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Abstract. The paper discusses problems of constructing classifiers from
imbalanced data. Re-sampling approaches that change the original class
distribution are often used to improve performance of classifiers for the
minority class. We describe a new approach to selective pre-processing of
imbalanced data which combines local over-sampling of the minority class
with filtering difficult examples from majority classes. In experiments
focused on rule-based and tree-based classifiers we compare our approach
with two other well known preprocessing methods – NCR and SMOTE.
The results show that NCR is too strongly biased towards the minority
class and leads to deteriorated specificity and overall accuracy, while
SMOTE and our approach do not demonstrate such behavior. Analysis
of a degree to which the original class distribution has been modified
also reveals that our approach does not introduce so extensive changes
as SMOTE.

1 Introduction

The problem of discovering classification knowledge from imbalanced data re-
ceived much research interest in recent years [2, 4, 10]. A data set is considered
to be imbalanced if one of the classes (further called a minority class) contains
much smaller number of examples than the remaining classes (majority classes).
The minority class is usually of primary interest from the perspective of con-
sidered problems. Then, the imbalanced distribution of classes constitutes a dif-
ficulty for standard learning algorithms because they are biased towards the
majority classes. As a result examples from the majority classes are classified
correctly by created classifiers, whereas examples from the minority class tend
to be misclassified. In this context, overall classification accuracy is not appro-
priate performance measure because it is biased towards the majority classes.
Thus, classifiers are evaluated by measures derived from a binary confusion ma-
trix, like sensitivity and specificity (sensitivity is defined as the ratio of correctly
recognized examples from the minority class, while specificity is the ratio of cor-
rectly recognized examples from the majority classes). Moreover the Receiver
Operating Characteristics curve and the area under this curve are often used [2].
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Resampling methods that modify the original class distributions in pre-
processing are the most popular approaches to deal with imbalanced data. In
particular, methods SMOTE, NCR or their combinations, were experimentally
shown to work well [1, 3]. However, some of their properties can be considered
as shortcomings. Focused undersampling methods, like NCR [6] or one-side-
sampling [5], may remove too many examples from the majority classes. As
a result, improved sensitivity is associated with deteriorated specificity. Ran-
dom introduction of synthetic examples by SMOTE [3] may be questionable or
difficult to justify in some domains, where it is important to preserve a link
between original data and a constructed classifier (e.g., to justify suggested de-
cisions). Moreover, SMOTE may blindly ”over-generalize” the minority area
without checking positions of nearest examples from the majority class and lead
to overlapping between classes. Finally, the number of synthetic samples gener-
ated by SMOTE has to be globally parameterized, thus reducing the flexibility
of approach.

Although when constructing classifiers from imbalanced data attention is
usually focused on improving sensitivity, in many problems it is still important
to preserve satisfactory specificity (i.e., to sufficiently recognize the majority
classes), thus keeping overall accuracy of a classifier at an acceptable level. We
claim that in general there is a kind of trade-off between sensitivity and speci-
ficity, but too large drop of specificity may not be accepted. Moreover, we hy-
pothesize that it is worth to develop more flexible, adaptive approaches based
on analyzing local neighborhood of “difficult” examples rather than using global
approaches with fixed parameters. Following the above motivations we introduce
our own approach to selective pre-processing of imbalanced data. It combines
filtering of these examples of the majority classes, which may result in a classifier
misclassifying some examples from the minority class, with local over-sampling
of examples from the minority class that are located in ”difficult regions” (i.e.,
surrounded by examples from the majority classes). On the one hand, such fil-
tering is less greedy than the one employed by NCR, and on the other hand, the
over-sampling is more specific that this used by SMOTE.

The main aim of this paper is to experimentally evaluate usefulness of our
approach combined with two different learning algorithms. Specifically we use
C4.5 [13] for inducing decision trees and MODLEM [7] for decision rules. We
compare our technique to SMOTE and NCR – two re-sampling methods that
are closely related to our proposal. The second aim of these experiments is to
study how much all compared methods change the class distribution (numbers
of examples in the minority and majority classes).

2 Related Works on Focused Re-sampling

Here we discuss only focused re-sampling methods, as they are most related to
our approach and further experiments – for more extensive review see [2, 10].

In [5] one-side-sampling was used to under-sample the majority classes in
a focused way. Noisy and borderline (i.e., lying on a border between decision
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classes) examples from the majority class are identified using Tomek links and
are deleted. Another approach to focused removal of examples from the ma-
jority class is the neighborhood cleaning rule (NCR) introduced in [6]. NCR
uses the edited nearest neighbor rule (ENNR) to find and delete these exam-
ples from the majority classes, whose class labels differ from class labels of their
three nearest neighbors. Experiments demonstrated that both above approaches
provided better sensitivity than simple random over-sampling. According to [6]
NCR performs better than one-side sampling and processes noisy examples more
carefully.

The Synthetic Minority Over-sampling Technique (SMOTE) selectively over-
samples the minority class by creating new synthetic (artificial) examples [3]. It
considers each example from the minority class; finds its k-nearest neighbors
from the minority class; randomly selects j of these neighbors and randomly
introduces new artificial examples along the lines joining it with the j nearest
neighbors. SMOTE can generate artificial examples with quantitative and qual-
itative attributes and a number of nearest neighbors depends on how extensive
over-sampling is required. Experiments showed that a combination of SMOTE
and under-sampling yielded the best AUC [3]. This was also confirmed in a com-
prehensive study [1], where various re-sampling methods were evaluated with
different imbalanced data sets. SMOTE was also used in combination with en-
semble classifiers as SMOTEBoost [2]. There are also other proposals to focused
over-sampling, e.g. Japkowicz used local over-sampling of sub-clusters inside the
minority class.

Our past research was concerned with the use of rough set theory to detect
inconsistent examples that were in turn removed or relabeled [8]. This technique
was combined with rule induction and experimentally evaluated. Then, in our
last paper [9] we preliminary sketched the idea of the selective pre-processing
based on ENNR which forms a basis of the approach presented in the next
section.

3 An Algorithm for Selective Pre-processing

Our approach uses “internal characteristic” of examples to drive their pre-
processing. We distinguish between two types of examples – noisy and safe.
Safe examples should be correctly classified by a constructed classifier, while
noisy ones are likely to be misclassified and require special processing. We dis-
cover the type of an example by applying the nearest neighbor rule (NNR) with
the heterogeneous value distance metric (HVDM) [11]. An example is safe if it
is correctly classified by its k nearest neighbors, otherwise it is noisy.

The approach is presented below in details in pseudo-code. We use C for
denoting the minority class and O for one majority class (i.e. for simplicity we
group all majority classes into one). We also use flags safe or noisy to indicate
appropriate types of examples. Moreover, we introduce classify knn(x, k) for a
result of classifying x using its k nearest neighbors and knn(x, k, c, f) for a set
of these examples among k nearest neighbors of x that belong to class c and are
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flagged as f . Following the suggestion from [6] we set k to 3. Finally, we assume
|·| returns the number of items in a set.
1: for each x ∈ O ∪ C do
2: if classify knn(x, 3) is correct then
3: flag x as safe
4: else
5: flag x as noisy
6: D ← all y ∈ O and flagged as noisy
7: if weak amplification then
8: for each x ∈ C and flagged as noisy do
9: amplify x by creating its |knn(x, 3,O, safe)| copies

10: else if weak amplification and relabeling then
11: for each x ∈ C and flagged as noisy do
12: amplify x by creating its |knn(x, 3,O, safe)| copies
13: for each x ∈ C and flagged as noisy do
14: for each y ∈ knn(x, 3, O, noisy) do
15: relabel y by changing its class from O to C
16: remove y from D
17: else {strong amplification}
18: for each x ∈ C and flagged as safe do
19: amplify x by creating its |knn(x, 3,O, safe)| copies
20: for each x ∈ C and flagged as noisy do
21: if classify knn(x, 5) is correct then
22: amplify x by creating its |knn(x, 3,O, safe)| copies
23: else
24: amplify x by creating its |knn(x, 5,O, safe)| copies
25: remove all y ∈ D

Our approach consists of two phases. In the first phase (lines 1–5) we identify
type of each example by applying NNR and flagging it accordingly. Then, in the
second phase (lines 6–25) we process examples according to their flags. As we
want to preserve all examples from C, we assume only examples from O may be
removed (lines 6 and 25, where we applied ENNR). On the other hand, unlike
previously described methods, we want to modify O more carefully, therefore,
we preserve all safe examples from this class (NCR removes some of them if they
are too close to noisy examples from C ). We propose three different techniques
for the second phase: weak amplification, weak amplification and relabeling, and
strong amplification. They all involve modification of the minority class, however,
the degree and scope of changes varies between techniques.

Weak amplification (lines 7–9) is the simplest technique. It focuses on noisy
examples from C and amplifies them by adding as many of their copies as there
are safe examples from O in their 3-nearest neighborhoods. Thus, the amplifica-
tion is limited to “difficult” examples from C, surrounded by safe members of O
(if there are no such safe neighbors, then an example is not amplified; However
its noisy neighbors from O will be removed - line 16). This increases the “weight”



Selective pre-processing of imbalanced data ... 5

of such difficult examples and enables learning algorithms to capture them as
patterns, while they could be discarded as noise otherwise.

The second technique – weak amplification and relabeling (lines 10–16) – re-
sults from our previous positive experience with changing class labels of selected
examples from O [8]. It is also focused on noisy examples from C and extends
the first technique with an additional relabeling step. In the first step (lines
11–12) noisy examples from C surrounded by safe examples from O are weakly
amplified. In the next step (lines 13–16) noisy examples from O located in the 3-
nearest neighborhoods of noisy examples from C are relabeled by changing their
class assignment is from O to C (relabeled examples are no longer removed –
line 16). Thus, we expand the “cover” around selected noisy examples from C,
what further increases their chance of being captured by learned classifiers. Such
increasing of density in similar to the technique employed by SMOTE, however,
instead of introducing new artificial examples, we use relabeled examples from
the other class.

Strong amplification (lines 17–24) is the most sophisticated technique. It fo-
cuses on all examples from C – safe and noisy. First, it processes safe examples
from C and amplifies them by adding as many copies as there are safe exam-
ples from O in their 3-nearest neighborhoods (lines 17–18). Then, it switches to
noisy examples from C (lines 19–23). Each such example it is reclassified using
an extended neighborhood, i.e., 5 nearest neighbors. If an example is reclassified
correctly, it is amplified according to its regular neighborhood (i.e., by adding
as many of its copies as there are safe examples from O in its 3-nearest neigh-
borhood), as it should be sufficient to form a “strong” classification pattern.
However, if an example is reclassified incorrectly, its amplification is stronger
and the number of copies is equal to the number of safe examples from O in
the 5-nearest neighborhood. Such more aggressive intervention is caused by the
limited number of examples from C in the considered extended neighborhood
and it is necessary to strengthen a classification pattern.

4 Experiments

Our approach for selective pre-processing was experimentally compared to NCR
and SMOTE. We combined all tested approaches with two learning algorithms –
C4.5 [13] for inducing decision trees and MODLEM [7] for decision rules. We fo-
cused on these two algorithms because they are both sensitive to class imbalance.
Moreover, MODLEM was used in our previous research on improving sensitivity
of classifiers [8, 9]. Both algorithms were run in their unpruned versions to get
more precise description of the minority class. To obtain baseline results, we also
run them without any prior pre-processing of data. For NCR and our approach
the nearest neighborhood was calculated with with k = 3. Moreover, to find the
best over-sampling degree for SMOTE, we tested it different values from 100% to
600% [3] and selected the best one. We implemented MODLEM and all tested
preprocessing approaches in WEKA [12]. We also used an implementation of
C4.5 (called J48) available in this environment.
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The experiments were carried out on 9 data sets listed in Table 1. They were
either downloaded from from the UCI repository or provided by our medical
partners (acl). We selected data sets that were characterized by varying degrees
of imbalance and that were used in related works (e.g. in [6]). Several data sets
originally included more than two classes, however, to simplify calculations we
decided to collapse all majority classes into one.

Table 1. Characteristics of evaluated data sets (N – number of examples, NA – number
of attributes, C – minority class, NC – number of examples in the minority class, NO

– number of examples in the majority class, RC = NC/N – ratio of examples in the
minority class)

Data set N NA C NC NO RC

Acl 140 6 with knee injury 40 100 0.29
Breast cancer 286 9 recurrence-events 85 201 0.30
Bupa 345 6 sick 145 200 0.42
Cleveland 303 13 positive 35 268 0.12
Ecoli 336 7 imU 35 301 0.10
Haberman 306 3 died 81 225 0.26
Hepatitis 155 19 die 32 123 0.21
New-thyroid 215 5 hyper 35 180 0.16
Pima 768 8 positive 268 500 0.35

During experiments we evaluated sensitivity, specificity and overall accuracy
– see Tables 2, 3 and 4 respectively. All these measures were estimated in the
10-fold cross validation repeated 5 times. Evaluation of these three measures, as
well as the trade-off between sensitivity and specificity, was the primary goal of
our experiments. We also examined AUC reported by all tested approaches and
both learning algorithms, however, due to limited space, we do not include these
results. We also observed a degree of changes in class distributions introduced by
all approaches – see Table 5. It was evaluated in a single pass of pre-processing.
In all tables with results we use base for denoting the baseline approach (without
any pre-processing), weak for weak amplification, relabel for weak amplification
and relabeling, and strong for strong amplification.

In order to compare performance of evaluated approaches on all data sets we
used the Wilcoxon Signed Ranks Test (confidence α = 0.05). Considering sen-
sitivity (Table 2), all other approaches significantly outperformed the baseline
(only for new-thyroid the baseline with C4.5 performed best). NCR led to the
highest increase of sensitivity and the largest gain was observed for bupa, breast
cancer, ecoli and haberman. It was observed for both learning algorithms, al-
though relative improvements of sensitivity were better for MODLEM. For C4.5,
the baseline results were better for almost all data sets, thus an opportunity for
improvement was limited. Two variants of our approach combined with MOD-
LEM – weak amplification and relabeling and strong amplification – were second
best after NCR (there were differences between them on specific data sets). For
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Table 2. Sensitivity

MODLEM C4.5

Data set Base SMOTE NCR Weak Relabel Strong Base SMOTE NCR Weak Relabel Strong

Acl 0.805 0.850 0.900 0.830 0.835 0.825 0.855 0.840 0.920 0.835 0.835 0.850
Breast can. 0.319 0.468 0.638 0.437 0.554 0.539 0.387 0.463 0.648 0.500 0.576 0.531
Bupa 0.520 0.737 0.873 0.799 0.838 0.805 0.491 0.662 0.755 0.710 0.720 0.700
Cleveland 0.085 0.245 0.343 0.233 0.245 0.235 0.237 0.260 0.398 0.343 0.395 0.302
Ecoli 0.400 0.632 0.683 0.605 0.643 0.637 0.580 0.730 0.758 0.688 0.687 0.690
Haberman 0.240 0.301 0.626 0.404 0.468 0.483 0.410 0.572 0.608 0.657 0.694 0.660
Hepatitis 0.383 0.382 0.455 0.385 0.438 0.437 0.432 0.537 0.622 0.513 0.580 0.475
New-thyr. 0.812 0.917 0.842 0.860 0.877 0.865 0.922 0.898 0.873 0.897 0.897 0.913
Pima 0.485 0.640 0.793 0.685 0.738 0.738 0.601 0.739 0.768 0.718 0.751 0.715

a few data sets (cleveland, ecoli and new-thyroid) SMOTE was comparable to
these two variants. The last variant of our approach – weak amplification – re-
sulted in the worst sensitivity. The tested approaches demonstrated a similar
performance when combined with C4.5.

Table 3. Specificity

MODLEM C4.5

Data set Base SMOTE NCR Weak Relabel Strong Base SMOTE NCR Weak Relabel Strong

Acl 0.942 0.914 0.890 0.934 0.922 0.930 0.940 0.922 0.898 0.924 0.908 0.918
Breast can. 0.804 0.657 0.523 0.710 0.621 0.606 0.767 0.676 0.525 0.630 0.609 0.614
Bupa 0.820 0.568 0.308 0.453 0.473 0.459 0.775 0.611 0.415 0.524 0.459 0.532
Cleveland 0.957 0.887 0.884 0.934 0.919 0.927 0.899 0.870 0.849 0.877 0.864 0.887
Ecoli 0.969 0.951 0.924 0.958 0.953 0.962 0.959 0.921 0.920 0.931 0.916 0.941
Haberman 0.816 0.782 0.658 0.746 0.720 0.713 0.805 0.747 0.698 0.597 0.565 0.591
Hepatitis 0.933 0.927 0.894 0.918 0.907 0.908 0.873 0.851 0.823 0.822 0.807 0.803
New-thyr. 0.987 0.986 0.984 0.990 0.990 0.984 0.973 0.984 0.974 0.971 0.972 0.976
Pima 0.856 0.778 0.658 0.774 0.720 0.698 0.814 0.716 0.656 0.681 0.667 0.687

In case of specificity (Table 3), the baseline for both learning algorithms
was significantly better than all other approaches and specificity attained by
NCR was significantly lowest. For MODLEM the largest deterioration occurred
for bupa (decrease of 0.512), breast cancer (0.282), pima (0.2) and haberman
(0.152), while for C4.5 the loss of specificity was slightly smaller. Differences
between the remaining approaches and the baseline were not so large. Our ap-
proach with weak amplification combined with MODLEM was able to preserve
satisfactory specificity for most of data sets. SMOTE with MODLEM behaved
similarly on some data sets (acl, ecoli, haberman, hepatitis and pima). On the
other hand, SMOTE with C4.5 was slightly better than our approach. Similar
observations hold for overall accuracy (Table 4) – the baseline was usually the
best, then there were SMOTE and our approach. In particular, the variant with
weak amplification combined with MODLEM managed to maintain high (i.e.,
the best or second best) accuracy for 5 data sets (acl, breast cancer, cleveland,
haberman and pima). SMOTE with C4.5 demonstrated similar behavior on 6



8 Stefanowski J., Wilk Sz.

Table 4. Overall accuracy [in %]

MODLEM C4.5

Data set Base SMOTE NCR Weak Relabel Strong Base SMOTE NCR Weak Relabel Strong

Acl 90.3 89.6 89.3 90.4 89.7 90.0 91.6 89.9 90.4 89.9 88.7 89.9
Breast can. 66.0 60.0 55.6 62.9 60.1 58.6 65.4 61.2 56.1 59.1 59.9 58.9
Bupa 69.4 63.9 54.5 59.8 57.9 60.4 65.6 63.2 55.7 60.2 56.8 60.2
Cleveland 85.6 81.3 82.1 85.3 84.0 84.6 82.3 79.9 79.7 81.5 81.0 81.9
Ecoli 91.0 91.8 90.0 92.2 92.1 92.8 91.9 90.1 90.4 90.6 89.2 91.5
Haberman 66.3 65.4 64.9 65.5 65.2 65.1 70.1 70.0 67.4 61.3 59.9 60.9
Hepatitis 81.9 81.5 80.4 81.0 81.0 81.2 78.5 78.9 78.2 75.9 76.2 73.7
New-thyr. 95.8 97.4 96.2 96.9 97.1 96.5 96.5 97.0 95.8 95.9 96.0 96.6
Pima 72.7 73.0 70.6 74.3 72.7 71.2 74.0 72.4 69.5 69.4 69.6 69.7

data sets (breast cancer, bupa, haberman, hepatitis, new-thyroid and pima).
Finally, overall accuracy achieved by NCR was the worst.

Table 5. Changes in class distribution (NC – number of examples in the minority
class, NO – number of examples in the majority class NO, NR – number of relabeled
examples, NA – number of amplified examples)

SMOTE NCR Weak Relabel Strong

Data set NC NO NC NO NC NO NC NO NR NA NC NO

Acl 120 100 40 83 57 98 59 98 2 17 67 98
Breast cancer 255 201 85 101 173 167 197 167 24 88 253 167
Bupa 290 200 145 81 236 145 271 145 35 91 309 145
Cleveland 245 268 35 198 102 255 110 255 8 67 147 255
Ecoli 210 301 35 266 58 288 69 288 11 23 77 288
Haberman 162 225 81 121 162 182 193 182 31 81 223 182
Hepatitis 64 123 32 90 61 113 68 113 7 29 88 113
New-thyroid 175 180 35 174 40 179 40 179 0 5 47 179
Pima 536 500 268 280 430 409 493 409 63 162 573 409

Analysis of changes in class distributions (Table 5), showed that NCR re-
moved the highest number of examples from the majority class, in particular for
breast cancer, bupa, haberman and pima it was about 50% of the majority class.
None of the other approaches was such “greedy”. On the other hand, SMOTE
increased the cardinality of the minority class on average by 250% by introduc-
ing new random artificial examples. For cleveland and ecoli it led to the highest
increase of cardinality of the minority class (by 600% and 500% respectively).
Our approach was in the middle, only the variant with strong amplification in-
creased cardinality of the minority class for 4 data sets (bupa, breast, haberman
and pima) to a level similar to SMOTE. For our approach with relabeling, a
number of weakly amplified examples was usually higher than a number of rela-
beled examples. It may signal that for many data sets difficult noisy examples of
the minority class (located inside the majority class) occurred more frequently
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than noisy examples on the borderline. This was somehow confirmed by intro-
ducing many additional examples by the variant with strong amplification as a
result of considering a wider neighborhood for amplification. Also when analyz-
ing changes in class distribution ratio, we noticed that usually larger changes
led to better classification performance (e.g., for cleveland, breast cancer and
haberman).

5 Conclusions

The two main contributions of this paper are the presentation and experimental
evaluation of the new selective approach to pre-processing imbalanced data. The
approach combines local over-sampling of difficult examples from the minority
class with removing or relabeling noisy examples from the majority classes. Its
construction results from our motivation to preserve satisfactory recognition of
majority classes while improving sensitivity of the minority class. The experi-
ments showed that NCR was not able not satisfy such requirements as it tended
to remove too many examples from the majority classes. As a result high increase
of sensitivity of induced classifiers was at a cost of significantly decreased speci-
ficity and consequently deteriorated overall accuracy. Our approach and SMOTE
did not demonstrate such behavior and both kept specificity and overall accuracy
at an acceptable level.

The analysis of a changes in class distribution revealed that SMOTE in-
troduced much more extensive changes than our technique, what might have
resulted in swapping the minority and majority classes. Our approach tended
to be more limited without sacrificing the performance gain. Unlike SMOTE, it
did not introduce any artificial examples, but replicated existing ones what may
be more acceptable in some applications.

According to experimental results, classification performance of our approach
is slightly better or comparable to SMOTE depending on a learning algorithm.
Moreover, it does not require tuning the global parameterized degree of over-
sampling, but in a more flexible way identifies difficult regions in the minority
class and modifies only these examples, which could be misclassified. Thus, we
claim our approach is a viable alternative to SMOTE.

Selection of a a particular variant in our approach depends on the accepted
trade-off between sensitivity and specificity. On the one hand, if a classifier
learned from pre-processed data has to provide higher sensitivity, then the vari-
ant with relabeling is the best choice (in our experiments is offered the highest
sensitivity among the three for most data sets). On the other hand, specificity is
more important, then the simplest variant with weak amplification is suggested
(it performed best on specificity during experimental evaluation). Finally, if bal-
ance between sensitivity and specificity and good overall accuracy are requested,
then the variant with strong amplification is preferred. It acceptable acceptable
specificity (in experiments it was usually the second best among the three vari-
ants) with good sensitivity, especially when combined with C4.5. The latter
combination also leads to very good overall accuracy (in experiments it resulted
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in the highest accuracy among the three variants for most data sets). Moreover
we can remark that relabeling of examples may not be accepted in some specific
domains - in such cases users will decide between amplification variants.

At the end we would like to mention possible performance issues that may
arise when pre-processing large data sets. All tested approaches, including ours,
rely on NNR or its variants (e.g., ENNR), thus the process of identifying and
searching local neighborhoods may be computationally expensive. This problem
could be diminished by applying advanced indexing structures, e.g., ball trees
[14] to improve effectiveness of calculations.
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