

- Taking the square root is not required when comparing distances
- Other popular metric: *city-block (Manhattan) metric* 
  - Adds differences without squaring them

#### Normalization and other issues

 Different attributes are measured on different scales ⇒ need to be *normalized*:

$$a_{i} = \frac{v_{i} - \min v_{i}}{\max v_{i} - \min v_{i}} \quad \text{or} \quad a_{i} = \frac{v_{i} - Avg(v_{i})}{StDev(v_{i})}$$

*v<sub>i</sub>*: the actual value of attribute *i* 

- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

# Discussion on the k-NN Algorithm

- The k-NN algorithm for continuous-valued target functions.
  - Calculate the mean values of the *k* nearest neighbors.
- Distance-weighted nearest neighbor algorithm.
  - Weight the contribution of each of the k neighbors according to their distance to the query point xq.
    - giving greater weight to closer neighbors:

 $w \equiv \frac{1}{d(x_q, x_i)^2}$ 

- Similarly, we can distance-weight the instances for real-valued target functions.
- Robust to noisy data by averaging k-nearest neighbors.
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes. To overcome it,
  - axes stretch or elimination of the least relevant attributes.

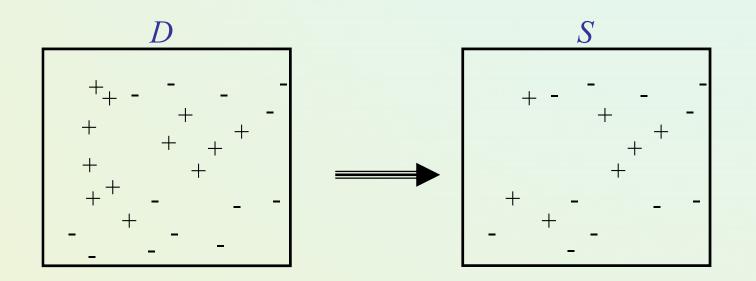
#### **Disadvantages of the NN Algorithm**

- the NN algorithm has large storage requirements because it has to store all the data;
- the NN algorithm is slow during instance classification because all the training instances have to be visited;
- the accuracy of the NN algorithm degrades with increase of noise in the training data;
- the accuracy of the NN algorithm degrades with increase of irrelevant attributes.

#### **Condensed NN Algorithm**

*The Condensed NN algorithm was introduced to reduce the storage requirements of the NN algorithm.* 

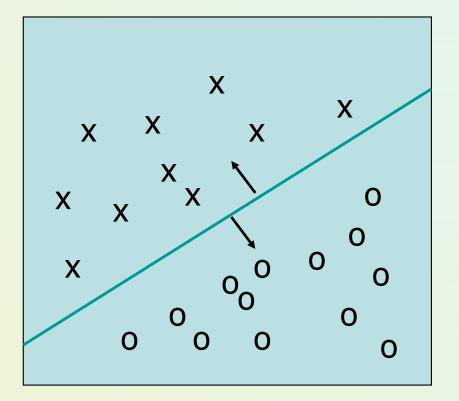
The algorithm finds a subset *S* of the training data *D* s.t. each instance in *D* can be correctly classified by the NN algorithm applied on the subset *S*. *The average reduction of the algorithm varies between 60% to 80%*.



#### Remarks on Lazy vs. Eager Learning

- Instance-based learning: lazy evaluation
- Decision-tree and Bayesian classification: eager evaluation
- <u>Key differences</u>
  - Lazy method may consider query instance xq when deciding how to generalize beyond the training data D
  - Eager method cannot since they have already chosen global approximation when seeing the query
- Efficiency: Lazy less time training but more time predicting
- Accuracy
  - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
  - Eager: must commit to a single hypothesis that covers the entire instance space

#### **Linear Classification**



- Binary Classification problem
- The data above the blue line belongs to class 'x'
- The data below red line belongs to class 'o'
- Examples SVM, Perceptron, Probabilistic Classifiers

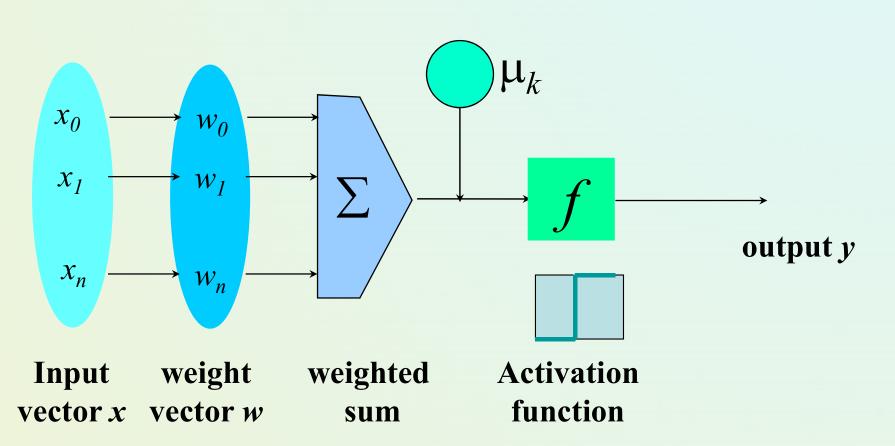
## **Discriminative** Classifiers

- Advantages
  - prediction accuracy is generally high
    - (as compared to Bayesian methods in general)
  - robust, works when training examples contain errors
  - fast evaluation of the learned target function
- Criticism
  - long training time
  - difficult to understand the learned function (weights)
  - not easy to incorporate domain knowledge
    - (easy in the form of priors on the data or distributions)

#### **Neural Networks**

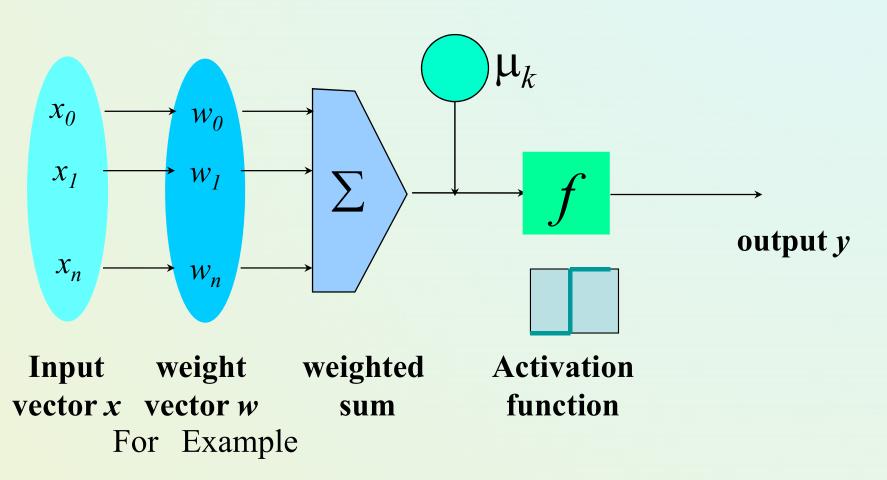
- Analogy to Biological Systems (Indeed a great example of a good learning system)
- Massive Parallelism allowing for computational efficiency
- The first learning algorithm came in 1959 (Rosenblatt) who suggested that if a target output value is provided for a single neuron with fixed inputs, one can incrementally change weights to learn to produce these outputs using the perceptron learning rule

#### A Neuron



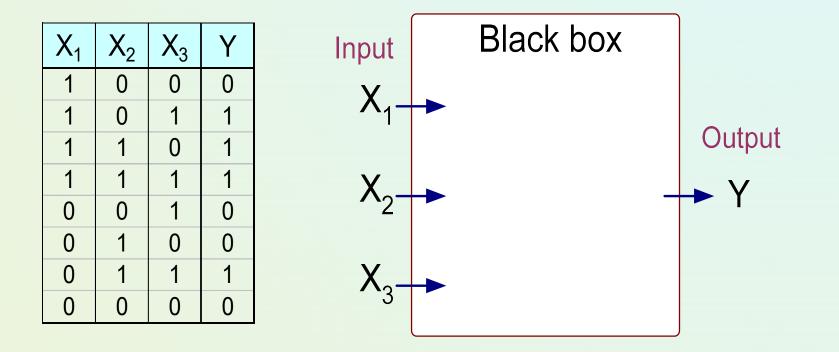
 The *n*-dimensional input vector *x* is mapped into variable *y* by means of the scalar product and a nonlinear function mapping

#### A Neuron



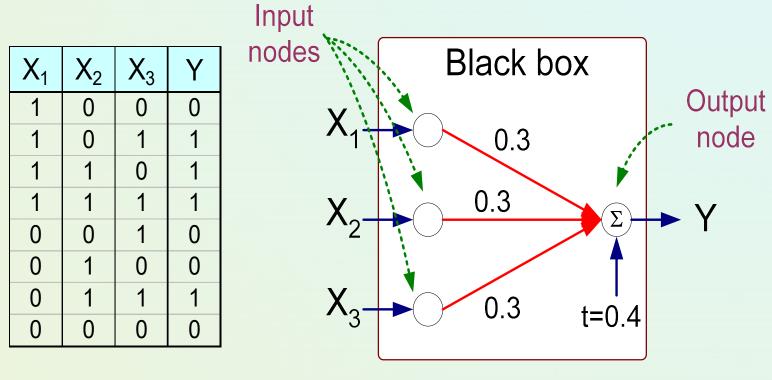
$$\mathbf{y} = \operatorname{sign}(\sum_{i=0}^{n} w_{i} x_{i} + \mu_{k})$$

#### **Artificial Neural Networks (ANN)**



Output Y is 1 if at least two of the three inputs are equal to 1.

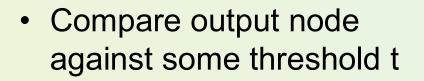
#### **Artificial Neural Networks (ANN)**

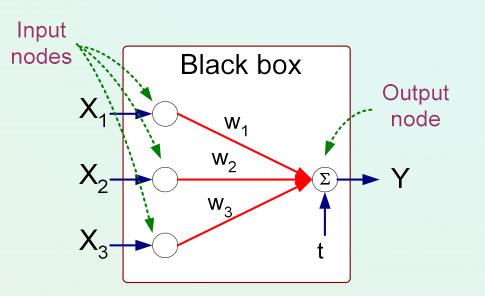


 $Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$ where  $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$ 

#### **Artificial Neural Networks (ANN)**

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links

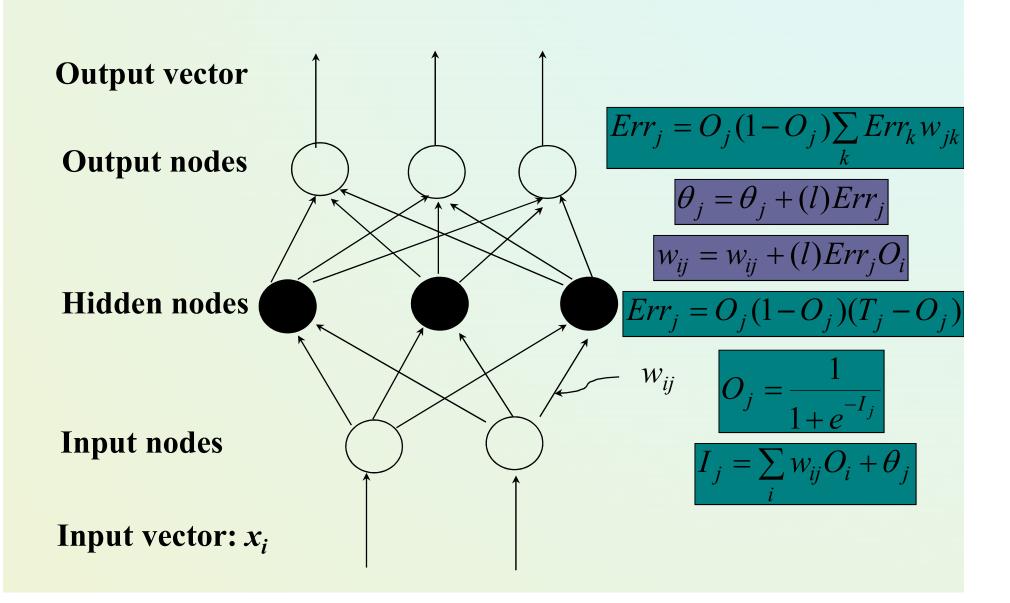




**Perceptron Model** 

$$Y = I(\sum_{i} w_{i}X_{i} - t) \text{ or}$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

#### **Multi-Layer** Perceptron



#### **Network Training**

- The ultimate objective of training
  - obtain a set of weights that makes almost all the examples in the training data classified correctly
- Steps:
  - Initial weights are set randomly
  - Input examples are fed into the network one by one
  - Activation values for the hidden nodes are computed
  - Output vector can be computed after the activation values of all hidden node are available
  - Weights are adjusted using error (desired output - actual output)

#### **Neural Networks**

- Advantages
  - prediction accuracy is generally high
  - robust, works when training examples contain errors
  - output may be discrete, real-valued, or a vector of several discrete or real-valued attributes
  - fast evaluation of the learned target function.
- Criticism
  - long training time
  - difficult to understand the learned function (weights).
  - not easy to incorporate domain knowledge