Data Mining -Evaluation of Classifiers

Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

Outline

- 1. Evaluation criteria preliminaries.
- 2. Empirical evaluation of classifiers
 - Hold-out
 - Cross-validation
 - Leaving one out and other techniques
- 3. Other schemes for classifiers.

Classification problem – another way ...

- General task: assigning a decision class label to a set of unclassified objects described by a fixed set of attributes (features).
- Given a set of pre-classified examples, discover the classification knowledge representation,
 - to be used either as a *classifier* to classify new cases (<u>a predictive perspective</u>)

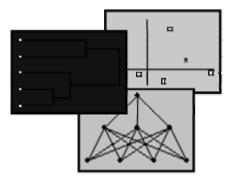
or

to *describe* classification situations in data (<u>a descriptive perspective</u>).

• Supervised learning: classes are known for the examples used to build the classifier.

Approaches to learn classifiers

- Decision Trees
- Rule Approaches
- Logical statements (ILP)
- Bayesian Classifiers
- Neural Networks
- Discriminant Analysis
- Support Vector Machines
- k-nearest neighbor classifiers
- Logistic regression
- Artificial Neural Networks
- Genetic Classifiers



Discovering and evaluating classification knowledge

Creating classifiers is a multi-step approach:

- Generating a classifier from the given learning data set,
- Evaluation on the test examples,
- Using for new examples.

Train and test paradigm!

Evaluation criteria (1)

- *Predictive* (*Classification*) *accuracy*: this refers to the ability of the model to correctly predict the class label of new or previously unseen data:
 - accuracy = % of testing set examples correctly classified by the classifier
- Speed: this refers to the computation costs involved in generating and using the model
- *Robustness*: this is the ability of the model to make correct predictions given noisy data or data with missing values

Evaluation criteria (2)

- Scalability: this refers to the ability to construct the model efficiently given large amount of data
- Interpretability: this refers to the level of understanding and insight that is provided by the model
- Simplicity:
 - decision tree size
 - rule compactness
- Domain-dependent quality indicators

Predictive accuracy / error

- General view (statistical learning point of view):
- Lack of generalization prediction risk:

 $R(f) = E_{xy}L(y, f(x))$

- where $L(y, \hat{y})$ is a loss or cost of predicting value \hat{y} when the actual value is y and *E* is expected value over the joint distribution of all (x, y) for data to be predicted.
- Simple classification \rightarrow zero-one loss function

$$L(y, \hat{y}) = \begin{cases} 0 & if y = f(y) \\ 1 & if y \neq f(y) \end{cases}$$

Evaluating classifiers – more practical ...

Predictive (classification) accuracy (0-1 loss function)

- Use testing examples, which do not belong to the ulletlearning set
 - N_t number of testing examples
 - N_c number of correctly classified testing examples
- N_c number of equation of $\eta = \frac{N_c}{N_t}$
- (Misclassification) Error: ullet

$$\varepsilon = \frac{N_t - N_c}{N_t}$$

• Other options:

analysis of confusion matrix

A confusion matrix

	Predicted			
Original classes	K ₁	K ₂	K ₃	
K ₁	50	0	0	
K ₂	0	48	2	
<i>K</i> ₃	0	4	46	

• Various measures could be defined basing on values in a confusion matrix.

Confusion matrix and cost sensitive analysis

	Predicted			
Original classes	<i>K</i> ₁	<i>K</i> ₂	<i>K</i> ₃	
<i>K</i> ₁	50	0	0	
K ₂	0	48	2	
<i>K</i> ₃	0	4	46	

$$\mathbf{C}(\varepsilon) = \sum_{i=1}^{r} \sum_{j=1}^{r} n_{ij} \cdot c_{ij}$$

- Costs assigned to different types of errors.
- Costs are unequal
- Many applications: loans, medical diagnosis, fault detections, spam ...
- Cost estimates may be difficult to be acquired from real experts.

Other measures for performance evaluation

- Classifiers:
 - Misclassification cost
 - Lift
 - Brier score, information score, margin class probabilities
 - Sensitivity and specificity measures (binary problems), ROC curve → AUC analysis.
 - Precision and recall, F-measure.
- Regression algorithms
 - Mean squared error
 - Mean absolute error and other coefficient
- More will be presented during next lectures
 - Do not hesitate to ask any questions or read books!

Theoretical approaches to evaluate classifiers

- So called COLT
 - COmputational Learning Theory subfield of Machine Learning
 - PAC model (Valiant) and statistical learning (Vapnik Chervonenkis Dimension \rightarrow VC)
- Asking questions about general laws that may govern learning concepts from examples
 - Sample complexity
 - Computational complexity
 - Mistake bound

COLT typical research questions

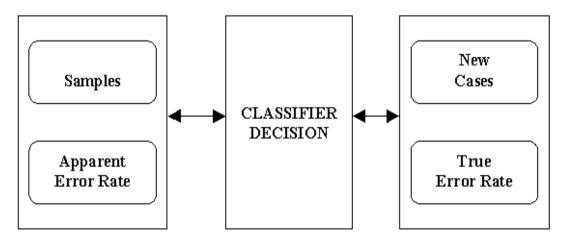
- Is it possible to identify problems that are inherently difficult of easy, independently of the learning algorithms?
- What is the number of examples necessary or sufficient to assure successful learning?
- Can one characterize the number of mistakes that an algorithm will make during learning?
 - The probability that the algorithm will output a successful hypothesis.
- All examples available or incremental / active approaches?
- Read more in T.Mitchell's book chapter 7. or P.Cichosz (Polish) coursebook – Systemy uczące się.

Experimental evaluation of classifiers

- How predictive is the model we learned?
- Error on the training data is *not* a good indicator of performance on future data
 - Q: Why?
 - A: Because new data will probably not be exactly the same as the training data!
- Overfitting fitting the training data too precisely usually leads to poor results on new data.
 - Do not learn too much peculiarities in training data; think about generality abilities!
 - We will come back to it latter during the lecture on *pruning* structures of classifiers.

Empirical evaluation

- The general paradigm \rightarrow "Train and test"
- Closed vs. open world assumption.
- The rule of a supervisor?
- Is it always probably approximate correct?
- How could we estimate with the smallest error?



Experimental estimation of classification accuracy

Random partition into train and test parts:

- Hold-out
 - use two independent data sets, e.g., training set (2/3), test set(1/3); random sampling
 - repeated hold-out
- *k*-fold cross-validation
 - randomly divide the data set into *k* subsamples
 - use k-1 subsamples as training data and one sub-sample as test data ---repeat k times
- Leave-one-out for small size data

Evaluation on "LARGE" data, hold-out

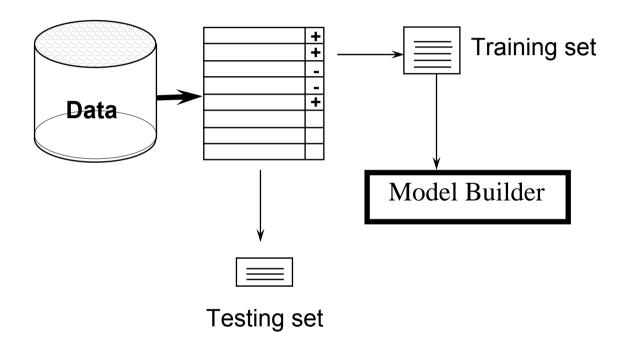
- A simple evaluation is sufficient
 - Randomly split data into training and test sets (usually 2/3 for train, 1/3 for test)
- Build a classifier using the *train* set and evaluate it using the *test* set.

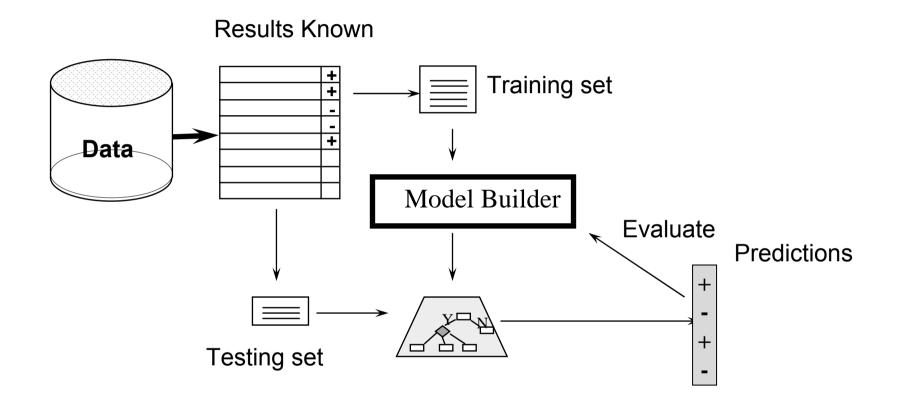
Step 1: Split data into train and test sets

Historical data **Results Known** + + Training set -+ Data Testing set

Step 2: Build a model on a training set

THE PAST Results Known





Remarks on hold-out

- It is important that the test data is not used *in any way* to create the classifier!
- One random split is used for really large data
- For medium sized → **repeated hold-out**
- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates (classification accuracies) on the different iterations are averaged to yield an overall error rate
 - Calculate also a standard deviation!

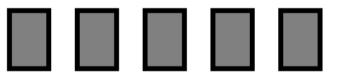
- Still not optimum: the different test sets usually overlap (difficulties from statistical point of view).
- Can we prevent overlapping?

Cross-validation

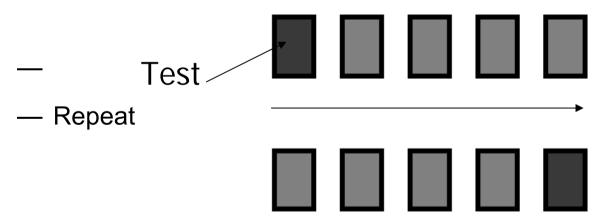
- Cross-validation avoids overlapping test sets
 - First step: data is split into *k* subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called *k-fold cross-validation*
- Often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate

Cross-validation example:

- Break up data into groups of the same size



— Hold aside one group for testing and use the rest to build model



More on 10 fold cross-validation

- Standard method for evaluation: stratified ten-fold crossvalidation
- Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate (since CART book by Breiman, Friedman, Stone, Olsen 1994) However, other splits – e.g. 5 cv – are also popular.
- Also the standard deviation is essential for comparing learning algorithms.
- Stratification reduces the estimate's variance!
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated more times and results are averaged (reduces the variance)!

Leave-One-Out cross-validation

- Leave-One-Out: a particular form of cross-validation:
 - Set number of folds to number of training instances
 - i.e., for *n* training instances, build classifier *n* times but from *n* -1 training examples ...
- Makes best use of the data.
- Involves no random sub-sampling.
- Quite computationally expensive!

Classifie	er		
	W	EKA Explorer	Decision Trees
Testing data	<pre>Veka Explorer Proprocess Classify Cluster Associate Classifier Choose J48 -C 0.25 -M 2 Test options C Use training set C Supplied test set Sot @ Cross-validation Folds 10 C Percentage split % 66</pre>	Classifier output node-caps - yes deg-malig = 1: recurrence-events (1.01/0.4) deg-malig - 2: no-recurrence-events (26.2/8.0)	× ē_
	Nore options (Non) Class Start Stop Result list (right-click for options) 13:10:37 - trees.J48	<pre> deg-malig = 3: recurrence-events (30.4/7.4) node-caps = no: no-recurrence-events (228.39/53.4) Whimber of Leeves : 4 Size of the tree : 6 Time taken to build model: 0.15 seconds</pre>	Mean accuracy
		=== Stratified cross-validation === Sunnary Correctly Classified Instances 216 75.5245 % Incorrectly Classified Instances 70 24.4755 % Koppa statistic 0.2826 Nean absolute error 0.3676 Root nean squared error 0.4324 Relative absolute error 87.8635 %	
			currence-events rence-events
	Status OK	=== Confusion Matrix ===	[] ;

Comparing data mining algorithms

- Frequent situation: we want to know which one of two learning schemes performs better.
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates.
- Problem: variance in estimate.
- Variance can be reduced using repeated CV.
- However, we still don't know whether the results are reliable.
 - There will be a long explanation on this topic in future lectures

Comparing two classifiers on the same data

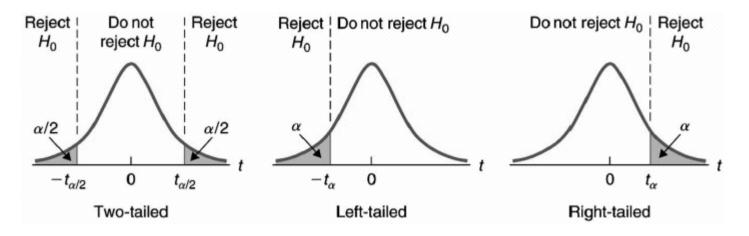
• Summary of results in separate folds

Podział	KI_1	KI_2	
1	87,45	88,4	
2	86,5	88,1	
3	86,4	87,2	
4	86,8	86	
5	87,8	87,6	
6	86,6	86,4	
7	87,3	87	
8	87,2	87,4	
9	88	89	
10	85,8	87,2	
Srednia	86,98	87,43	
Odchylenie	0,65	0,85	

The general question: given two classifiers K1 and K2 produced by feeding a training dataset D to two algorithms A1 and A2, which classifier will be more accurate in classifying new examples?

Paired t-test

- The null hypothesis H0: the average performance of classifiers on the data D is =
- H1: usually \neq
- Test statistics and the decision based on $\boldsymbol{\alpha}$



 Remark: assumption → the paired difference variable should be normally distributed!

An example of "paired t-test" α = 0,05

Table 1. Comparison of classification accuracies [%] obtained by the single MODLEM based classifier and the bagging approach

Name of	Single		Bagging - wi	th different T	
dataset	MODLEM	3	5	7	10
bank	93.81 ± 0.94	95.05 ± 0.91	94.95 ± 0.84	95.22 ± 1.02	$93.95^{\ast}\pm0.94$
buses	$97.20\ \pm 0.94$	$98.05* \pm 0.97$	99.54 ± 1.09	$97.02* \pm 1.15$	$97.45^{*}\pm1.13$
200	94.64 ± 0.67	$93.82* \pm 0.68$	$93.89* \pm 0.71$	93.47 ± 0.73	93.68 ± 0.70
hepatitis	78.62 ± 0.93	82.00 ± 1.14	84.05 ± 1.1	81.05 ± 0.97	84.0 ± 0.49
iris	94.93 ± 0.5	$95.13* \pm 0.46$	$94.86^{*}\pm0.54$	$95.06^{\ast}\pm0.53$	$94.33^{*}\pm0.59$
automobile	85.23 ± 1.1	82.98 ± 0.86	$83.0 \ \pm 0.99$	82.74 ± 0.9	81.39 ± 0.84
segmentation	85.71 ± 0.71	$86.19^{ *} \pm 0.82$	87.62 ± 0.55	87.61 ± 0.46	87.14 ± 0.9
glass	72.41 ± 1.23	68.5 ± 1.15	74.81 ± 0.94	74.25 ± 0.89	76.09 ± 0.68
bricks	$90.32^*\pm0.82$	$90.3 \ ^* \pm 0.54$	$89.84^{ *} \pm 0.65$	$91.21{}^{*}\pm0.48$	$90.77^{\ast}\pm0.72$
vote	92.67 ± 0.38	$93.33* \pm 0.5$	94.34 ± 0.34	95.01 ± 0.44	96.01 ± 0.29
bupa	65.77 ± 0.6	$64.98* \pm 0.76$	76.28 ± 0.44	70.74 ± 0.96	75.69 ± 0.7
election	88.96 ± 0.54	90.3 ± 0.36	91.2 ± 0.47	91.66 ± 0.34	90.75 ± 0.55
urology	$63.80\ \pm 0.73$	64.8 ± 0.83	65.0 ± 0.43	67.40 ± 0.46	$67.0\ \pm\ 0.67$
german	$72.16\ \pm 0.27$	$73.07* \pm 0.39$	76.2 ± 0.34	75.62 ± 0.34	75.75 ± 0.35
crx	84.64 ± 0.35	$84.74*\pm0.38$	86.24 ± 0.39	87.1 ± 0.46	89.42 ± 0.44
pima	73.57 ± 0.67	$75.78^{\ast}\pm 0.6$	$74.35*\pm 0.64$	74.88 ± 0.44	77.87 ± 0.39

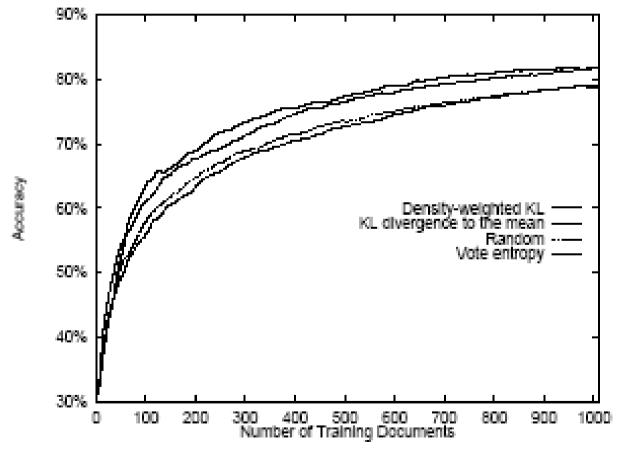
One classifier (Single MODLEM) versus other bagging schema -J.Stefanowski

Other sampling techniques for classifiers

- There are other approaches to learn classifiers:
 - Incremental learning
 - Batch learning
 - Windowing
 - Active learning
- Some of them evaluate classification abilities in stepwise way:
 - Various forms of learning curves

An example of a learning curve

 Used naïve Bayes model for text classification in a Bayesian learning setting (20 Newsgroups dataset) -



[McCallum & Nigam, 1998]

Summary

- What is the classification task?
- Discovering classifiers is a muti-step approach.
 - Train and test paradigm.
- How could you evaluate the classification knowledge:
 - Evaluation measures predictive ability.
- Empirical approaches use independent test examples.
 - Hold-out vs. cross validation.
 - Repeated 10 fold stratified cross validation.
- More advances issues (e.g. more about comparing many algorithms and ROC analysis will be presented during future lectures)

Any questions, remarks?

