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Abstract. The paper presents two rough sets based filtering approaches
combined with rule based classifiers suited for handling imbalanced data
sets, i.e., data sets where the minority class of primary importance is
under-represented in comparison to the majority classes. We introduced
two techniques to detect and process inconsistent majority cases in the
boundary between the minority and majority classes. The experiments
showed that the best results were obtained for the relabel filtering, where
inconsistent majority examples were reassigned to the minority class,
combined with MODLEM rule induction algorithm.
Keywords: knowledge discovery, data mining, rough sets, classification,
class imbalance, rule induction.

1 Introduction

The paper discusses problems of constructing rule based classifiers for
the task of supervised learning from examples. There are several aspects
that might cause difficulties for a learning algorithm and decrease per-
formance of learned classifiers. One of these aspects is related to class
imbalance in the input data, i.e. to a situation when one class (further
called the minority class) includes much smaller number of examples
comparing to other classes. A typical real life example is medicine, where
databases with medical records regarding a rare (but important) disease
usually contain a small group of patients requiring special attention while
there is a much larger number patients from other classes. Similar situ-
ations occur in many other domains, e.g. in technical diagnostics, image
analysis, fraud detection, text categorization, information retrieval and
filtering. For more examples see, e.g., survey papers as [21, 9, 3].
Many learning system usually assume that the learning sets are balanced.
However, this is not always the case and if the imbalance in the class
distribution is high, i.e. some classes are heavily under-represented, these
learning methods do not work properly. They are ”somehow biased” to
focus search on the more frequent classes while ”missing” examples from
the minority class. As a result final classifiers are also biased toward
recognition of majority classes and they usually have difficulties (or even
are unable) to classify correctly new unseen objects from the minority
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class. In [13] authors described an information retrieval system, where
the minority class (being of a primary importance) contains only 0.2%
examples. Although the classifiers achieved the accuracy close to 100%,
they were useless because they failed to deliver the requested documents
from this class. The similar degradation of the classifier’s performance for
the minority classes is usually reported for other imbalanced problems,
see e.g. [9, 11, 21].

The total classification accuracy is not the best characterization of the
classifier’s performance for imbalanced data sets as we usually do not
have a high enough recognition of the minority class. Using again an ex-
ample of medical diagnosis, the class of interest, being usually the minor-
ity class, is a critical one and costs of making wrong decisions, either false
positive or false negative have different meaning. Therefore, diagnostic
performance is characterized by sensitivity (the conditional probability
of the set of correctly classified cases from the minority class, given the
minority class - in other words, the ratio of correctly recognized patients
from the critical class) and by specificity (the conditional probability of
the set of correctly recognized cases from the majority class, given the
majority class - in other words, the ratio of correctly excluded cases from
not ill classes). In such applications more attention is given to sensitivity
than to specificity [5, 7]. In general there is a kind of trade-off between
these two measures and the ROC (Receiver Operating Characteristics)
curve technique can be used to summarize classifier performance. The
Area Under Curve (AUC) is used by many researchers to identify poten-
tially good classifiers - for more details see, e.g., [3, 21].

The small number of examples in the minority class (”the lack of data”)
is not the only source of difficulties for inducing classifiers. Several re-
searchers claim that besides the size of this class it is necessary to
go deeper into its other characteristics. Quite often the minority class
overlaps heavily the majority classes. In particular, boundaries between
classes are ambiguous. Both boundaries and the inside of the minority
class may be affected by noisy examples from other classes, which cause
incorrect classification of many examples from the minority class. Their
influence is more critical for this class than the majority ones, see e.g.
experiments and discussions in [11, 12]. Japkowicz in her experimental
study [9] also showed that the class imbalance becomes even a more dif-
ficult problem particularly when the minority class contains a number
of very small subclusters, which are difficult to be learned (so called,
a small disjunct problem). Other aspects, e.g. inappropriate evaluation
measures or inductive biases of learning algorithms, are discussed in [21].

In recent years the problem of dealing with the class imbalance receives
a growing research interest the machine learning and data mining com-
munities. Although several methods have been proposed, see e.g. their
review in [21], the research problem is still open.

In our previous work we attempted to modify the rule based classifier
structure to increase its sensitivity for recognizing examples from the
minority class [7]. We focused our interest on generating larger rule set of
the minority class, while inducing minimal sets of rules for other majority
classes. As a result of extending the number of minority class rules we



increased the chance of predicting this class during the classification
strategy for new objects.
However, this proposal is focused mainly on the uneven cardinalities
of decision classes. As we discussed before it may be beneficial to con-
sider more precisely boundary examples between classes. This leads us
to a question about the possible use of rough set theory to capture this
aspect. In general, rough set theory is claimed to be a well suited ap-
proach for handling vague information and inconsistent descriptions [10,
14]. Therefore, we could use it to detect inconsistent examples, which are
located in class boundaries. Then, inconsistent examples from the ma-
jority classes could be removed while inducing rule sets for these classes
or upper approximations could be used for inducing the minority class
rules. Thus, a new contributions of this paper is an introduction of the
rough set based approach and its experimental evaluation on several im-
balanced data sets with different degree of inconsistency.
The paper is organized as follows. In Section 2 we shortly discuss previ-
ous related works. Then, in Section 3 we introduce the rough set based
approach. In Section 4 we experimentally evaluate its usefulness in a com-
parative study with standard rough set based rule classifiers, induced by
LEM2 and MODLEM algorithms, and finally we draw conclusions in
Section 5.

2 Related works

We briefly discuss the most related proposals to our research, i.e. concern-
ing either rule based approaches or identification of difficult examples.
For more exhaustive reviews of other works, see, e.g., [21].
One of the most common technique for dealing with imbalance data
is to transform the original class distribution into a more balanced by
sampling. The basic approaches include random over-sampling or under-
sampling. In the former approach the minority class examples are ran-
domly replicated until a balance with cardinalities of majority classes is
obtained. Random under-sampling goes in the opposite way - the ma-
jority class examples are randomly eliminated until obtaining the same
cardinality as the minority class.
Drawbacks of the above simple random techniques are often reported [2,
3, 11, 21]. Random under-sampling can discard potentially useful major-
ity class examples that could be valuable for learning a good classifier.
On the other hand, simple over-sampling introduces copies of original ex-
amples only, which may lead to overfitting a classifier. Therefore, several
more advanced heuristic techniques have been introduced.
In one-side-sampling [11] Kubat and Matwin selectively under-sampled
the majority class while keeping the original content of the minority class.
The examples were divided into four categories: noisy examples located
inside the minority class region, borderline examples (i.e. these lying ei-
ther on or very close to the decision border between classes), redundant
examples (i.e. majority class examples which are quite distant from the
decision border) and safe examples. The borderline and noisy examples
from the majority class were detected using the Tomek links concept [20]



(together with the condensed nearest neighbor rule) and then removed.
Borderline examples were assumed to be unsafe since a small amount
of noise could make them fall on the wrong side of the decision border
between classes. Redundant majority class examples were also removed.
Another approach to removing noisy and borderline examples is Neigh-
borhood Cleaning Rule introduced by Laurikkala in [12]. First the Wil-
son’s Edited Nearest Neighbor Rule is used to remove these majority class
examples whose class labels differ from the class of at least two of its three
nearest neighbors. Experimental studies [2, 12] showed that both above
approaches provide better sensitivity and not worse total accuracy than
a simple random over-sampling. Cleaning rule is usually better than one
side sampling.
Yet another proposal is SMOTE, which over-samples the minority class
by creating new synthetic examples. Its main idea is to create these new
examples by interpolating several minority class examples that are close
one to another. It widens decision boundaries for the minority class. The
experimental results provided in [2, 3] indicate that SMOTE is often more
efficient than other sampling methods considering AUC measure. Its mix-
ture with elements of under-sampling may even improve the ability to
predict the minority class - see [2]. Furthermore, there are interesting
extensions of SMOTE for multiple classifiers. The aspects of modifying
multiple classifiers for imbalanced data are also discussed in [21].
As for using rules, let us remind that typical rule induction algorithms
exploit a greedy search strategy while looking for rule conjunctions which
favors the majority class but may be ineffective in dealing with minority
examples. Few researchers tried to develop less greedy search (an example
is Brute algorithm [15] or a specific genetic algorithm [21]) or to change
the inductive bias of the algorithm, e.g. Holte at al. modified the rule
induction algorithm CN2 to improve its performance for small disjuncts
referring to rare examples from the minority class [8]. Moreover, Weiss
describes hybrid and two-phase rule induction [21], where one part fo-
cuses on optimizing sensitivity while the other corresponds to optimizing
specificity. Other approaches may use knowledge about prior distribution
of probabilities or transforming the task to cost sensitivity learning and
to a deeper analysis of ROC convex hull, see , e.g, [21] or [3].
When discussing the role of rough set theory, we should notice that imbal-
ance was not studied enough. Although a few authors in their application
oriented papers calculated sensitivity or ROC measures, it seems that the
most related research are Grzymala’s works on increasing sensitivity of
LEM2 rule classifiers by changing rule strengths [5, 6]. The strength of
a rule is the number of learning examples, which satisfy both condition
and decision part of this rule. The LEM2 algorithm [4] is used to induce
the minimal set of rules covering examples from rough approximations of
decision classes. Rules from the minority class have lower strength than
rules from other classes. The main idea of the Grzymala’s approach is to
multiply the strength of all minority class rules by the same real number,
called strength multiplier, while not changing the strength of rules from
the majority classes. As a result, during classification of new cases, such
minority class rules have an increased chance to classify correctly these
examples. Another problem is selecting a proper value for the strength



multiplier. Grzymala proposed in [5] a procedure based on maximizing a
measure called gain = sensitivity + specificity - 1. Experimental results
confirmed that this approach outperformed the use standard LEM2 clas-
sifier for many imbalanced medical data sets [5, 6].
Moreover, in [7] we introduced another approach to improve the minor-
ity class prediction for rule base classifiers by replacing rules, which was
inspired by previous studies with inducing more exhaustive set of rules
[17–19]. It is based on a different principle than the Grzymala’s proposal.
A minimal set of rules for the minority class is replaced by a new set of
rules with the strength greater than a certain threshold. Such rules are
discovered by a special algorithm, called EXPLORE [19]. If the strength
threshold is sufficiently low, EXPLORE may generate much more rules
then LEM2. Thus, by using such rules for the minority class, while pre-
serving the original set of rules for the majority classes, the chance that
an example from the minority class is selected by a classifier is increased
and sensitivity should improve.
In [7] we carried out a comparative study of the above both approaches
and the standard LEM2 classifier on 9 imbalanced data sets coming
mainly from UCI ML repository [1]. Both approaches performed similarly
(differences between were globally insignificant) and better than standard
LEM2 considering the sensitivity and gain measures without decreasing
total accuracy, however, for some data sets it was accompanied by the
decreased specificity.

3 Using rough sets to handle inconsistent
examples before constructing rules

Both rule based approaches, presented in the previous section, are based
either on modifying the classification strategy (strength multiplier) or
changing structure of rule sets and they do not change the original distri-
bution of data. However, coming back to approaches discussed in the pre-
vious section, as e.g. cleaning rule or SMOTE, one can notice that class
overlapping, boundary region between them and noisy examples are also
important for classifying examples from imbalanced classes. They can
cause misclassification of k-NN and other classifiers [2, 3]. Furthermore,
they may lead to overspecialized decision trees or rules, in particular for
the minority class.
Taking into account the above inspiration we could pose a question: is
rough set theory able to identify such examples and to handle them during
rule induction process in order to increase a prediction of minority class?
Let us remind that rough sets start from establishing a binary relation
R between objects in a decision table (U, A ∪ {d}), where U is a set
of objects, A is a set of condition attributes describing objects and d
is a decision attribute expressing classification of objects. Originally the
indiscernibility relation is considered, i.e. for any subset B ⊆ A it is
defined as I(B) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B}. Equivalence
classes of the indiscernibility relation for object x are denoted as IB(x).
Some extensions of standard rough set theory use other relation as e.g.
tolerance or similarity [10]. Objects described by indiscernible values of



attributes but belonging to different sets are inconsistent. As the result
of inconsistency some sets of objects cannot be precisely defined using
indiscernibility classes. But any set if objects X ⊆ U is approximated by
two sets B-lower and B-upper approximations, denoted as BX and BX,
respectively. The set BNB(X) = BX −BX is called B-boundary region
of X and contains inconsistent objects. One should notice that rough
sets meaning of boundary refers to impossibility of classifying objects
on the basis of their description, while boundary in the sense discussed
in Section 2 corresponds rather to closest objects from different classes
located on the other side of a decision border which could be affected
by noise – however, it does not implicate that they have inconsistent
descriptions. In spite of this difference we could check whether rough sets
based technique of detecting inconsistent examples could be useful. So,
we could handle these objects either by removing inconsistent examples
from majority class or by considering the complete boundary region in
a specific way. It leads us to two following filtering approaches:

The first approach:

1. Let X be a minority class of interest. Calculate its approximations
BX and BX.

2. For the remaining classes of objects Yi ⊆ U\X calculate their lower
approximations BYi.

3. Identify inconsistent objects from majority classes belonging to B-
boundary region of X and remove them.

4. For class X induce rules using as learning examples all objects be-
longing to this class.

5. For remaining classes Yi induce rules using as learning examples only
objects belonging to the lower approximations BYi.

The second approach:

1. Perform the same operation as points 1 and 2 in the first approach.

2. Identify inconsistent objects from majority classes belonging to B-
boundary region of X and change their labels to the minority class
X. In this way construct a new set X ′ = BX.

3. For class X induce rules using as learning examples objects from X ′.

4. For remaining classes Yi induce rules using as learning examples only
objects belonging to the lower approximations BYi.

The first approach removes inconsistent examples from the majority class
that make difficulties in the boundary region, therefore it will be denoted
as remove hereafter, and we hope that this cleaning may give a chance
for inducing less specific rules in this region. The second approach is
more greedy as it relabels suspicious examples located on the wrong side
of the border between classes. In the following text we will refer to it as
relabel. The relabel approach is inspired by an edited nearest neighbor
approach, e.g. Generalized Edited Algorithm proposed by Koplowitz and
Brown. Moreover, another inspiration may be good experiences of Kubat
and Matwin with the SHRINK system to detect oil spills in satellite
images, see [11]. In general, the latter approach increases the number of
examples in the minority class, so it may lead diminish the problem of
small disjuncts while inducing stronger rules.



4 Experimental evaluation

We evaluated 8 data sets listed in Table 1. These data are coming either
from the UCI repository [1] or from our applications in medicine (these
are shortly characterized in [17]). Most of the considered data sets were
originally composed of more than two decision classes, however, to sim-
plify calculations we decided to group all majority classes into one. Two
data sets (ecoli, cleveland) included real-valued attributes. As they might
have caused a problem for rough sets based on the indiscernibility rela-
tion, we discretized them using a local approach based on minimizing
entropy. Moreover, for two data sets (urology and breast-Poland) we
used a reduced set of attributes to decrease the level of consistency.

Table 1. Characteristics of evaluated data sets

Number of Ratio of examples Level of
Data set examples Minority Majority consistency

abdominal pain 606 27.2% 72.8% 0.91
acl 140 28.6% 71.4% 0.88
breast-Poland 228 29.0% 71.0% 0.97
cleveland 303 11.6% 88.4% 0.94
ecoli 336 10.4% 89.6% 0.87
hsv 122 11.5% 88.5% 0.98
scrotal pain 171 28.6% 71.4% 0.89
urology 500 31.2% 68.8% 0.97

The experiment was based on the 10-fold cross validation with stratified
selection, i.e., the distribution of classes in each fold was the same as in
a whole data set. We used two proposed techniques to filter learning data
sets: remove, where inconsistent majority examples were removed from
a set, and relabel, where inconsistent majority examples were relabeled
and assigned to the minority class. We employed two different algorithms
for inducing decision rules: LEM2 [4] and MODLEM [17] and tested both
with each filtering technique. Moreover, to establish a reference point for
the results, we also induced and tested rules without prior filtering of
learning data sets. In order to minimize the impact of splitting data
into folds on the results, minimize their variances, and provide a reliable
comparison, the split was conducted only once for each data set and the
same pairs of learning and testing files were used for all calculations.

Tables 2 and 3 give the detailed results of classification performance of
LEM2 and MODLEM combined approaches, respectively. It is measured
for the minority class by its sensitivity, specificity, gain (expressed as
ratio in [0,1]) and the total error for all classes (expressed as a percentage
of tested examples). Table 4 presents characteristics of rules generated
by those algorithms during calculations (all numbers were calculated as
averages over 10 folds).



Table 2. Classification performance of LEM2 approaches

Data set Filtering Sensitivity Specificity Gain Error

abdominal-pain none 0.8118 0.8686 0.6804 14.69%
remove 0.7702 0.8777 0.6479 15.18%
relabel 0.8066 0.8641 0.6707 15.17%

acl none 0.7250 0.8900 0.6150 15.71%
remove 0.7500 0.8900 0.6400 15.00%
relabel 0.7500 0.8900 0.6400 15.00%

breast-cancer none 0.5738 0.7279 0.3017 31.52%
remove 0.5548 0.7088 0.2636 33.32%
relabel 0.5571 0.7217 0.2788 32.43%

cleveland none 0.3167 0.8732 0.1899 19.12%
remove 0.3500 0.8692 0.2192 19.11%
relabel 0.3167 0.8618 0.1785 20.11%

ecoli none 0.7167 0.9200 0.6367 10.13%
remove 0.7167 0.9200 0.6367 10.12%
relabel 0.7167 0.9233 0.6400 9.83%

hsv none 0.0500 0.8991 -0.0509 19.49%
remove 0.0000 0.8991 -0.1009 20.32%
relabel 0.0000 0.9082 -0.0918 19.49%

scrotal pain none 0.6900 0.8276 0.5176 21.01%
remove 0.6900 0.7865 0.4765 23.92%
relabel 0.6700 0.7949 0.4649 23.92%

urology none 0.3717 0.6972 0.0689 40.40%
remove 0.3913 0.7123 0.1036 38.80%
relabel 0.4046 0.7061 0.1107 38.80%

5 Conclusion

The aim of our experiments was to compare two rough set based ap-
proaches for filtering inconsistent examples in imbalanced data sets. The
general observation is that their usefulness depends on a rule induction
algorithm used on a filtered set.
The best results were obtained when filtering was coupled with the
MODLEM algorithm. We recorded increased sensitivity and decreased
the classification error for all tested data sets comparing to the results
achieved for MODLEM and unfiltered data. The largest increase of sen-
sitivity was observed for scrotal pain - 0.0850, abdominal pain - 0.0420,
hsv - 0.1000, cleveland 0.0584 and ecoli - 0.0330. Moreover, the gain
measure raised for all data sets, and the specificity measure was never
decreased (for some data it was even improved, e.g. abdominal pain, acl,
breast).
From the two filtering techniques used with MODLEM, the relabel one
turned out to be more effective in terms of increased sensitivity, as it
could be observed for 6 of 8 data sets (for acl sensitivity was equal and
for scrotal pain it was lower than for remove).
LEM2 combined with any of the two filtering methods offered worse
results than MODLEM. For sensitivity we observed increases for 3 data



Table 3. Classification performance of MODLEM approaches

Data set Filtering Sensitivity Specificity Gain Error

abdominal-pain none 0.7643 0.8709 0.6352 15.84%
remove 0.8063 0.8867 0.6930 13.54%
relabel 0.8121 0.8664 0.6785 14.86%

acl none 0.7750 0.8800 0.6550 15.00%
remove 0.8000 0.8800 0.6800 14.29%
relabel 0.8000 0.8800 0.6800 14.29%

breast-cancer none 0.5833 0.7346 0.3179 30.67%
remove 0.5405 0.7221 0.2626 32.81%
relabel 0.5905 0.7651 0.3556 28.46%

cleveland none 0.3083 0.8655 0.1738 19.76%
remove 0.3167 0.8843 0.2010 18.13%
relabel 0.3667 0.8734 0.2401 18.44%

ecoli none 0.7417 0.9167 0.6584 10.15%
remove 0.7500 0.9200 0.6700 9.84%
relabel 0.7750 0.9167 0.6917 9.85%

hsv none 0.0500 0.8900 -0.0600 20.38%
remove 0.0500 0.8891 -0.0609 20.45%
relabel 0.1500 0.9264 0.0764 16.35%

scrotal pain none 0.6500 0.8032 0.4532 23.92%
remove 0.7350 0.7705 0.5055 23.95%
relabel 0.6900 0.7942 0.4842 23.40%

urology none 0.3354 0.7179 0.0533 40.20%
remove 0.3542 0.7297 0.0839 38.80%
relabel 0.3604 0.6887 0.0491 41.40%

sets only (acl, cleveland and urology); for other sets there was either
the same performance as without filtering or even worse. The similar
observation corresponds to gain and error.
MODLEM has an internal ability to construct more general syntax of
elementary conditions (attribute in set of values), while LEM2 uses only
a simplest form (attribute = value). Therefore, it should be able to in-
duce more general (stronger) rules when supplied with a larger number
of minority class examples. This presumption is supported by the char-
acteristics of MODLEM rules presented in Tables 4, where the average
strength increased for the relabel filtering and 7 data sets (the most no-
ticeable change was observed for ecoli, where the average strength raised
from 1.8 to 10.4). On the contrary, Table 4 shows that it does not hold
for LEM2. Moreover, it clearly shows that the relabel filtering improved
the minority class rules (in terms of their strength) without worsening
the majority class rules – their numbers and strengths did not change.
Comparing the current work to our previous paper [7], we should admit
that the approached described there led to greater increase of sensitiv-
ity and gain. However, the methods presented here are ”light-weight”
modifications of a learning data set that do not require extensive cus-
tomization of parameters for rule induction algorithms and classification
strategies.



Table 4. Characteristics of rules induced by LEM2 and MODLEM algorithms;
’Min’ denotes the minority class and ’Oth’ denotes majority classes; An average
strength is calculated as a number of learning examples.

Number of rules Strength of rules
Data Filtering LEM2 MODLEM LEM2 MODLEM
set Min Oth Min Oth Min Oth Min Oth

abdominal none 24.0 35.9 26.3 33.1 10.2 31.4 8.3 32.6
pain remove 24.8 36.6 24.7 33.5 12.7 30.9 12.2 32.6

relabel 24.5 35.9 25.9 33.1 14.6 31.4 11.3 32.6

acl none 6.5 8.7 6.5 7.7 4.6 19.5 4.6 24.3
remove 7.6 8.8 7.2 7.7 5.9 19.2 5.8 23.8
relabel 7.6 8.7 6.8 7.7 7.0 19.5 9.3 24.3

breast-Poland none 30.5 31.6 21.2 26.2 1.9 6.3 3.1 7.8
remove 31.2 31.6 23.5 27.0 2.0 6.3 2.8 7.9
relabel 31.2 31.6 23.9 26.2 2.0 6.3 2.9 7.8

cleveland none 17.1 23.9 16.8 22.5 1.0 24.3 1.0 28.1
remove 19.2 23.6 17.3 22.1 1.0 25.5 1.5 29.2
relabel 19.8 23.9 16.5 22.5 1.8 24.3 2.3 28.1

ecoli none 8.9 13.4 6.9 8.9 1.2 36.4 1.8 59.6
remove 8.6 13.3 5.9 9.0 4.2 36.0 7.1 59.9
relabel 8.6 13.4 5.7 8.9 7.0 36.4 10.4 59.6

hsv none 9.1 14.6 8.4 13.0 1.0 11.2 1.0 13.5
remove 9.2 14.6 8.3 13.5 1.0 11.2 1.1 13.1
relabel 9.1 14.6 8.3 13.0 1.0 11.2 1.3 13.5

scrotal pain none 13.5 16.6 10.8 14.9 3.8 11.0 4.7 12.5
remove 14.7 16.5 13.5 15.1 4.5 11.0 4.7 11.6
relabel 14.9 16.6 13.8 14.9 4.9 11.0 5.4 12.5

urology none 66.2 79.4 57.7 70.8 2.0 5.2 2.2 6.2
remove 67.8 80.6 61.6 69.7 2.0 5.2 2.1 6.5
relabel 67.0 79.4 60.7 70.8 2.0 5.2 2.6 6.2

Finally, we would like to note that the proposed approaches are based on
the classical indiscernibility relation that may be insufficient for detecting
all unsafe (borderline, but consistent) cases. More advanced methods of
handling such cases are the subject of our ongoing research.
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