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Abstract. Incremental induction of decision rules within the dominance-based
rough set approach to the multicriteria and multiattribute classification is discussed.
We introduce an algorithm, called Glance, that incrementally induces a set of all
rules from examples. We experimentally evaluate it and compare with two other
algorithms, previously proposed for this kind of classification problem.

1 Introduction

Induction of decision rules from provided learning examples is one of the main
problems considered in machine learning and knowledge discovery. Several
algorithms for rule induction have already been proposed for various types of
attributes (nominal, numerical, etc.) describing examples, see e.g. reviews in
[4,7]. However, in some problems one can meet yet another type of attributes
with preference order in their domains. For example, when considering buying
a car, an attribute like ”fuel consumption” has a clear preference ordered scale
- the less, the better. The attributes with preference ordered domains are
called criteria. Let us notice that this kind of semantic information is often
present in data related to cost, gain or quality of objects like in economical
data; however it is neglected by typical knowledge discovery tools. On the
other hand, consideration of criteria is the key aspect of Multiple-Criteria
Decision Analysis (MCDA) [1,6].

In this paper we consider one of the major MCDA problems called multiple-
criteria classification (or sorting) problem. It concerns an assignment of ob-
jects evaluated by a set of criteria into pre-defined, and also preference-
ordered, decision classes. When solving such a problem, any reasonable reg-
ularities to be discovered from data have to take into account a dominance
principle. This principle requires that an object x having better, or at least
the same, evaluations on a set of criteria than object y cannot be assigned to
the worse class than object y. Some data may contain objects violating this
principle. This consitutes a kind of inconsistency that should be handled in
a proper way from MCDA point of view. Therefore, Greco, Matarazzo and
Slowinski [1] have proposed an extension of the rough sets theory [5] that
is able to deal with this kind of inconsistency. It is called Dominance-based
Rough Set Approach (DRSA). Decision rules, which are induced from exam-
ples within DRSA framework, have a special syntax, that requires a new type
of algorithms for their induction.



Greco et all introduced an algorithm DOMLEM [3], which allows to induce
a minimal set of DRSA rules covering all examples in the input data. On the
other hand, sometimes it is also interesting to induce other sets of the rule,
i.e. a set of all rules which can be induced from the given data or a subset of
all rules which satisfy user predefined requirements concerning, e.g. minimal
number of supporting objects or maximal length of the condition part. Two
algorithms for inducing such sets of rules have already been discussed in
[7]. However, these algorithms require all examples to be read into memory
before induction. Experiments have also showed that they are efficient rather
on smaller data sets. Hence, these algorithms are not suitable for handling
large amounts of examples or for situations where only the part of data is
available at the begining and other parts are provided later. Thus, we are
interested in an incremental processing of examples while inducing rules.

The aim of this paper is to present a new algorithm for inducing dominance-
based decision rules for the multicriteria and multiattribute classification
problem. It is called ”Glance” and induces all rules in an incremental way.
Moreover, we experimentaly evaluate it on several data sets and compare its
efficiency with other, previously proposed, algorithms.

2 Dominance based decision rules

Selected concepts of DRSA are presented, for more details see [1]. Let us
assume that learning examples are represented in decision table DT = (U,A∪
{d}), where U is a set of examples (objects), A is a set of condition attributes
describing examples, Va is a domain of a. Let f(x, a) denote the value of
attribute a ∈ A taken by object x ∈ U . The domains of attributes may be
preference–ordered or not - in the first case the attributes are called criteria
while in the latter case we call them regular attributes. Preference scale of
each criterion a induces a complete preorder (i.e. a strongly complete and
transitive binary relation) º in set U . For objects x and y, º means that
object x is ”at least as good” as y with respect to criterion a. The asymmetric
part of º is denoted by Â. An object x is preferred to object y on criterion
a if a(x) Â a(y) and x is indiscernible to y if a(x) ∼ a(y).

d /∈ A is a decision attribute that partitions a set of examples into k
decision classes {Clt : t = 1, . . . , k}. These classes are preference ordered, i.e.
for all r, s such that s > r, objects from Cls are prefered to objects from Clr.
In multicriteria classfication problems it is typical to consider upward union
and downward union of classes instead of single decision classes. The upward
and downward unions are defined, respectively, as: Cl≥g =

⋃
h≥g Clh, Cl≤g =⋃

f≤g Clf , g = 1, . . . k. The statement x ∈ Cl≥g means ”x belongs to at least
class Clg”, while x ∈ Cl≤g means ”x belongs to at most class Clg.

The rough set theory [5] requires determining relation between objects.
For each criterion the dominance relation is defined; Let Pº be a subset of
criteria from A; the object x dominates object y with respect to subset Pº



iff a(x) º a(y) for all a ∈ Pº. For each regular attribute from P= ⊂ A
there exists indiscernible relation, which is an equivalence relation as in the
original rough sets theory. For any subset P ⊆ A two sets of objects defined:
R+

P (x) and R−P (x). Given object x ∈ U , R+
P (x) is the set of all objects y ∈ U

which dominates x with respect to Pº (criteria of P ) and are indiscernible
with x with respect to P= (attributes of P ). Analogously, R−P (x) is the set
of all objects y ∈ U which are dominated by x with respect to Pº and
are indiscernible with x with respects to P=. If the decision table contains
inconsistent objects, the sets R+

P (x) and R−P (x) can be used to define lower
and upper approximations of upward unions Cl≥g and downward unions Cl≤g ,
respectively. For instance, the lower approximation of Cl≥g , g ≤ k is the set {
x ∈ U : R+

P (x) ⊆ Cl≥q }, i.e. it contains all objects belonging to Cl≥q without
ambiguity with respect to their descriptions.

Examples belonging to rough approximations of upward and downward
unions of classes are used for induction of ”if . . . then . . .” decision rules. The
two kinds of these rules are distinguished:
Dº–decision rules with the following syntax: if (f(x, a1) º ra1) ∧ . . . ∧
(f(x, am) º ram)∧f(x, am+1) ∼ ram+1)∧ . . .∧ (f(x, ap) ∼ rap) then x ∈ Cl≥g ,
D¹–decision rules with the following syntax: if (f(x, a1) ¹ ra1) ∧ . . . ∧
(f(x, am) ¹ ram)∧f(x, am+1) ∼ ram+1)∧ . . .∧ (f(x, ap) ∼ rap) then x ∈ Cl≤g ,
where P = {a1, . . . , ap} ⊆ A,Pº = {a1, . . . , am}, P= = {am+1, . . . , ap},
(r1, . . . , rp) ∈ Va1 × Va2 × Vap and g = 1, . . . k.

The Dº–rule says: ”if an evaluation of object x on criteria ai is at least
as good as a threshold value ri (i = 1, . . . , m) and on attribute aj object x is
indiscernible with value rj (i = m+1, . . . , p) then object x belongs to a least
class Clg”. Similarly the D¹–decision rule means that an object is evaluated
as ”at most good as a value” and belongs to at most a given class.

Each dominance based decision rule has to be minimal. Since a decision
rule is an implication, by a minimal decision rule we understand such an
implication that there is no other implication with an antecedent of at least
the same weakness (in other words, rule using a subset of elementary condi-
tions or/and weaker elementary conditions) and a consequent of at least the
same strength (in other words, rule assigning objects to the same union or
sub-union of classes).

Consider a Dº–decision rule if (f(x, a1) º ra1)∧ . . .∧ (f(x, am) º ram)∧
f(x, am+1) ∼ ram+1) ∧ . . . ∧ (f(x, ap) ∼ rap) then x ∈ Cl≥g . If there exists an
object y such that f(y, a1) ∼ ra1 ∧ . . .∧ (f(y, am) ∼ ram ∧ . . .∧f(y, ap) ∼ rap ,
then y is called basis of the rule. Each Dº–rule having a basis is called robust
because it is ”founded” on an object existing in the data table. Analogous
definition of robust decision rules holds for the other types of rules.

We say that an object supports a decision rule if it matches both condition
and decision parts of the rule. On the other hand, an object is covered by
a decision rule if it matches the condition part of the rule. The rule can be
described by a parameter strength, which is the number of supporting objects.



The set of induced rules is complete, if is covers all objects from the data
table in such a way that objects belonging to lower approximations of unions
are re-assigned to their original class while inconsistent objects are assigned to
cluster of classes referring to their inconsistency [1]. The set of rules is called
minimal if it is a set of minimal rules that is complete and non-redundant,
i.e. exclusion of any rule from it makes it incomplete.

3 ”Glance” algorithm

The minimal set of rules can be induced from examples of multicriteria and
multiattribute classification problem by means of the DOMLEM algorithm
[3,7]. Such a set of rules is usually sufficient for aims of predicting classifica-
tion of new (or testing) objects. However, if the aim of the induction process
is descriptive, i.e. discovered rules should help in explaining or better under-
standing of circumstances in which decisions were made, another kind of rule
sets are also useful [7]. One possibility is to create all decision rules, which
could be generated from the given decision table, while another option is
to discover the satisfactory subset of all rules, which satisfy user’s require-
ments e.g. sufficiently high strength and confidence, contain limitted number
of elementary conditions. The algorithms for inducing such sets of dominance
based rules were discussed in [7,8]. Let us notice however, that their compu-
tational costs are higher than for DOMLEM; in particular it is true in case of
looking for all rules, which is a problem characterized by an exponential com-
plexity with respect to a number of attributes. Moreover, these algorithms
require all examples to be read into memory before induction – what is a
serious drawback if knowledge is to be discovered from real databases. Let
us also remind that some learning problems are characterized by an incre-
mental processing of information, i.e. descriptions of examples are available
sequentially in steps. To overcome all of these problems we have decided to
consider incremental learning, i.e. the learning algorithm has to learn rules
from provided examples and then refine knowledge representation when new
examples become available. The paradigm of incremental learning has been
already considered in the field of machine learning or knowledge discovery
from databases, however we have to skip the review of existing approaches
due to a limited size of the paper.

We introduce an algorithm called Glance, which is incremental and stores
in memory only rules and not descriptions of learning examples. In its basic
version, it induces the set of all rules from examples of multiattribute and
multicriteria classification problems. These rules are not necessarily based on
some particular objects, i.e. they are non-robust. The general scheme of the
algorithm for the case of inducing certain rules is presented below.

Procedure GLANCE
(input U - set of examples; P - set of criteria and regular attributes;
Cl - set of unions of decision classes; output R set of decision rules);



begin
for each union u ∈ Cl do
begin

Let r be a rule with empty condition part; {it covers each example}
Ru ← r; {add to the set of rules for union u}

end{for}
for each example x ∈ U do

for each u such that f(x, d) /∈ u do {d is a decision attribute}
for r ∈ Ru do

if (r covers x) then begin {r does not discriminate properly}
Ru ← Ru \ r;
for each a ∈ P do

begin { specialize rules }
Let s be a condition on attr. a excluding x;
rnew ← r ∪ s;
if (rnew is minimal) then Ru ← Ru ∪ rnew;

end; {for}
end; {if }

R ← ⋃
u

Ru;
end{procedure}

The main idea of Glance is concordant with inductive extension princi-
ple, according to which an algorithm starts from the most general description
and then update it (specialize) so that it is consistent with available train-
ing data (also considering approximations). The most general description are
rules with empty condition part. When the new object, e.g. x ∈ Clg is avail-
able, it is determined for which unions u this object should be treated as a
negative example (these unions include all Cl≤f such that f < g for downward
cumulated unions and Cl≥h such that h > g for upward cumulated unions).
If any rule r ∈ Ru covers x, then it has to be updated as it does not discrim-
inate all negative examples properly. It is removed from Ru and specialized
by adding on each attribute or criterion an elementary condition that its not
satisfied by description of x. For criteria elementary conditions are in forms
(f(x, a) Â va) or (f(x, a) ≺ va), depending on the direction of preference
and unions; where va is the value of criterion a for object x. For regular
attributes, conditions are in form (f(x, a) /∈ {v1, . . . , vl} and va is added to
this list. At the end of the induction process, these conditions in all rules are
transformed to representation using operators (¹,º,∼) as in the syntax of
dominance based rules.

The computational complexity of basic version of Glance is exponential
with respect to a number of attributes. The user can define the maximal
accepted number of elementary conditions in the syntax of the rule. An ex-
tended version of Glanceallows to induce a satisfactory set of rules with other
pre-defined constraint expressing minimum accepted (relative) strength of the
rule. However it requires to maintain in memory additional information about
examples, for details see [8].



4 Experiments

The main aim of an experimental evaluation of the Glance algorithm is check
how the computational time and the number of rules are changing with in-
creasing number of objects and attributes/criteria. Moreover, we want to
compare its performance with previously known algorithms DomExplore and
AllRules [8]. Both of these algorithms are dedicated for multicrieria sorting
problems, but they work in an non-incremental way. DomExplore induces the
satisfactory set of non-robust rules and it is inspired by data mining algo-
rithms, which search multiattribute (only) data for all ”strong” rules with
strength and confidence not less than predefined thresholds [7]. The AllRules
algorithm has been developed by Greco and Stefanowski and it induces the set
of all roboust rules, which are based on some particular (non-dominated) ob-
jects belonging to approximations of upward or downward unions of classes. It
is strongly tied to dominance based rough sets approach and uses its specific
properties to reduce descriptions of objects being basis for roboust rules.

Table 1. The computation time (in seconds) for compared algorithms while chang-
ing the number of objects

No. of Number of objects
Algorithm attrib. 500 1000 1500 2000 3000 4000 5000 6000

DomExplore 3 0.10 0.33 0.72 1.15 2.69 4.9 8.3 14.99
6 3.68 21.4 73.7 178.4 704.9 – – –

AllRules 3 0.10 0.16 1.41 3.13 7.69 18.4 34.3 53.01
6 1.43 5.5 13.1 27.2 108.1 281.9 502.9 712.7

Glance 3 0.05 0.05 0.05 0.06 0.06 0.06 0.1 0.12
6 1.26 3.13 5.5 7.86 15.38 21.2 26.31 38.7

The experiments were performed on family of artificial data sets. They
were randomly generated according to chosen probability distribution (for
details see [8]) and differ by the number of objects. Moreover for each series
of data sets we could change the number of attributes and the proportion
of criteria to regular attributes. Firstly, all three algorithms were compared
on the same data sets with respect to time of computation. In two series
of data, with number of attributes 3 (2 criteria and 1 regular attribute)
and 6 (2 criteria and 4 regular attributes), we systematically changed the
number of objects from 500 till 6000. The results are presented in Table 1;
symbol ”–” means that the algorithm exceeded the accepted resources. Let us
remark, that the number of rules induced by algorithms may be different as
Allrules generates robust rules. Then, in Table 2 we present the change of the
number of rules induced by Glance algorithm while incrementally increasing
the number of objects (with 6 attributes).



Table 2. The number of rules induced by Glance while processing the different
number of objects

Number of objects
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 6000

no. rules 1024 1580 1961 2153 2271 2495 2629 2705 2791 2962 3072

Table 3. The computational time (in seconds) of algorithms while changing the
number of regular attributes and criteria in data containing 100 objects

No. of criteria and regular attributes
Algorithm 3 6 9 12 15 18

DomExplore 0 0.11 0.77 9 41.14 284.79
AllRules 0 0.06 0.82 7.58 68.66 624.83
Glance 0 0.22 44.9 439.41 – –

Furthermore, we examine the influence of changing the number of at-
tributes for the time of computation (with fixed number of objects equal
to 100), see Table 3. For Allrules the results are growing with the number
of attributes. For DomExplore the time also grows exponentially with the
number of attributes, but respective results are around 10 times longer than
AllRules. However, for Glance time exceeded the accepted limit when number
of attributes was greater than 12.

5 Discussion of results and final remarks

We introduced a new algorithm Glance, which induces the set of all rules from
provided examples. Unlike the previous algorithms, the new one works in an
incremental way. It stores only rules in memory but not processed examples.
The user can also define the constraint for maximal number of elementary
condition to be used in a rule. Moreover, the algorithm can be extended to
allow the user specifying constraints on minimal (relative) strength of a rule
- for details see [8].

The algorithm Glance has been experimentally evaluated and compared
with algorithms AllRules and DomExplore. The results given in Table 1 show
that the computational time of Glance increases ”linearly” with the number
of objects. Furthermore it is always the best, while AllRules is the second
and DomExplore is the worst. On the other hand, additional experiments
indicate that if the number of attributes/ criteria is higher than 9, the winner
is AllRules. Probably it is due to the fact that for all three algorithms the
number of rules increases with the number of attributes, and Glance needs
to check all generated rules when a new example is being processed. This
aspect could be somehow reduced by using in Glance the minimal rule length
constrain. Analysing the number of rules from Table 2, one can notice that



the highest increase occurs at the begining of learning, then next parts of
examples (≥ 3500) cause smaller changes. Additional results presented in
[8] indicate that both Glance and AllRules ”prefer” data characterized by
criteria and are less efficient on regular attributes.

The above observations obtained on artificial data, have been also con-
firmed in other experiments on some real data coming from UCI ML Repos-
itory - we skip them due to limited size of this paper, for details see [8].

In future research, we also want to examine classification accuracy of
the Glance algorithm. However, predicting classification of a new object is a
different problem than in only attribute case, because rules indicate unions
not single classes. So, new strategies should be developed for determining
final decision when the new objects matches conditions of many rules.
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decision problems. M.Sc. Thesis, Poznań University of Technology. Supervisor
Stefanowski J., 110 pages.


