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Abstract. Search results clustering problem is defined as an automatic, on-line
grouping of similar documents in a search results list returned from a search engine.
In this paper we present Lingo—a novel algorithm for clustering search results,
which emphasizes cluster description quality. We describe methods used in the
algorithm: algebraic transformations of the term-document matrix and frequent
phrase extraction using suffix arrays. Finally, we discuss results acquired from an
empirical evaluation of the algorithm.

Knowledge is of two kinds: we know a subject ourselves,
or we know where we can find information about it.

— Samuel Johnson, 1775

1 Introduction and related work

With an enormous growth of the Internet it has become very difficult for the
users to find relevant documents. In response to the user’s query, currently
available search engines return a ranked list of documents along with their
partial content (snippets). If the query is general, it is extremely difficult to
identify the specific document which the user is interested in. The users are
forced to sift through a long list of off-topic documents. Moreover, internal
relationships among the documents in the search result are rarely presented
and are left for the user. One of the alternative approaches is to automati-
cally group search results into thematic groups (clusters). Clustering of web
search results was first introduced in the Scatter-Gather [4] system. Sev-
eral algorithms followed; Suffix Tree Clustering, (STC), implemented in the
Grouper system [11] pioneered in using recurring phrases as the basis for de-
riving conclusions about similarity of documents. MSEEC [3] and SHOC [2]
also made explicit use of words proximity in the input documents. Apart from
phrases, graph-partitioning methods have been used in clustering search re-
sults [6]. Vivisimo is an example of a successful commercial application of the
clustering idea.

Readable and unambiguous descriptions of the thematic groups are an
important factor of the overall quality of clustering. They provide the users
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an overview of topics covered in the search results and help them to identify
the specific group of documents they were looking for. We feel this problem
has not been sufficiently solved in the previous research resulting in too long,
ambiguous and very often even meaningless group labels.

In this paper we briefly present our novel algorithm Lingo, which we
believe is able to capture thematic threads in a search result, that is discover
groups of related documents and describe the subject of these groups in a
way meaningful to a human. Lingo combines several existing methods to put
special emphasis on meaningful cluster descriptions, in addition to discovering
similarities among documents.

2 Theoretical background

Vector Space Model Vector Space Model (VSM) is a technique of infor-
mation retrieval that transforms the problem of comparing textual data into
a problem of comparing algebraic vectors in a multidimensional space. Once
the transformation is done, linear algebra operations are used to calculate
similarities among the original documents. Every unique term (word) from
the collection of analyzed documents forms a separate dimension in the VSM
and each document is represented by a vector spanning all these dimensions.
For example, if vector v represents document j in a k-dimensional space Ω,
then component t of vector v, where t ∈ 1 . . . k, represents the degree of the
relationship between document j and a term corresponding to dimension t
in Ω. This relationship is best expressed as a t× d matrix A, usually named
a term-document matrix , where t is the number of unique terms and d is the
number of documents. Element aij of matrix A is therefore a numerical rep-
resentation of relationship between term i and document j. There are many
methods for calculating aij , commonly referred to as term weighting meth-
ods. Refer to [9] for an overview. Once matrix A has been constructed, the
distance between vectors representing documents a and b, can be calculated
in a variety of ways; the most common measure calculates a cosine between
a and b using vector dot product formula.

Suffix arrays Let A = a1a2a3 . . . an be a sequence of objects. Let us
denote by Ai a suffix of A starting at position i ∈ 1 . . . n, such as Ai =
aiai+1ai+2 . . . an. An empty suffix is also defined for every A as An+1 = ∅. A
suffix array is an ordered array of all suffixes of A. Suffix arrays, introduced
in [5], are used as an efficient data structure for verifying whether a sequence
of objects B is a substring of A, or more formally: ∃i : B = Ai (sequence
equality is equality of elements at their corresponding positions in A and B).
The complexity of this operation is O(P + logN), a suffix array can be built
in O(NlogN).

Latent Semantic Indexing and Singular Value Decomposition LSI
is a technique of feature extraction which attempts to reduce the rank of a
term-frequency matrix in order to get rid of noisy or synonymous words and
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exploit the underlying latent structure of concepts in documents [1]. An alge-
braic method of matrix decomposition called Singular Value Decomposition
is used for discovering the orthogonal basis of the original term-document ma-
trix. This basis consists of orthogonal vectors that, at least hypothetically,
correspond to topics present in the original term-document matrix.

SVD breaks a t × d matrix A into three matrices U , Σ and V , such
that A = UΣV T . U is a t × t orthogonal matrix whose column vectors are
called the left singular vectors of A, V is a d × d orthogonal matrix whose
column vectors are called the right singular vectors of A, and Σ is a t × d
diagonal matrix having the singular values of A ordered decreasingly along
its diagonal. The rank rA of matrix A is equal to the number of its non-zero
singular values. The first rA columns of U form an orthogonal basis for the
column space of A—an essential fact used by Lingo.

3 Overview of the Lingo algorithm

When designing a web search clustering algorithm, special attention must
be paid to ensuring that both content and description (labels) of the result-
ing groups are meaningful to humans. As stated on Web pages of Vivisimo
(http://www.vivisimo.com) search engine, “a good cluster—or document
grouping—is one, which possesses a good, readable description”. The major-
ity of open text clustering algorithms follows a scheme where cluster con-
tent discovery is performed first, and then, based on the content, the labels
are determined. But very often intricate measures of similarity among doc-
uments do not correspond well with plain human understanding of what a
cluster’s “glue” element has been. To avoid such problems Lingo reverses this
process—we first attempt to ensure that we can create a human-perceivable
cluster label and only then assign documents to it. Specifically, we extract
frequent phrases from the input documents, hoping they are the most infor-
mative source of human-readable topic descriptions. Next, by performing re-
duction of the original term-document matrix using SVD, we try to discover
any existing latent structure of diverse topics in the search result. Finally,
we match group descriptions with the extracted topics and assign relevant
documents to them.

Algorithm 1 presents Lingo in the form of pseudo-code. Specific steps of
the algorithm are explained later in this section.

3.1 Preprocessing

Stemming and stop words removal are very common operations in Informa-
tion Retrieval. Interestingly, their influence on results is not always positive—
in certain applications stemming yielded no improvement to overall quality.
Be as it may, our previous work [10] and current experiments show that pre-
processing is of great importance in Lingo because the input snippets are

http://www.vivisimo.com
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Algorithm 1 Pseudo-code of the Lingo algorithm
1: D ← input documents (or snippets)

{STEP 1: Preprocessing}
2: for all d ∈ D do
3: perform text segmentation of d; {Detect word boundaries etc.}
4: if language of d recognized then
5: apply stemming and mark stop-words in d;
6: end if
7: end for

{STEP 2: Frequent Phrase Extraction}
8: concatenate all documents;
9: Pc ← discover complete phrases; {See Section 3.2 for details}

10: Pf ← p : {p ∈ Pc ∧ frequency(p) > Term Frequency Threshold};

{STEP 3: Cluster Label Induction}
11: A← term-document matrix of terms not marked as stop-words and

with frequency higher than the Term Frequency Threshold ;
12: Σ, U, V ← SVD(A); {Product of SVD decomposition of A}
13: k ← 0; {Start with zero clusters}
14: n← rank(A);
15: repeat
16: k ← k + 1;
17: q ← (

∑k

i=1
Σii)/(

∑n

i=1
Σii);

18: until q < Candidate Label Threshold ;

19: P ← phrase matrix for Pf ; {See section 3.3}
20: for all columns of UT

k P do
21: find the largest component mi in the column;
22: add the corresponding phrase to the Cluster Label Candidates set;
23: labelScore← mi;
24: end for

25: calculate cosine similarities between all pairs of candidate labels;
26: identify groups of labels that exceed the Label Similarity Threshold ;
27: for all groups of similar labels do
28: select one label with the highest score;
29: end for

{STEP 4: Cluster Content Discovery}
30: for all L ∈ Cluster Label Candidates do
31: create cluster C described with L;
32: add to C all documents whose similarity

to C exceeds the Snippet Assignment Theshold ;
33: end for
34: put all unassigned documents in the “Others” group;

{STEP 5: Final Cluster Formation}
35: for all clusters do
36: clusterScore← labelScore× ‖C‖;
37: end for
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automatically generated summaries of the original documents and hence are
usually very small (one or two sentences). Although SVD is capable of dealing
with noisy data, without sufficient preprocessing, the majority of discovered
abstract concepts would be related to meaningless frequent terms. The aim
of the preprocessing phase is to prune from the input all characters and terms
that can possibly affect the quality of group descriptions. Three steps are per-
formed: text filtering removes HTML tags, entities and non-letter characters
except for sentence boundaries. Next, each snippet’s language is identified
and finally appropriate stemming and stop words removal end the prepro-
cessing phase. We used stop words as potential indicators of a document’s
language. Other methods, such as n-gram language detection could be used
alternatively. For stemming English documents we used Porter’s algorithm,
for Polish we employed our own simple dictionary stemmer Lametyzator [10].

3.2 Frequent phrase extraction

We define frequent phrases as recurring ordered sequences of terms appear-
ing in the input documents. Intuitively, when writing about something, we
usually repeat the subject-related keywords to keep a reader’s attention. Ob-
viously, in a good writing style it is common to use synonymy and pronouns
and thus avoid annoying repetition. We believe Lingo can partially overcome
the former by using the SVD-decomposed term document matrix to identify
abstract concepts—single subjects or groups of related subjects that are cog-
nitively different from other abstract concepts. The latter problem has not
been considered in this work.

To be a candidate for a cluster label, a frequent phrase or a single term
must:

1. appear in the input documents at least certain number of times (term
frequency threshold),

2. not cross sentence boundaries,
3. be a complete phrase (see definition below),
4. not begin nor end with a stop word. These assumptions are discussed in

detail in [2] and partially in [11].

A complete phrase is a complete substring of the collated text of the in-
put documents, defined in the following way: Let T be a sequence of ele-
ments (t1, t2, t3 . . . tn). S is a complete substring of T when S occurs in k
distinct positions p1, p2, p3 . . . pk in T and ∃i, j ∈ 1 . . . k : tpi−1 6= tpj−1 (left-
completeness) and ∃i, j ∈ 1 . . . k : tpi+|S| 6= tpj+|S| (right-completeness). In
other words, a complete phrase cannot be “extended” by adding preceding or
trailing elements, because at least one of these elements is different from the
rest. An efficient algorithm for discovering complete phrases was proposed
in [2], although it contained one mistake that caused the frequency of some
phrases to be miscalculated. The space limits make it impossible to discuss
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details here, refer to [7] for a full overview of the corrected algorithm. It does
not affect further discussion of Lingo because any algorithm capable of dis-
covering frequent phrases could be used at this stage; we use the suffix arrays
approach, because it is convenient in implementation and very efficient.

3.3 Cluster label induction

Once frequent phrases (and single frequent terms) that exceed term frequency
thresholds are known, they are used for cluster label induction. There are
three steps to this: term-document matrix building, abstract concept discov-
ery, phrase matching and label pruning.

The term-document matrix is constructed out of single terms that exceed
a predefined term frequency threshold. Weight of each term is calculated
using the standard term frequency, inverse document frequency (tfidf ) for-
mula [9], terms appearing in document titles are additionally scaled by a
constant factor. In abstract concept discovery, Singular Value Decomposition
method is applied to the term-document matrix to find its orthogonal ba-
sis. As discussed earlier, vectors of this basis (SVD’s U matrix) supposedly
represent the abstract concepts appearing in the input documents. It should
be noted, however, that only the first k vectors of matrix U are used in the
further phases of the algorithm (details in [7]). We estimate the value of k
by selecting the Frobenius norms of the term-document matrix A and its
k-rank approximation Ak. Let threshold q be a percentage-expressed value
that determines to what extent the k-rank approximation should retain the
original information in matrix A. We hence define k as the minimum value
that satisfies the following condition: ‖Ak‖F /‖A‖F ≥ q, where ‖X‖F symbol
denotes the Frobenius norm of matrix X. Clearly, the larger the value of q
the more cluster candidates will be induced. The choice of the optimal value
for this parameter ultimately depends on the users’ preferences. We therefore
make it one of Lingo’s control thresholds—Candidate Label Threshold.

Phrase matching and label pruning step, where group descriptions are dis-
covered, relies on an important observation that both abstract concepts and
frequent phrases are expressed in the same vector space—the column space
of the original term-document matrix A. Thus, the classic cosine distance can
be used to calculate how “close” a phrase or a single term is to an abstract
concept. Let us denote by P a matrix of size t× (p+ t) where t is the number
of frequent terms and p is the number of frequent phrases. P can be easily
built by treating phrases and keywords as pseudo-documents and using one
of the term weighting schemes. Having the P matrix and the i-th column
vector of the SVD’s U matrix, a vector mi of cosines of the angles between
the i-th abstract concept vector and the phrase vectors can be calculated:
mi = Ui

T P . The phrase that corresponds to the maximum component of the
mi vector should be selected as the human-readable description of i-th ab-
stract concept. Additionally, the value of the cosine becomes the score of the
cluster label candidate. A similar process for a single abstract concept can be
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extended to the entire Uk matrix—a single matrix multiplication M = Uk
T P

yields the result for all pairs of abstract concepts and frequent phrases.
On one hand we want to generalize information from separate documents,

but on the other we want to make it as narrow as possible at the cluster-
description level. Thus, the final step of label induction is to prune overlap-
ping label descriptions. Let V be a vector of cluster label candidates and
their scores. We create another term-document matrix Z, where cluster label
candidates serve as documents. After column length normalization we cal-
culate ZT Z, which yields a matrix of similarities between cluster labels. For
each row we then pick columns that exceed the Label Similarity Threshold
and discard all but one cluster label candidate with the maximum score.

3.4 Cluster content discovery

In the cluster content discovery phase, the classic Vector Space Model is used
to assign the input documents to the cluster labels induced in the previous
phase. In a way, we re-query the input document set with all induced clus-
ter labels. The assignment process resembles document retrieval based on the
VSM model. Let us define matrix Q, in which each cluster label is represented
as a column vector. Let C = QT A, where A is the original term-document
matrix for input documents. This way, element cij of the C matrix indicates
the strength of membership of the j-th document to the i-th cluster. A doc-
ument is added to a cluster if cij exceeds the Snippet Assignment Threshold ,
yet another control parameter of the algorithm. Documents not assigned to
any cluster end up in an artificial cluster called Others.

3.5 Final cluster formation

Finally, clusters are sorted for display based on their score, calculated using
the following simple formula: Cscore = label score × ‖C‖, where ‖C‖ is the
number of documents assigned to cluster C. The scoring function, although
simple, prefers well-described and relatively large groups over smaller, possi-
bly noisy ones. For the time being, no cluster merging strategy or hierarchy
induction is proposed for Lingo.

4 An illustrative example

Let us assume that the following input data is given (keywords and frequent
phrase extraction phase has been omitted):

The t = 5 terms
T1: Information
T2: Singular
T3: Value
T4: Computations
T5: Retrieval

The p = 2 phrases
P1: Singular Value
P2: Information Retrieval

The d = 7 documents
D1: Large Scale Singular Value Computations
D2: Software for the Sparse Singular Value Decomposition
D3: Introduction to Modern Information Retrieval
D4: Linear Algebra for Intelligent Information Retrieval
D5: Matrix Computations
D6: Singular Value Analysis of Cryptograms
D7: Automatic Information Organization
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The normalized, tfidf -weighted term-document matrix Âtfidf is shown below
together with matrix U (part of the SVD decomposition):

Âtfidf =

∣∣∣∣∣∣∣
0 0 0.56 0.56 0 0 1

0.49 0.71 0 0 0 0.71 0
0.49 0.71 0 0 0 0.71 0
0.72 0 0 0 1 0 0
0 0 0.83 0.83 0 0 0

∣∣∣∣∣∣∣ U =

∣∣∣∣∣∣∣
0 0.75 0 −0.66 0

0.65 0 −0.28 0 −0.71
0.65 0 −0.28 0 0.71
0.39 0 0.92 0 0
0 0.66 0 0.75 0

∣∣∣∣∣∣∣
Now, we look for the value of k – the estimated number of clusters. Let
us define quality threshold q = 0.9. Then the process of estimating k is as
follows: k = 0 7→ q = 0.62, k = 1 7→ q = 0.856, k = 2 7→ q = 0.959 ,
so the number of clusters k = 2. To find descriptions of our clusters (k = 2
columns of matrix U), we calculate M = Uk

T P , where P is a term-document–
like matrix created out of our frequent phrases and terms (values in P tfidf -
weighted and normalized):

P =

∣∣∣∣∣∣∣
0 0.56 1 0 0 0 0

0.71 0 0 1 0 0 0
0.71 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0.83 0 0 0 0 1

∣∣∣∣∣∣∣ M =

∣∣∣0.92 0 0 0.65 0.65 0.39 0
0 0.97 0.75 0 0 0 0.66

∣∣∣
Rows of matrix M represent clusters, columns – their descriptions. For each
row we select the column with maximum value – the two clusters are: Singular
Value (score: 0.92) and Information Retrieval (score: 0.97). We skip label
pruning as it is not needed in this example. Finally, documents are assigned
to clusters by applying matrix Q, created out of cluster labels, back to the
original matrix Âtfidf.

Q =

∣∣∣∣∣∣∣
0 0.56

0.71 0
0.71 0
0 0
0 0.83

∣∣∣∣∣∣∣
C =

∣∣∣0.69 1 0 0 0 1 0
0 0 1 1 0 0 0.56

∣∣∣

Information Retrieval [score: 1.0]
D3: Introduction to Modern Information Retrieval
D4: Linear Algebra for Intelligent Information Retrieval
D7: Automatic Information Organization

Singular Value [score: 0.95]
D2: Software for the Sparse Singular Value Decomposition
D6: Singular Value Analysis of Cryptograms
D1: Large Scale Singular Value Computations

Other: [unassigned]
D5: Matrix Computations

5 Evaluation

Lingo has been evaluated empirically by performing an experiment on 7 users
and a set of 4 search results, 2 in Polish and 2 in English. Users have been
asked to establish whether cluster labels were meaningful and whether doc-
ument assignments to those clusters made sense. Unfortunately, because of
this paper’s length limitations we are unable to present the full result of the
evaluation. Full set of metrics and results is given in [7]. Let us mention here,
that the results, although done on a small number of users (7), were quite
promising—users found 70–80% clusters useful and 80–95% of snippets inside
those clusters matching their topic. Over 75% cluster labels were marked as
useful (with the distribution of noise clusters toward the lower-scoring ones).
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Recently we performed another evaluation of Lingo, aimed at verifying
its topic-separation capabilities. We mixed several categories from the Open
Directory Project into test sets and analyzed how Lingo splits them back
into original topic groups. We encountered certain problems with numerical
analysis of results again, but the empirical comparison of structure of clusters
created by Lingo and Suffix Tree Clustering revealed that Lingo created more
concise and diverse structure of topics. More results can be found in [8], a
paper published at the same conference and available in the same volume of
conference proceedings as this one.

6 Conclusions and future work

We have presented a novel algorithm for clustering of Web search results.
The inspiration for the algorithm was taken from both existing scientific
work [2], and a commercial system—Vivisimo. Our algorithm, however, took
a different path in many areas. Specifically, our contribution is in present-
ing a description-comes-first algorithm; to our best knowledge, no similar
algorithms have been published so far. Lingo achieves impressing empirical
results, but the work on the algorithm is obviously not finished. Cluster label
pruning phase could be improved by adding elements of linguistic recognition
of nonsensical phrases. Topic separation phase currently requires computa-
tionally expensive algebraic transformations—incremental approaches with
small memory footprint would be of great importance for algorithm’s scala-
bility. It is tempting to find a method of inducing hierarchical relationships
between topics. Finally, a more elaborate evaluation technique will be neces-
sary to establish weak points in the algorithm.
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